
1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 1

Search-based Web Service Antipatterns
Detection

Ali Ouni, Marouane Kessentini, Katsuro Inoue and Mel Ó Cinnéide

Abstract—Service Oriented Architecture (SOA) is widely used in industry and is regarded as one of the preferred architectural design
technologies. As with any other software system, service-based systems (SBSs) may suffer from poor design, i.e., antipatterns, for
many reasons such as poorly planned changes, time pressure or bad design choices. Consequently, this may lead to an SBS product
that is difficult to evolve and that exhibits poor quality of service (QoS). Detecting Web service antipatterns is a manual,
time-consuming and error-prone process for software developers. In this paper, we propose an automated approach for detection of
Web service antipatterns using a cooperative parallel evolutionary algorithm (P-EA). The idea is that several detection methods are
combined and executed in parallel during an optimization process to find a consensus regarding the identification of Web service
antipatterns. We report the results of an empirical study using eight types of common Web service antipatterns. We compare the
implementation of our cooperative P-EA approach with random search, two single population-based approaches and one
state-of-the-art detection technique not based on heuristic search. Statistical analysis of the obtained results demonstrates that our
approach is efficient in antipattern detection, with a precision score of 89% and a recall score of 93%.

Index Terms—Web Services, Web Service Design, Antipattern, Service-oriented Computing, Search-based Software Engineering.

F

1 INTRODUCTION

S ERVICE-Oriented Architecture (SOA) has emerged as
a logical way to design complex distributed software

systems using functionality implemented by third-party
providers. In an SOA, the service requester satisfies their
specific needs by using services offered by service providers,
through published and discoverable interfaces. Services can
be implemented using a variety of technologies such as Web
Services, OSGi, and SCA.

Web services is the common technological choice for ma-
terializing the Service-oriented Computing (SOC) paradigm
[1] [2]. Examples include Google Maps1, PayPal2, FedEx3,
Dropbox4, and many others. Web services must be carefully
designed and implemented to adequately fit in the required
system’s design whilst achieving QoS [3] [4]. Indeed, there is
no exact recipe to follow for proper service design. A set of
guiding quality principles for service-oriented design exists,
including such principles as service flexibility, operability,
composability, and loose coupling [5]. However, the design
of services is strongly influenced by the context, environ-
ment and other decisions the service designers take [4], and

• A. Ouni and K. Inoue are with the Department of Computer Science,
Osaka University, Japan. E-mail: {ali, inoue}@ist.osaka-u.ac.jp.

• M. Kessentni is with the University of Michigan, USA. E-mail:
marouane@umich.edu.

• M. Ó Cinnéide is with the University College Dublin, Ireland. E-mail:
mel.ocinneide@ucd.ie.

Manuscript received August 17, 2015; revised , 2015. This work is supported
by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific
Research (S) (No.25220003), by Osaka University Program for Promoting
International Joint Research, by the Ford-University of Michigan alliance
Program and by Science Foundation Ireland grant 10/CE/I1855 to Lero - the
Irish Software Research Centre (www.lero.ie).

1developers.google.com/maps/documentation/webservices
2developer.paypal.com/webapps/developer/docs/classic/api
3http://www.fedex.com/ca english/businesstools/webservices
4https://www.dropbox.com/developers/core

such factors may lead to violations of quality principles.
The presence of programming patterns associated with bad
design and programming practices, known as antipatterns,
are an indication of such violations [6] [7] [8]. Furthermore,
it is widely believed that such antipatterns lead to various
maintenance and evolution problems including an increased
bug rate, fragile design and inflexible code.

Despite the extensive adoption of Web service tech-
nologies, no automated approach has been proposed for
the detection of such antipatterns. Unlike antipatterns and
code smells in object-oriented programs [9] [10] [11] [12],
antipattern detection in SBSs is still in its infancy. Indeed,
the vast majority of existing work in Web service antipattern
detection merely attempts to provide definitions and/or
the key symptoms that characterize common antipatterns.
Recent works [13] rely on a declarative rule-based lan-
guage to specify antipattern symptoms at a higher-level
of abstraction using combinations of quantitative (metrics),
structural, and/or lexical information. However, in an ex-
haustive scenario, the number of possible antipatterns to be
characterized manually and formulated with rules can be
very large. To make the situation worse, it is difficult to find
a consensus to characterize and formulate such symptoms.
For these reasons, the detection task is still mainly a manual,
time-consuming and subjective process.

To address these issues, we proposed a search-based
approach [14] that was one of the first attempts to automate
Web service antipattern detection. The proposed approach is
based on the use of genetic programming (GP) to generate
detection rules from examples of Web service antipatterns
using static service interface metrics [14]. However, the
quality of the generated rules depends on the coverage
of the different suspicious behaviors of antipatterns, and
it is difficult to ensure such coverage. Thus, there are still
some uncertainties regarding the detected antipatterns due

developers.google.com/maps/documentation/webservices
developer.paypal.com/webapps/developer/docs/classic/api
http://www.fedex.com/ca_english/businesstools/webservices
https://www.dropbox.com/developers/core

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 2

to the difficulty in evaluating the coverage of the base of
antipattern examples. Furthermore, using only static service
interface metrics might not be enough to cover such an-
tipattern symptoms. On the other hand, in some contexts,
certain Web service antipattern instances may in fact be
consensually accepted as normal practice [5].

