2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

Extensions of Component Rank Model
by Taking into Account for Clone Relations

Reishi Yokomori*, Norihiro Yoshida®, Masami Noro* and Katsuro Inouef
*Department of Software Engineering, Nanzan University, Nagoya, Aichi, 466-8673, Japan
Email: yokomori@se.nanzan-u.ac.jp, yoshie@nanzan-u.ac.jp
fGraduate School of Information Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
Email: yoshida@ertl.jp
1Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan
Email: inoue@ist.osaka-u.ac.jp

Abstract—The size of software increases in recent years, and
the number of classes and relationships between classes are
also increasingly complicated. We have a large interest about
the way to classify a great deal of components effectively. Our
research group proposed a component rank model in the past,
and the model calculates an evaluation value of each component
by using component graph that represents use-relations between
components. In this paper, we suggest a method to reflect code
clone’s relation on the component rank model. In the extended
model, code clone’s relations are reflected on the component
graph by merging components that have similar code fragments.
When we focus simply on how the evaluation value of each
component has changed, component whose evaluation value falls
would be mainly a component used by both of the merged
components. In the experiment, we applied our method to several
open source projects, and confirmed that the change of evaluation
value of each component was within the scope of the assumption.
And we also searched case examples, and confirmed how much
assumed cases existed in the actual software, and a percentage
of the reduction of the evaluation value was useful for detecting
components related with code clone. Through these experiments,
we confirmed that our method is effective to detect components
that existing similar code fragments are using.

I. INTRODUCTION

The size of many software increases continuously because
of accommodating a lot of additional features. Therefore,
the number of classes that compose such software becomes
increasing, and relationships between such classes also become
increasingly complicated. When implementing new features,
developers add new code fragments to the software. Some-
times these code fragments are very similar to the existing
code fragments. This is because, implementing a similar
feature also requires producing codes that have similar code
fragments. Such similar code fragments are called code clone
[1], and how to manage the software that contains a lot of
code clones becomes a major matter of concern. It is generally
desirable to remove or not to create a code clone, however,
code clones are sometimes woven with developer’s intention.
In such case, developers have to share the intension for keeping
the maintainability of the software.

Our research group proposed a ranking model for recom-
mending desirable components from a lot of components ex-
tracted from a lot of software systems and we call it component
rank model [2]. In the model, components are recommended

978-1-5090-1855-0/16 $31.00 © 2016 IEEE
DOI 10.1109/SANER.2016.30

30

from a viewpoint how many components each component is
used by, and a component graph, which represents components
and use-relationships between components, is produced, and
evaluation value of each component is obtained by repetitive
calculation on the component graph.

In this paper, we extend the component rank model by
reflecting relationships of code clones between components on
the component graph. In our approach, the target component
graph consists of one software, and components that have
similar code fragments are merged in the graph. And then we
re-calculate evaluation value based on the merged graph, and
we get two evaluation values of each component, before and
after reflection of the code-clone relations. We take particular
note of the not merged components, and calculate a degree of
the change of the evaluation value of each component. We will
discuss how evaluation value of each component may change
through the reflection. We consider affected components are
used by both of the merged components, and the evaluation
values of these components would decrease.

The goal of our research is to propose a system that
detects components that are commonly used by similar code
fragments. We consider that simply extracting components
that are commonly used by similar code fragments would
be insufficient bacause we have to consider use relations to
the components from other ones. In the proposed method,
we can consider a degree of the aggregation of use relations
in merging, so we consider a percentage of reduction of
the evaluation value would be useful for detecting assumed
components.

By extracting components that are truely related to the
existing code clone, we can offer a mechanism to prevent a
spread of the code clone. For example, we consider a situation
of adding a new component to the existing software. When the
new component uses component whose evaluation value has
decreased, the new component may use the components by the
same method as components that have similar code fragments.
At the time of using such components, the expanded model
can support by warning a possibility of producing a code
clone. We consider that this usage supports developers from
two viewpoints: the viewpoint of preventing making a code
clone easily, and the viewpoint which shows existences of

IEEE
computer
® psouety

code fragments that are useful as examples. In this way, we can
keep away that the existing code clone derives and increases in
various forms. Since differentiated code clones make it more
difficult to detect code clones, so our method would be useful
for improvement in the quality of software.

Based on the approach, we implemented a system that
shows the components whose evaluation value have changed
after reflection of code clone relations, and we conducted two
evaluation experiments. In the first experiment, we applied our
method to source codes of open source projects and confirmed
that the evaluation value of components used by several
components in the merged components would decrease. In the
second experiment, we searched case examples, and confirmed
how much assumed cases existed in the actual software, and
confirmed that a percentage of the reduction of the evaluation
value was useful for detecting assumed components.

In Section II, we introduce backgrounds. In Section III,
we discuss how evaluation value of each component may
change by merging components. In Section IV, we introduce
our implementation. In Section V, we introduce conducted
two experiments. Finally, in Section IV, we discuss about the
results and future directions and introduce related works.

II. BACKGROUNDS
A. Component Graph

In general, a component is a modular part of a system that
encapsulates its content and whose manifestation is replace-
able within its environment [3]. We model software systems by
using a weighted directed graph, called a Component Graph
[2]. In the component graph (V, E) , a node v € V represents
a software component, and a directed edge e,y € E from
node x to y represents a use relation meaning that component
x uses component y.

B. Component Rank Model

Based on the component graph, we proposed Component
Rank Model [2]. In the model, the component graph represents
a Markov chain, and a movement of software developer’s
focus on the target software is represented by a probabilistic
state transition. The weight of each node at steady state is
regarded as the evaluation value of correspondent component,
and this model calls the order of the components sorted by
the evaluation value component rank of the components. The
component rank model was proposed as a part of component
search engine, and its application result was reasonable such
that very general and core classes were ranked high (signifi-
cant), and specific and independent classes were ranked low.

This model introduces several definitions to calculate evalu-
ation values (weights) for component graph G = (V, E). Each
node v in component graph G has a non-negative weight value
w(v) where 0 < w(v) < 1. The sum of the weights of all
nodes in G is 1, and total weights of nodes are kept as 1.

The following is a calculation process;

1) Set initial weights to each node

Each node has 1/n as an initial weight if target system
consists of n components.

31

2) Repeat calculation 2-1 and 2-2 until convergence.
2-1 Calculate weights of edges from weights of nodes
For each edge e;; € E from v; to v;, we define a weight
w’(e;;) of e;; as following;

w’(eij) = dij X w(vl)

Figure 1 (a) depicts this definition. Here, d;; is called a
distribution ratio for edge e;;, where 0 < d;; < 1, and
if there is no edge from v; to v;, d;; = 0. The distri-
bution ratio d;; is used for determining the forwarding
weights of v; to an adjacent node v;. For each node
which has any outgoing edges, the sum of distribution
ratios for outgoing edges is always 1. In the current
implementation, if a node a has n outgoing edges, and
then distribution ratios of outgoing edges from a are
all 1/n. In the actual calculation, we have to treat the
target component graph as a strongly connected graph
to guarantee the termination of repeated computation,
so we introduce pseudo use relations between all nodes.
This is not on topic, so please refer to [2].

w(ey)
LAY

Ci

W(vi) =W (e) +w(ey) +

..+W’(eki)+...

(b) Weight of Node

w(e;j) =dy w(vp)

(a) Weight of Edge

Fig. 1. Definition of weights

2-2 Re-calculate weights of nodes from weights of edges
The weight of a node v; is re-defined as the sum of the
weights of all incoming edges ey;, such that

Z w'(ex;)

er; € IN(v;)

Here, IN(v;) is the set of the incoming edges of v;.
Figure 1 (b) shows this definition.

The weight of each node at steady state is regarded as
the evaluation value of correspondent component, and
components are sorted by the evaluation value.

w(v;) =

3)

Figure 2 shows a component graph with evaluation value
at steady state. v; has two outgoing edges, and weight 0.4
is evenly divided to two outgoing edges with 0.2 each (i.e.,
di2 = di3 =0.5). vs has two incoming edges, each with weight
0.2, so that the weight of v3 is 0.4.