This paper extends our previous work [14]. We propose
to treat Web service antipattern detection as a cooperative
parallel optimization problem. The idea is that different
methods are combined in parallel during an optimization
process where the goal is to find a consensus regarding the
identification of Web service antipatterns. To this end, we
used Parallel Evolutionary algorithms (P-EAs) [15] where
different evolutionary algorithms (EAs) [16] with different
adaptations (fitness functions, solution representations, and
change operators) are executed, in a parallel cooperative
manner, to solve a common goal, namely the detection of
Web service antipatterns.

We believe that a P-EA approach is suitable to our
problem because it combines different perspectives and
levels of expertise to detect potential antipatterns, as was
demonstrated in its adaptation to a similar problem, namely
the detection of code smells in Java programs [12]. In our P-
EA, many populations’ individuals evolve simultaneously.
A first population generates a set of detection rules using
genetic programming [17] while simultaneously a second
population tries to detect antipatterns using a genetic algo-
rithm [18]. Both populations are evolved on the Web service
that is being evaluated, and the quality of the employed
detection rules is updated based on the consensus found,
i.e., the intersection between the detection results of both
populations. The best detection results will be the antipat-
terns detected by both algorithms. The P-EA approach does
not involve merely executing the two EAs in parallel, but
also in building a consensus between them to classify the
detected candidates based on several interactions at the
fitness function level. The main contributions of this paper
can be summarized as follows:

1) We propose a novel automated approach for Web
service antipattern detection as a cooperative par-
allel optimization problem. In our approach, dif-
ferent EAs, with different adaptation schemes, are
executed in parallel to meet a consensus regarding
the detection of antipatterns.

2) We extend our initial metric suite [14] that was
limited to only Web service interface-level metrics
(WSDL). We include i) Web service code-level met-
rics, and ii) Web service dynamic metrics to bet-
ter uncover potential antipattern symptoms. Hence,
static properties are recoverable from service inter-
face and artefacts. In contrast, dynamic properties
are obtained by concretely invoking the Web service.

3) We extend our base of Web service antipattern ex-
amples. Our dataset is available online in order to
encourage future research in the area of automated
Web service antipattern detection [19].

4) We extend the evaluation of the approach. We
present an empirical evaluation of our approach
on i) a benchmark of 415 Web services from ten
different application domains and ii) three addi-

tional common Web service antipattern types (eight
antipatterns in total). We compare our P-EA ap-
proach with i) random search, ii) single population-
based approaches and iii) an existing rule-based
approach [13] (not based on computational search
techniques). Statistical analysis demonstrates the ef-
ficiency of our approach in detecting Web service
antipatterns, with a precision score of 89% and a
recall score of 93%.

The remainder of this paper is organized as follows.
Section 2 is dedicated to background material related to this
research. Section 3 presents the various issues related to the
automation of Web service antipattern detection while Sec-
tion 4 describes our P-EA based approach to this problem.
Section 5 presents and discusses the obtained experimental
results while Section 6 discusses threats to validity. Section
7 surveys related work and finally we conclude and outline
our future research directions in Section 8.

2 BACKGROUND

2.1 Web service and Web service antipatterns

A Web Service is defined according to the W3C5 (World
Wide Web Consortium), as “a software application identi-
fied by a URI, whose interfaces and bindings are capable of
being defined, described, and discovered as XML artefacts”
[20]. Its interface is described as a WSDL (Web service
Description Language) document that contains structured
information about the Web service’s location, its offered
operations, the input/output parameters, etc. The aim of
the Web service platform is to provide the required level of
interoperability among different applications using prede-
fined web standards.

Antipatterns are symptoms of poor design and imple-
mentation practices that describe bad solutions to recurring
design problems. They often lead to software which is
hard to maintain and evolve [21], and may be introduced
unintentionally during initial design or during software
development due to bad design choices, poorly planned
changes or time pressure.

Different types of antipatterns presenting a variety of
symptoms have been recently studied with the intent of im-
proving their detection and suggesting improvements paths
[22] [7] [13]. Common Web service antipatterns include:

God object Web service (GOWS): implements a multitude
of methods related to different business and technical ab-
stractions in a single service. It is not easily reusable because
of the low cohesion of its methods and is often unavailable
to end users because it is overloaded [22].

Fine grained Web service (FGWS): is a too fine-grained ser-
vice whose overhead (communications, maintenance, and
so on) outweighs its utility. This antipattern refers to a
small Web service with few operations implementing only
a part of an abstraction. It often requires several coupled
Web services to complete an abstraction, resulting in higher
development complexity, reduced usability [22].