III. REPRESENTING CODE CLONE RELATIONS ON THE
COMPONENT GRAPH

A code clone is a code fragment that has identical or similar
code fragments to it in the source code [1]. Code clones
appear not only in a single component, but also appear between
different components. It is generally desirable not to create a

Fig. 2. An example of stable weights assigned to nodes and edges

Lod v lw] o]l v

Fig. 3. Extending by merging clone-related components

code clone, however, code clones are sometimes woven with
a certain intention. In such case, developers have to share
information about the code has similar code fragments, for
keeping software maintainability. This is because developers
have to review another code fragments to keep its consistency
when one of such code fragments should be modified.

In this paper, we extend the component rank model by
reflecting relationships of code clones. As a method for
reflecting code clone relationships, we merge nodes which
have the same or similar code fragments. For examples, we
consider a part of component graph in Figure 3. It has 9 nodes
(components), and V4 and V5 have similar code fragments each
other. In this case, we merge V; and Vs into VJ, and draw
edges from V, to V] if V,, uses V4 or Vi, and draw edges
from VJ to V. if Vy or Vi uses V,, respectively.

In this way, we get two component graphs before and after
reflecting code clone relationships, and calculate two compo-
nent ranks. We focus attention on the components that are not
merged, and calculate differences of the evaluation value of
each component. In this study, we have an interest about how
the evaluation value of each component changes by reflecting
relationships of code clones. We examine how evaluation value
of each component would change as following:

o Incoming edges to V,; and V; are aggregated to one
incoming edge to V. So, the number of outgoing edges
from V7 and Vg decreases and evaluation value of these
edges would increase. So, evaluation value of each in-
coming edge to V increases.

« Evaluation value of V] is a sum of all incoming edges,
so evaluation value of V/ would be larger than the one of
V4 or V5. However, evaluation value of V| doesn’t exceed
the sum of V4 and V5. This is because incoming edges to
V, and V; are aggregated to one incoming edge, and if

32

we consider the situation that x nodes are merged and the
number of outgoing edges from a certain node becomes
n to n — x + 1. Evaluation value of each edge become
njigZH times, however n%m is equal or less than x.

« We consider a case of component that is used by both of
the merged components. V; is used by both V; and V5.
Before merging, V; gets evaluation value via edges from
V4 and V5. After merging, outgoing edges from Vy or V;
are also aggregated to one outgoing edge, and V; gets
evaluation value via edges from V. Evaluation value of
V{ doesn’t exceed the sum of the one of V and Vs, so
the evaluation value of V; decreases.

« We consider a case of component that is used by only
one of the merged components. V5 uses V3 and V,; doesn’t
use V3. Before merging, V3 gets evaluation value via edge
from V5. After merging, V5 gets evaluation value via edge
from V. The evaluation value of V is larger than the one
of V5, so the evaluation value of V3 would increase.

o Other nodes are affected by the following factor;

— In the repeated calculation, decrease or increase of
evaluation values are spread to other nodes through
their outgoing edges.

— When a closed path is built by merging components,
components on the closed path give a part of their
evaluation value to other components on the closed
path, so evaluation values of them increase.

As a result, evaluation value of the component, that is used
by several components among the merged ones, decreases. We
also think there is a difference about decreasing degree by how
the component is used by other component. Components that
receive evaluation values from merged components and other
components would be low decreasing degree. On the other
hand, components that are used locally only by the merged
components would be high decreasing degree. So we set a
hypothesis that ”"Components whose evaluation value goes
down are tend to be used by similar code fragments in the
merged components.”

IV. IMPLEMENTATION OF THE ANALYSIS TOOL

We implemented a tool that calculates two component ranks
and compares the difference of each component’s evaluation
value. This tool is implemented by PHP, and Figure 4 is an
overview of the system. Our analysis target is a Java software,
and we choose a .java file as a component. The following is
the analysis procedure:

1. CCFinder [1] analyzes the target and get a result
about code clone. We treat two .java files have a
clone relation if they have similar code fragments
that are longer than 30 tokens.