Chatty Web service (CWS): represents an antipattern
where a high number of operations, typically attribute-level

5http://www.w3.org/TR/wsdl20/

http://www.w3.org/TR/wsdl20/

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 3

setters or getters, are required to complete one abstraction.
This antipattern may have many fine-grained operations,
which degrades the overall performance with higher re-
sponse time [22].

Data Web service (DWS): contains typically accessor oper-
ations, i.e., getters and setters. In a distributed environment,
some Web services may only perform some simple informa-
tion retrieval or data access operations. A data Web service
usually deals with very small messages of primitive types
and may have high data cohesion [13].

Ambiguous Web service (AWS): is an antipattern where de-
velopers use ambiguous or meaningless names for denoting
the main elements of interface elements (e.g., port types, op-
erations, messages). Ambiguous names are not semantically
and syntactically sound and affect the discoverability and
reusability of Web services [23] [24].

Redundant PortTypes (RPT): is an antipattern where mul-
tiple portTypes are duplicated with the similar set of op-
erations. Very often, such portTypes deal with the same
messages. Redundant PortType antipattern may negatively
impact the ranking of the Web Services [25].

CRUDy Interface (CI): is an antipattern where the design
encourages services the RPC-like behavior by declaring
create, read, update, and delete (CRUD) operations, e.g.,
createX(), readY(), etc. Interfaces designed in that way
might be chatty because multiple operations need to be
invoked to achieve one goal. In general, CRUD operations
should not be exposed via interfaces [22].

Maybe It is Not RPC (MNR): is an antipattern where
the Web service mainly provides CRUD-type operations
for significant business entities. These operations will likely
need to specify a significant number of parameters and/or
complexity in those parameters. This antipattern causes
poor system performance because the clients often wait for
the synchronous responses [22].

In this paper, we focus mainly on these eight antipattern
types as they are the antipatterns that occur most frequently
in SBSs based on recent studies [13] [4] [6] [7] [26].

2.2 Illustrative Examples

Figure 1 illustrates the salient aspects of a GOWS antipat-
tern. The core identifying aspect of a GOWS is that it imple-
ments multiple core business and/or technical abstractions
with uncohesive operations. This is manifested at the service
interface as public methods that involve different entities
or abstractions. In this example, it can be seen that there
are methods that operate on different core functionalities.
For instance, the bookFlight() method is used to book a
flight trip, while the reserveHotel() method attempts
to reserve the specified hotel room. Overall, this GOWS
supports the functionalities flight, car and hotel booking,
payment, invoice services, and so on. Each of these is a
significant core business abstraction, and typically will have
many associated methods. Therefore, while this example
is simplified and is merely illustrative, in reality, a typical
GOWS will include many methods related to each abstrac-
tion, resulting in a service with huge number of methods.

On the other extreme, i.e., FGWS, we consider the ex-
ample of a Calculator service taken from real-world Web

TravelService
Endpoint

bookFlight()
reserveFlight()
cancelFlight()
reserveCar()
cancelCar()
reserveHotel()
checkDates()
modifyBooking()
acceptPayment()
addPaymentDetails()
validateCredit()
printInvoice()
sendInvoice()

Web service container

Web service
Client 1

Web service
Client 2

Web service
Client 3

Web service
Client n

Flight details.xml

Car reservation.xml

Hotel booking.xml

Payment.xml.
.
.

Fig. 1: An example of god object Web service.

service provided by Apache Geronimo6. A basic calculator
service would not be complicated; it supports several simple
operations such as add, subtract, multiply, divide. Figure 2
shows the WSDL file from the Apache Calculator service,
which performs addition of two integers. This is a very fine-
grained service as all it can do is accept two numbers and
return the sum. However, there is a lot of code (and over-
head) for this simple operation. As services are consumed
over a network (Internet or LAN), they may be bound
by the limitations and costs incurred by communications
over those networks (e.g., the time needed to send/receive
messages) [4]. The problem becomes more disturbing when
considering this level of granularity in other more compli-
cated real-life services.

For non-expert clients the line between GOWS, FGWS
and appropriately-sized services is not obvious. In addi-
tion, even for service providers, service logics may look
promising at design level, but can prove to be antipatterns
when they are implemented. To make the situation worse,
a comprehensive service contract does not guarantee that a
service is not an antipattern. Thus, it is very important to
provide efficient detection techniques for both Web service
clients and providers.

3 PROBLEM STATEMENT

In this section, we introduce the specific Web service an-
tipattern detection issues and challenges that are addressed
by our approach.

How to decide if a candidate antipattern is an actual
antipattern? The main issue with Web service antipattern
detection is that there is no general consensus on how to
decide if a particular design violates a quality heuristic. In-
deed, there is a difference between detecting symptoms and
asserting that the detected situation is an actual antipattern.
Deciding which Web services are antipattern candidates
heavily depends on the interpretation of each analyst. In
some contexts, an apparent violation of a design principle
may be consensually accepted as normal practice. For ex-
ample, a translation Web service7 may have in its interface

6https://cwiki.apache.org/confluence/display/GMOxDOC21/
jaxws-calculator+-+Simple+Web+Service+with+JAX-WS

7http://www.webservicex.net/TranslateService.asmx?WSDL

https://cwiki.apache.org/confluence/display/GMOxDOC21/jaxws-calculator+-+Simple+Web+Service+with+JAX-WS
https://cwiki.apache.org/confluence/display/GMOxDOC21/jaxws-calculator+-+Simple+Web+Service+with+JAX-WS
http://www.webservicex.net/TranslateService.asmx?WSDL

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 4

1 <?xml version="1.0" encoding="UTF‐8"?>
2 <wsdl:definitions name="Calculator"
3 xmlns="http://schemas.xmlsoap.org/wsdl/"
4 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
5 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
7 targetNamespace="http://jws.samples.geronimo.apache.org"
8 xmlns:tns="http://jws.samples.geronimo.apache.org">
9

10 <wsdl:types>
11 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
12 xmlns="http://jws.samples.geronimo.apache.org"
13 targetNamespace="http://jws.samples.geronimo.apache.org"
14 attributeFormDefault="unqualified" elementFormDefault="qualified">
15
16 <xsd:element name="add">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd:element name="value1" type="xsd:int"/>
20 <xsd:element name="value2" type="xsd:int"/>
21 </xsd:sequence>
22 </xsd:complexType>
23 </xsd:element>
24
25 <xsd:element name="addResponse">
26 <xsd:complexType>
27 <xsd:sequence>
28 <xsd:element name="return" type="xsd:int"/>
29 </xsd:sequence>
30 </xsd:complexType>
31 </xsd:element>
32 </xsd:schema>
33 </wsdl:types>
34
35 <wsdl:message name="add">
36 <wsdl:part name="add" element="tns:add"/>
37 </wsdl:message>
38
39 <wsdl:message name="addResponse">
40 <wsdl:part name="addResponse" element="tns:addResponse"/>
41 </wsdl:message>
42
43 <wsdl:portType name="CalculatorPortType">
44 <wsdl:operation name="add">
45 <wsdl:input name="add" message="tns:add"/>
46 <wsdl:output name="addResponse" message="tns:addResponse"/>
47 </wsdl:operation>
48 </wsdl:portType>
49
50 <wsdl:binding name="CalculatorSoapBinding" type="tns:CalculatorPortType">
51 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
52
53 <wsdl:operation name="add">
54 <soap:operation soapAction="add" style="document"/>
55 <wsdl:input name="add">
56 <soap:body use="literal"/>
57 </wsdl:input>
58 <wsdl:output name="addResponse">
59 <soap:body use="literal"/>
60
61

</wsdl:output>
</wsdl:operation>

62

63 </wsdl:binding>
64
65 <wsdl:service name="Calculator">
66 <wsdl:port name="CalculatorPort" binding="tns:CalculatorSoapBinding">
67 <soap:address location="http://localhost:8080/jaxws‐calculator/calculator"/>
68
69

</wsdl:port>
 </wsdl:service>

70
71 </wsdl:definitions>

Fig. 2: An example of a fine-grained Web service interface
provided by Apache Geronimo6.

only a single operation translate which is responsible
for translating text from one language to another language.
Although this service might be designed properly, from a
strict antipattern definition, it may be considered as a fine-
grained Web service.

How to find the appropriate metrics that characterize
an antipattern? The most challenging issues when detecting
Web service antipatterns are how to find the appropriate
metrics that characterize such antipattern, and, most im-
portantly, how to find the best combination of these metrics.
Indeed, Most of the existing works are limited to providing
definitions for Web service antipatterns and/or character-
izing their common symptoms [6] [13] [22]. Recent work
[13] relies on declarative rule specification where rules are
manually defined to identify the key symptoms that charac-
terize a Web service antipattern. Unfortunately, it is difficult
to translate these symptoms into metrics. To make the
situation worse, the same symptom may be associated with
many antipattern types, which may compromise the precise
identification of antipattern instances. Indeed, translating
antipattern definitions from natural language to metrics is

Base of examples of Web
service antipatterns

Import Web service
(WSDL + Source code)

Interface-level
(WSDL) metrics

Code-level
metrics

Algorithm EA2:
Genetic algorithm

Algorithm EA1:
Genetic programming

Elite solutions of EA1

Elite solutions of EA2Fitness update of
elite solutions of EA1

Fitness update of
elite solutions of EA2

Cooperative Parallel Evolutionary Algorithms

Fitness Update
Module

(Intersection score)

Dynamic metrics

Metric suite

Fig. 3: The proposed cooperative parallel model scheme.

still mainly a subjective task.
How to find the appropriate metric threshold value?

Another inherent problem is related to the definition of
threshold values when dealing with quantitative informa-
tion. Indeed, there is no general agreement on extreme
manifestations of Web service antipatterns [4] [22]. That is,
for each antipattern, rules that are expressed in terms of
metrics need substantial calibration efforts to find the right
threshold value for each metric, above which an antipattern
is said to be detected.

To address or circumvent the above mentioned issues
and challenges, we introduce a cooperative parallel search-
based approach to automatically detect Web service antipat-
terns and rank them in order of priority/severity.