2. Classycle’s analyzer' analyzes the target and get use
relations. In the analysis of Classycle’s analyzer, we
get the following as use relations: inheritance of
class, declaration of variables, creation of instances,

Uhttp://classycle.sourceforge.net/

Classycle CCfinder

[Use Relation] [Code Clone]

Clone
Analyzer

Use Relation
Analyzer

Component
Graph

Implementation

Merged
Component
Graph

Component Rank
Calculator

J

Compare
Evaluation Values

12
Differences of
Evaluation Values

[Component

Component
Rank (Before)

Rank (After)

Fig. 4. Overview of the analysis tool

method calls, and reference of fields. Classycle’s An-

alyzer’s result is based on relations between classes,

so the result between classes are mapped into rela-

tions between files, so inner classes and anonymous

inner classes and other supplemental classes in a

certain file and use relations of them are merged.

A component rank before merging is calculated.

4. Our tool merges components that have a clone rela-

tion, and use relations are also re-considered on the

merged component graph.

A component rank after merging is calculated.

6. Two component ranks are compared, and the result
of the comparison is outputted as a table.

bl

b

V. EXPERIMENT
A. Objective

By making a comparison between an evaluation value
before merging and the one after merging, we performed
the following two experiments to confirm that we can detect
components that would be a source of code clone generation.

1) We apply our method to source codes of open source
projects. We focus attention on not merged components,
and not merged ones are categorized as following;

Group A
Components used by several components in
the merged components. We can imagine a
situation that there are several merged groups.
In such case, if the component meets the re-
quirement against at least one of the merged
groups, then the component belongs to this.
Group B
Components used by only one of the merged
components. This means that component of this

33

category is used only once at the most from all

of the merged groups, and some of the merged

groups may not use the component.

Group C

Other components. Component of Group C is

not used by any of the merged components.
We confirm that the evaluation values of Group A Com-
ponents decrease than other components (Group B or C).
Through the experiment, we check the adequacy of our
consideration, and consider the point which should be
taken into consideration in actual use.
We get Group A components like experiment1. For each
Group A component, we investigate whether merged
components use the component in similar way or not,
by reviewing code visually, and check the adequacy of
a hypothesis that Components whose evaluation value
goes down are tend to be used by similar code fragments
in the merged components.”

B. Rate of Variability

A number of nodes decreases after merging components.
As an example, we suppose the following situation; At first,
a number of nodes in the component graph was Viefore,
and an evaluation value of node v; was w(v;)pefore. After
merging, the number of nodes decreased into V, t¢c,, and the
evaluation value of node v; became w(v;), fter- Because a sum
of the evaluation values are always 1, the evaluation value is
distributed to each component much relatively. So we define
a rate of variability of node v; as following;

2)

w(vi)after X Vaftcr
w(vi)before X Vbefm’e
C. Experimentl: About Changes of Evaluation Values

x 100

ey

We selected 45 open source projects in SourceForge. This
selection was performed via search function of SourceForge,
and we selected projects that have both source code files (.java)
and bytecode (.jar) and we didn’t have other intentions. For
each the project, we got one version of the software and
applied our method to it, and calculated a rate of variability for
each component. We categorized components into Group A,
B, and C and calculated an average of the rate for components
in Group A, B, and C, respectively. We compared them and
confirmed that evaluation value of the components in Group
A decreased averagely than the one for Group B and C.

Table I shows an average of the rate for components in
Group A per project, the one for Group B and C per project,
respectively. Some projects didn’t have any components be-
long to Group A (B, or C), so the number of project for
each category was less than 45. We confirmed that an average
rate of variability for Group A components decreased 10%
and, on the other hand, the one for the components in Group
B and C increased slightly. In this way, the average rate of
variability for the components in Group A decreased than the
one for Group B and C. Group C components were not affected
directly from merging nodes, so standard deviation of Group
C was smaller than the one of Group A and B.

TABLE I
AN AVERAGE OF RATE OF VARIABILITY FOR EACH PROJECT
Standard
Projects | Average | Deviation | Increased | Decreased
Group A 43 88.5% 19.6 3 40
Group B 41 107.7% 16.2 19 22
Group C 43 104.3% 6.4 20 23

Some projects didn’t have any components belong to Group
A (B, or C); however, components were present in both Group
A and B in 36 projects, and components were present in
both Group A and C in 37 projects, respectively. For each
project, we calculated the difference between the average rate
of variability for the components in Group A and the one
for Group B, and also calculated the difference between the
one for Group A and the one for Group C. As shown in
Table II, the difference between Group B and Group A (B-A)
and the one between Group C and Group A (C-A) were the
plus value as the 15-20%. In 80-90 percent of projects, we
confirmed that Group A components lost evaluation values
than other components. Fig. 5 shows a distribution of the
differences between Group A and Group B, and Fig. 6 shows a
distribution of the ones between Group A and C, respectively.
Many projects were plotted in a range of 10% from 20%.