4 PROPOSED APPROACH TO WEB SERVICE AN-
TIPATTERN DETECTION

4.1 The Proposed Cooperative Parallel Model Schema

Figure 3 provides a high-level overview of the approach
proposed. Our approach uses knowledge from a base of
examples that contains real instances of Web service an-
tipatterns. These examples will serve to generate new Web
service antipattern detection rules based on combinations of
Web service metrics and threshold values. As output, our
approach derives a set of detection rules.

The base of examples: contains different Web service an-
tipatterns from various application domains (e.g., weather,
finance, shipping, etc.) that can be collected from different
Web service search engines, such as ServiceXplorer8, pro-
grammableweb.com9, etc. These antipatterns were manually
inspected and validated based on existing guidelines from
the literature [4] [22].
Metric suite: In earlier work, we employed a set of 23
Web service interface (WSDL) metrics [14]. In this paper,
we extend our metric suite to include a set of static and

8eil.cs.txstate.edu/ServiceXplorer
9programmableweb.com

eil.cs.txstate.edu/ServiceXplorer
programmableweb.com

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 5

dynamic Web service metrics. Static metrics aim at mea-
suring the structural properties of Web services in both the
interface (WSDL) and code levels, whereas dynamic metrics
aim at invoking the Web services and measuring different
properties, e.g., response time. Our extended metric suite is
based on this variation of these metrics in order to uncover
as much as possible the different antipattern symptoms:

Web service interface-level (WSDL) metrics: Table 1 sum-
marizes the employed metrics. The first fifteen metrics
(NPT-ALMS) are defined in the literature [13] [27] [28]. We
also derived and defined eight other metrics (RPT-AMTP)
based on existing metrics. The last three metrics, AMTO,
AMTM, and AMTP, are implemented based on WordNet10,
a widely used lexical database. Each operation, port type
and message identifier is tokenized using a camel case
splitter. Then we assume that the greater the number of
extracted tokens that exist in the WordNet database, the
more meaningful the identifier is, i.e., the more semantically
and syntactically sound it is. For COH we are using a
well known service-oriented cohesion metric [27] namely
Total Interface Cohesion of a Service (TICS) that combines
four aspects of cohesion. For COUP, we used the standard
coupling metric defined by Sindhgatta et al. [28].

Web service code-level metrics: In addition to WSDL met-
rics, our approach uses Web service code-level metrics [8]
[29]. As Web service technology suggests that the Web
service is accessible only through its WSDL, we use the
JavaTM API for XML Web Services (JAX-WS)11 to generate
the Java artifacts of the Web service. Then our approach
follows a long tradition of using object-oriented metrics to
evaluate the quality of the design [30]. The most widely-
used metrics are those defined by Chidamber and Kemerer
[30] as described in Table 2 including: Depth of Inheritance
Tree (DIT), Weighted Methods per Class (WMC), and Cou-
pling Between Objects (CBO). Our approach is based on the
ckjm tool (Chidamber & Kemerer Java Metrics)12. Note that
for all code-level metrics we calculate the average value
for all the classes that implement the Web service under
consideration.

Web service dynamic metrics: Due to the dynamic nature
of Web services, we extended our metric suite to include a
new dynamic metric, namely Response Time (RT) [13]. To
measure the response time of a Web service, we used the
SAAJ13 standard implementation and SoapUI14. To reduce
the impact of the network latency and physical location of a
Web service, we randomly invoked at least five operations
from each Web service, measured their response times, and
calculate the average.

Many metric combinations are possible, so the detec-
tion rules generation process is, by nature, a combinatorial
optimization problem. The number of possible solutions
quickly becomes huge as the number of metrics and possible
threshold values increases. A deterministic search is not

10wordnet.princeton.edu
11http://docs.oracle.com/javase/6/docs/technotes/tools/share/

wsimport.html
12http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/
13saaj.java.net
14www.soapui.org

TABLE 1: List of Web service interface metrics used.

Metric Description Metric level

NPT Number of port types Port type
NOD Number of operations declared Port type
NCO Number of CRUD operations Port type
NOPT Average number of operations in port types Port type
NPO Average number of parameters in operations Operation
NCT Number of complex types Type
NAOD Number of accessor operations declared Port type
NCTP Number of complex type parameters Type
COUP Coupling Port type
COH Cohesion Port type
NOM Number of messages Message
NST Number of primitive types Type
ALOS Average length of operations signature Operation
ALPS Average length of port types signature Port type
ALMS Average length of message signature Message
RPT Ratio of primitive types over all defined types Type
RAOD Ratio of accessor operations declared Port type
ANIPO Average number of input parameters in operations Operation
ANOPO Average number of output parameters in operations Operation
NPM Average number of parts per message Message
AMTO Average number of meaningful terms in operation names Operation
AMTM Average number of meaningful terms in message names Message
AMTP Average number of meaningful terms in port type names Type

TABLE 2: List of Web service code metrics used.