TABLE 11
THE DIFFERENCE OF AVERAGE RATE OF VARIABILITY
projects
Projects | Average | Standard Deviation | <0 [> 0
B-A 36 20.8% 20 3 33
C-A 37 15.8% 16.7 5 32
20
315
14
510
H
5
0
= - a2 2 2 a a a a aQ Q
S < 7238 %382 8¢ ¢g
§7 28232888883
Differences of Average Variability (B-A) per project b
Fig. 5. A Histogram of the Difference of Average Rate (B - A)

N
S

-
@

Frequency
=
5

@

o

-20-10.1
10-0.1
-99
10-19.9
20-29.9
30-399
40-49.9
50-599 ||
60-69.9
70-79.9 I
80-89.9
90-99.9
100-109.9

Differences of Average Variability (C-A) per project

Fig. 6. A Histogram of the Difference of Average Rate (C - A)

We also analyzed these differences statistically by using
the Welch’s t test, and confirmed that there was a statisti-

34

cally significant difference between Group A and B («
0.01,d = 1.04, and 1 — 8 = 0.99988) and there was also
a statistically significant difference between Group A and C
(o = 0.01,d = 094, and 1 — 8 = 0.99932), respectively.
From these result, we concluded that the evaluation value of
the component that was used by several components of the
merged components decreased than other components.

D. Experiment2: Components Used by Merged Components

We selected 34 open source projects from 45 projects in
Experimentl in the interest of time, and not merged compo-
nents were categorized in the same manner as Experimentl.
In this experiment, we focused attention on the Group A
components. For each Group A components, we analyzed
how the component was used by the merged components
by reviewing codes visually, and whether the uses of the
components caused producing a code clone or not. This means
that the component was used by similar way inside or outside
of the detected code clone in the merged components, and their
behaviors about using the component were almost the same.
We categorized how the component was used in the merged
components, and discussed the points should be considered
when analyzing code clone with considering use relations.

From the 34 open source projects, we extracted 423 com-
ponents belong to the Group A, and checked whether the
use of the component was a similar way or not. Table III
shows the result, and we confirmed that 269 components were
used by merged components in a similar way, on the other
hand, 154 components were used by merged components in
a different way. When it was considered by the percentage,
almost two-thirds of Group A components were used by the
merged components in a similar way. There were several
merged groups, so we confirmed 339 case examples from
the 269 components. we classified these 339 case examples
based on how the component was used by. In the 195 cases,
we confirmed that components were used by a method-call
or creation of an instance, and so on, in the similar code
fragments. In much of the remaining case, components were
inherited by several subclasses, and these subclasses had
common descriptions that were recognized as code clone. In
other cases, Group A components were exception classes, and
these components were used in similar exception handlings.

TABLE III
‘WAS THE COMPONENT USED BY A SIMILAR WAY?

Yes
269

No
154

Components(Group A)
423

Percentage
64%

Among 34 projects, there were 24 projects that have more
than 3 components belong to Group A. For each such project,
we calculated a precision ratio for the above-mentioned condi-
tion. Fig. 7 shows a distribution of the precision ratio for each
project. We confirmed that there was a peak of distribution
around the average (64%), on the other hand, there were
several projects whose precision ratio are 100%.

Frequency
o = N W oA G oo

B’
o
=
o

10-19.9%
20-29.9%
30-39.9%
40-49.9%
50-59.9%
60 -69.9%
70-79.9%
80 - 89.9%
90 -99.9%

100%

Precision Ratio of Group A Components per project

Fig. 7. A Histogram of the Precision for Each Project

We selected 2 projects, dnsjava?, Jackcess® that had more
than 20 Group A components. For each project, Group A
components were arranged in order of the decreasing rate of
the evaluation value, and we calculated a precision ratio for
Top X(X=1,2,3.....,20) components, respectively. Fig. 8 is a
transition of the precision ratio for top X dnsjava components,
and Fig. 9 is a transition of the precision ratio for top X
Jackcess components, respectively. In these figures, a solid
line shows a precision ratio for Top X components, and
a horizontal line shows an average precision ratio of the
project. The precision ratios decreased totally with spreading
the scope of the ranking, however, the line totally kept over
the average precision ratio. For these projects, we considered
that components whose evaluation value had decreased a lot
didn’t always fit into our hypothesis; however, it was often the
case that such components fitted into our hypothesis.