Metric Description Metric level

WMC Weighted methods per class Class
DIT Depth of Inheritance Tree Class
NOC Number of Children Class
CBO Coupling between object classes Class
RFC Response for a Class Class
LCOM Lack of cohesion in methods Class
Ca Afferent couplings Class
Ce Efferent couplings Class
NPM Number of Public Methods Class
LCOM3 Lack of cohesion in methods Class
LOC Lines of Code Class
DAM Data Access Metric Class
MOA Measure of Aggregation Class
MFA Measure of Functional Abstraction Class
CAM Cohesion Among Methods of Class Class
AMC Average Method Complexity Method
CC The McCabe’s cyclomatic complexity Method

practical in such cases, and hence the use of heuristic search
is warranted. The dimensions of the solution space are set
by the metrics, their threshold values, and logical operations
between them, e.g., union (metric1 OR metric2) and inter-
section (metric1 AND metric2). A solution is determined by
assigning a threshold value to each metric.

Our proposal is based on a parallelization at the so-
lution level without interchanging solutions between the
considered search algorithms. In fact, in each generation,
the fitness values of the best solutions are updated based on
an intersection score that is detailed later in Section 4.2.

4.2 Parallel Evolutionary Algorithms Adaptation

This section shows how P-EA is adapted to Web service
antipattern detection. To ease the understanding of this
formulation, we first describe the pseudo-code of our adap-
tation and the present the solution encoding, the objective
functions to optimize, and the employed change operators.

Algorithms 1 and 2 describe the algorithms used in our
P-EA formulation. The first employs an EA based on genetic
programming (GP) [17] to generate antipattern detection
rules. The second is executed in parallel and employs an
EA based on a genetic algorithm (GA) [18] that generates
detectors from well-designed Web service examples. Both
algorithms are powerful metaheuristic search optimization
methods that have already shown good performance in
solving several software engineering problems [31] [32].

wordnet.princeton.edu
http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
saaj.java.net
www.soapui.org

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 6

The basic idea of both algorithms is to explore the search
space by making a population of candidate solutions, also
called individuals, and evolve this population towards an
“optimal” solution for a specific problem. To evaluate the
solutions, the fitness function in both algorithms has two
components. For the first component of the fitness function,
GP evaluates the detection rules based on the achieved
coverage of antipattern examples (input), while the GA eval-
uates the detectors by calculating the deviance from well-
designed Web services (input). Then a set of best solutions
are selected from both algorithms in each iteration. The
algorithms interact with each other using the second com-
ponent of the fitness function called the intersection function,
where a set of Web services, different from the ones used
to produce the inputs, is evaluated using these solutions
in order to maximize the intersection between the sets of
detected antipatterns by each solution. Thus, some solutions
will be penalized due to the absence of consensus while
others will be favored due to the consensus they achieve.

A high-level view of both algorithms used in our P-
EA approach is described by Algorithm 1 and 2. In the
remainder of this section, we describe both algorithms.

In the initialization of the P-EA algorithm (lines 1-3 for
GP and lines 1-2 for GA), our base of examples is split
into ten subsets, each representing a different application
domain, e.g., finance, travel, etc. One subset (WS) is the
test dataset and the remaining subsets (B or GE) are the
training datasets (the ground truth). Thus P-EA is run to
detect antipatterns in the selected subset (WS), which is not
of course part of the training set.

Lines 5-6 and 4-6 construct initial populations for GP and
GA respectively, which are sets of individuals (I) that stand
for possible solutions representing detection rules (metrics
combination) for GP and detectors (artificial code that repre-
sents pseudo antipattern examples) for GA. Lines 9-20 and
7-17 encode the main GP and GA loops, respectively, which
explore the search space and constructs new individuals by
combining metrics for GP to generate rules and Web service
elements to generate detectors for GA. In each iteration of
the training process (lines 10 and 13 for GP, and lines 8
and 10 for GA), antipatterns are iteratively evaluated using
rules generated by GP, and deviance from good design
practices (detectors) generated by GA. As described earlier,
the process is driven by a fitness function that calculates
the quality of each candidate solution (detection rule) by
comparing the list of detected antipatterns with the expected
ones from the base of examples along with a deviance
score from the generated detectors. After calculating the
intersection between both algorithms (line 18 for GP and
line 15 for GA), the fitness of the best solutions of Algorithm
1 is updated based on the fitness values of elite solutions of
Algorithm 2 (line 19) and vice versa (line 16).