100

80

60

40

Precision Ratio

20

1234567 891011121314151617181920
Top X components (dnsjava)

Fig. 8. A Precision Ratio for Top X Components (dnsjava)

100

80

60
40 /
20

1234567 891011121314151617181920
TopX components (jackcess)

Precision Ratio

Fig. 9. The Precision Ratio for Top X Components (Jackcess)

Zhttp://sourceforge.net/projects/dnsjava/
3http://jackcess.sourceforge.net/

35

VI. DISCUSSION
A. About Result of Experimentl

In the experimentl, we confirmed that the evaluation values
of the components, those were used by several components
among the merged components (Group A) decreased averagely
than the one of others (Group B and C). On the other hand, we
also confirmed that evaluation values of some components in
Group A increased and the ones of Group B or C components
decreased severely. Especially, there were three projects so that
the average rate of variability of the Group A components
increased, as shown in the Table I. For such cases, we
investigated how nodes in the component graph were merged.

e« We confirmed that there were several groups in the
merged component graph. Some of the Group A com-
ponent was used by several components in a certain
group, however, the component was also used by only
one component in another group. In such case, evaluation
value of such component tends to increase.

o When a change of the graph structure was too big, or
when components whose role was quite different were
merged, several closed paths were produced in the merged
graph. In such case, the distribution of the evaluation
value was strongly affected by the creared closed paths.

From these results, we consider that it isn’t desirable to
merge components gratuitously, and our method would be
improved by setting a restriction for mergence of components
based on relativeness between components. For example, we
consider that we can extract clone relations that have strong
connectivity, by considering relations between packages to
which components belong, or by extracting only a larger size
of code-clones. As future works, we would like to inspect
the effect of such improvement methods by also considering
confirgation choice problem [4].

B. About Result of Experiment2

In the experiment2, we confirmed that almost two-thirds of
the Group A components were used by the merged compo-
nents in a similar way. For actual use, we consider the ratio
was insufficient to realize the method by simply extracting
components that were commonly used by code-clone related
components. We consider that sorting components based on
a rate of variability seems to be efficient as shown in Fig.
8 and Fig. 9, and a hypothesis that "Components whose
evaluation value goes down are tend to be used by similar code
fragments in the merged components.” worked to some extent.
In conjunction with improvement method in Experimentl, we
would like to improve our method.

We also classified 339 case examples based on how the
component was used by merged components. From a view-
point of clone analysis based on the use relation, this kind of
classification would be useful for identifying a particular kind
of use relations are closely related with producing code clones.
For example, we consider that the following support would
be realizable; When developers introducing some classes that
inherit a particular class, it can support by giving advices as

there are already some good examples that inherit the class,
and these classes serve as a useful reference. Based on such
approach, we can control that the existing code clone derives
and increases in various forms in the software. Since such
differentiated code clones make it more difficult to detect code
clones, so our method would be useful for improvement of the
quality of software.

C. Related works

From a viewpoint of use relation (dependency) analysis,
architecture recovery is active research area. Zhang represents
OO system by using Weighted Directed Class Graph, and
proposed a clustering algorithm for recovering high-level
software architecture [5]. Constantinou represents hierarchical
relationships between components as D-layer, by contracting
closed paths in component graph, and investigated relation-
ships between architecture layer and design metrics [6]. In the
past research, we proposed a metric representing a change of
component rank as an impact for a source code update [7].
We paid our attention to the change of the evaluation value of
each component also in this work.