Then the best solution for each algorithm is saved and
a new population of individuals is generated (line 22 for
GP, and line 19 for GA) by iteratively selecting pairs of par-
ent individuals from population Pop and applying genetic
operators to them (crossover and mutation). We include
both the parent and child variants in the new population.
We then apply the mutation operator, with a probability
score, for both parent and child to ensure solution diversity;
this produces the population for the next generation. When

Algorithm 1 Pseudo code of P-EA adaptation: Genetic Programming (GP)

1: Input: M : Set of Web service quality metrics
2: Input: B : Base of Web service antipattern examples
3: Input: WS : Set of new Web services to evaluate
4: Process:
5: R := rule(M)
6: I1 := rules(R, antipattern Type)
7: Pop1 := set of(I1)
8: initial population(Pop1, Max size)
9: while it < MAX it do

10: for all I ∈ Pop1 do
11: detected antipattern:= execute rules(R, I1)
12: fitness(I1):=compare(detected antipatterns, antipattern examples)
13: end for
14: best sol Pop1 := select(Pop1, best solutions)
15: best sol Pop2 := receive(best sol Pop1)
16: for all I1 ∈ best sol Pop1 do
17: detected antipatterns GP(WS) := execute rules(I1, WS)
18: fitness intersection(I1) := Max intersection(detected antipatterns GP(WS,

I1) ∩ detected antipatterns GA(WS, best sol Pop2)
19: fitness(I1) := update fitness(fitness intersection(I1))
20: end for
21: best sol Pop1 := best fitness(Pop1)
22: Pop1 := generate new population(Pop1)
23: it := it+1
24: end while
25: Output: DR: antipattern detection rules

Algorithm 2 Pseudo code of P-EA adaptation: Genetic Algorithm (GA)

1: Input: GE : Set of good Web service examples
2: Input: WS : Set of new Web services to evaluate
3: Process:
4: I2 := detectors(GE)
5: Pop2 := set of(I2)
6: initial population(Pop2, Max size)
7: while it < MAX it do
8: for all I2 ∈ Pop2 do
9: fitness(I2) := distance(detectors I2, GE)

10: end for
11: best sol Pop2 := select(Pop2, number solutions)
12: best sol Pop1 := receive(best sol Pop2)
13: for all I2 ∈ best sol Pop2 do
14: detected antipatterns GA(WS) := execute detectors(I2, WS)
15: fitness intersection(I1) := Max intersection(detected antipatterns GP(WS,

I1) ∩ detected antipatterns GA(WS, best sol Pop2)
16: fitness(I2) := update fitness(fitness intersection(I2))
17: end for
18: best sol Pop2 := best fitness(Pop2)
19: Pop2 := generate new population(Pop2)
20: it := it+1
21: end while
22: Output: D: best solution detector

applying change operators, no individuals are exchanged
between the parallel GA/GP. Both algorithms terminate
when the termination criterion (maximum iteration num-
ber) is met, and return the best set of rules and detectors
found so far. Developers can use the best rules and detectors
to detect potential antipatterns on any new Web service. The
tool ranks the detected antipatterns based on an intersection
score that will be discussed in next section.

In the following, we describe the three main steps of
adaptation of both GP and GA algorithms to our problem.

1) Solution representation
Candidate solutions to the problem are antipattern de-

tection rules. A solution is represented as a set of IF−THEN
rules, each with the following structure:
IF “Combination of metrics with their thresholds” THEN “an-
tipattern type”
The antecedent of the IF statement combines some metrics
and their threshold values using logic operators (AND, OR).
If these conditions are satisfied by a Web service, then it is
determined to be of the antipattern type featuring in the

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 7

AND

NOPT≥7.8

NOD≥24

NST≥41 NCT≥32

OR

AND

OR

RT≥3.26

AND

COH≤0.39

AND

AND

NPT≥2

AND

NOD≥17

COH≤0.43

AND

CBO≥9.3

Fig. 4: Example of GP solution representation.

THEN clause of the rule. Figure 4 provides an example.
More formally, each candidate solution S is a sequence of
detection rules where each rule is represented by a binary
tree such that:

1) Each leaf node (terminal) L represents a metric (our
metric suite described earlier) and its corresponding
threshold, generated randomly.

2) Each internal node (function) N represents a logic
operator, either AND or OR.

We will have as many rules as types of antipatterns to
be detected. In this paper, we focus on the detection of eight
common types as defined in Section 2.1.

For the GA, the detectors represent artificially-generated
Web services. Thus, detectors are represented simply as a
vector where each element is a (metric, threshold) pair that
characterises the generated Web service. See Figure 5 for an
example.

NOD=9 COH=0.2 NPT=1 CBO=6 … NST=12

Fig. 5: Example of GA solution representation.

2) Evaluation functions
GP fitness function: For GP, our fitness function aims at

maximizing the number of detected antipatterns in compar-
ison to the expected ones in the base of examples (coverage)
in terms of precision and recall. Formally,

CoverageGP =

n∑
i=1

ai

t +

p∑
i=1

ai

p

2
∈ [0, 1] (1)

where t is the number of antipatterns in the base of ex-
amples, p is the number of detected antipatterns, and ai
has value 1 if the ith detected service exists in the base of
examples with the same antipattern type, i.e., true positive,
and value 0 otherwise.