From a viewpoint of clone analysis, Mondal analyzed the
stability of several kinds of cloned codes, and they reported
that Type3 clones, known as gapped clones, have higher
stability than other clones [8]. Antoniol analyzed the evolution
of code duplications in 19 versions of the Linux kernel [9].
Yoshida et al. proposed an approach to supporting clone refac-
toring based on code dependency (e.g., caller-callee, shared
variable) among code clones [10]. Their approach presents
a coherent set of code clones as a refactoring opportunity.
Our research uses component rank model as a basis for
consolidating clone information and showing the result, the
characteristics of our research is that it pays its attention
to the components which the code clone uses in common.
In [11], Yamanaka suggested a daily reporting system about
modifications related with cloned codes. We consider that
changes of component rank may also be fit to be used in such
reporting system.

VII. CONCLUSION

In this paper, we extended component rank model by
reflecting relationships of code clones between components
on the component graph, and components that have a similar
code fragment were merged in the graph. We implemented a
system based on the proposed method, and we conducted two
evaluation experiments. In the first experiment, we confirmed
that the evaluation value of the component, that was used by
several components among the merged ones, decreased. In
the second experiment, we confirmed that almost two-thirds
of the components that were used by the several merged
components, were used by merged components in a similar
way, and sorting components based on a rate of variability
seemed to be efficient. From these results, we could confirm a
certain degree of its utility, and a rate of variability seemed to
be efficient for filtering not-related components. However, we

36

also think that an improvement of the precision is necessary
to sense the utility of our approach in the actual use.

As future works, we would like to inspect the effect of
restriction method for mergence of components based on
relativeness between components. From a viewpoint of clone
analysis based on the use relation, we would like to categorize
use relations that caused code clone in more detail, and
inspect what kind of use relations tends to generate code
clone. After considering those pending problems, we would
like to implement a tool where it helps code clones not to
increases in various forms. The tool would contribute the
support of software-maintenance work and the improvement
of the quality of the source code.

ACKNOWLEDGMENT

This research is supported by Nanzan University Pache
Research Subsidy I-A-2 for the 2015 academic year. I would
like to gratefully and sincerely thank to E.Senga. Original of
this research is based on his master thesis written in Japanese
[12]. We were supervisors of it and added considerations,
experiments and evaluations thoroughly for this paper.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multi-linguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions. Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
“Ranking significance of software components based on use relations,”
IEEE Transactions on Software Engineering, vol. 31, no. 3, pp. 213-225,
2005.

C. Krueger, “Software reuse,” ACM Computing Surveys, vol. 24, no. 2,
pp. 131-183, 1992.

T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: A rigorous approach to clone evaluation,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering,
2013, pp. 455-465.

Q. Zhangs, D. Qiu, Q. Tian, and L. Sun, “Object-oriented software
architecture recovery using a new hybrid clustering algorithm,” in
Proceedings of the Seventh International Conference on Fuzzy Systems
and Knowledge Discovery, 2010, pp. 2546-2550.

E. Constantinou, G. Kakarontzas, and 1. Stamelos, “Towards open
source software system architecture recovery using design metrics,” in
Proceedings of the 15th Panhellenic Conference on Informatics, 2011,
pp. 166-170.

R. Yokomori, M. Noro, and K. Inoue, “Evaluation of source code
updates in software development based on component rank,” in Proceed-
ings of 13th Asia Pacific Software Engineering Conference, Bangalore,
India, 2006, pp. 327-334.

M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke, and K. Schneider,
“Comparative stability of cloned and non-cloned code: An empirical
study,” in Proceedings of the 27th ACM Symposium on Applied Com-
puting, 2012, pp. 1227-1234.

G. Antoniol, U. Villano, E. Merio, and M. D. Penta, “Analyzing cloning
evolution in the linux kernel,” Information and Software Technology,
vol. 44, no. 13, pp. 755-765, 2002.

N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “On refac-
toring support based on code clone dependency relation,” in Proceedings
of the 11th IEEE International Software Metrics Symposium, 2005, pp.
16:1-16:10.

Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Industrial
application of clone change management system,” in Proceedings of the
6th International Workshop of Software Clones, 2012, pp. 67-71.

E. Senga, “Evaluation of software components considered code clone,”
Master’s thesis, Dept. of Mathematical and Information Science, Nanzan
University, 2013, (In Japanese).

[2

[6

(71

[8

[9

[10]

[11]

[12