GA fitness function: For GA, we seek to optimize the
following two objectives: 1) maximize the generality of the
detector by minimizing the similarity with good design
practices, 2) minimize the overlap (similarity) between de-
tectors. These two objectives define the fitness function that
evaluates the quality of a detector. The fitness of a solution
D (set of detectors) is evaluated as the average fitness of the
included detectors. We derive the fitness of a detector di as
a weighted average between the scores of respectively, the
deviance (Dev) and the overlap (O). Formally,

DevianceGA(di) =
Dev(di) +O(di)

2
∈ [0, 1] (2)

Dev is measured by a deviance score between the metric
values of a detector di and those of all the Web services
in the base of examples B. Intuitively, for each considered
metric in our metric suite, metric values outside boxplots
(i.e., outliers) representing our base of examples are likely
to be abnormal, and therefore, risky as they deviate from
common design practices. Let M ′ = {m1,m2, ...,mn} and
M = {m′1,m′2, ...,m′n} be respectively the current metric
values of the detector di and the average metric values
from B. Formally, Dev(di) =

n∑
i=1
|mi −m′

i| ×
1
n

. Similarly,

the overlap Oi, is measured by the difference between the
metric values of the detector di and average metric values
of all the other detectors d in the solution D. Formally,
O(di) =

n∑
i=1
|mi −miD | ×

1
n

. All metrics are normalised in the

range [0,1].
Intersection score (used by both algorithms): A set of best

solutions are selected from both algorithms, in each itera-
tion, and then executed on a new set of Web services WS to
evaluate (test dataset). A matrix M is constructed where
rows are composed by the best solutions of GP {SGPi},
columns are composed by the best solutions of GA {SGAj}
and each case (SGPi, SGAj) is defined as the average of
precision Pint and recall Rint as follows:

Mintersection(SGi, SGAj) =
Pint(SGPi, SGAj) + Rint(SGPi, SGAj)

2
(3)

Pint(SGPi, SGAj) =
|{detect(SGPi,WS)} ∩ {detect(SGAj,WS)}|

Max{|{detect(SGPi,WS)}|, |{detect(SGAj,WS)}|
(4)

Rint(SGPi, SGAj) =
|{detect(SGPi,WS)} ∩ {detect(SGAj,WS)}|

actual antipatterns in WS
(5)

where detect(A, D) returns the detected antipatterns by the
algorithm A from the dataset D.

Then, the intersection score for each solution is de-
fined as fintersection(SGPi) = Min

(
Mintersection(SGPi, SGA∀j)

)
and

fintersection(SGAi) = Min (Mintersection(SGP∀i, SGAj)). Therefore, the
fitness of the solution Si for GP and GA are respectively:

fitnessGP (Si) =
CoverageGP(Si) + fintersection(Si)

2
(6)

fitnessGA(Si) =
DevianceGA(Si) + fintersection(Si)

2
(7)

For GA, the best detectors (solution) are used to detect
antipatterns. The Web service to evaluate is compared to
the obtained detectors. The risk of a Web service ws being an
antipattern is defined as the average metric difference values
obtained by comparing ws to respectively all the detectors
di of a set D. Formally,

risk(ws) =

∑
di∈D dev(ws, di)

|D|
(8)

where dev(ws, di) returns the metrics difference between ws
and the set of detectors D. The antipatterns can then be
ranked according to their risk scores. In our adaptation, we
consider a Web service to be an antipattern only if the risk
is more than 75 percent.
3) Genetic operators

Mutation: For GP, the mutation operator can be applied
to a function node, or a terminal node. It starts by randomly

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 8

selecting a node in the tree. If the selected node is a terminal
(metric), it is replaced by another terminal (metric or another
threshold value); if it is a function (AND-OR) node, it is
replaced by a new function; and if tree mutation is to be
carried out, the node and its subtree are replaced by a new
randomly generated subtree. For GA, the mutation operator
consists of randomly changing one or more dimensions in
its vector.

Crossover: We use the “standard” random single-point
crossover. For GP, two parent solutions are selected, and a
subtree is picked on each one. Then, the crossover operator
swaps the nodes and their relative subtrees from one parent
to the other. For GA, crossover combines two solutions by
replacing the dimensions of the first one, from the beginning
of the offspring up to the crossover point, with those of the
second one, and vice versa.

5 EVALUATION

This section describes the design of our empirical study and
presents the results obtained from our experiments.

5.1 Research Questions

We designed our experiments to answer the following re-
search questions:

• RQ1. How does our P-EA approach compare to GP,
GA and random search?

• RQ2. To what extent can the proposed approach
efficiently detect Web service antipatterns?

• RQ3. What types of Web service antipatterns does it
detect correctly?

• RQ4. How does P-EA perform compared to existing
Web service antipattern detection approaches (in-
cluding an approach not based on search)?

5.2 Experimental Design

To evaluate our approach, we collected a set of Web services
using different Web service search engines including
eil.cs.txstate.edu/ServiceXplorer, programmableweb.com,
biocatalogue.org, webservices.seekda.com, taverna.org.uk
and myexperiment.org. Table 3 summarizes the collected
services. Furthermore, so as to not bias our empirical study,
our collected Web services are drawn from ten different
application domains: financial, science, search, shipping,
travel, weather, media, education, messaging and location.
All services were manually inspected and validated to
identify antipatterns based on guidelines from the literature
[4] [22]. Furthermore, our dataset is available online [19]
to encourage future research in the area of automated
detection of Web service antipatterns.

We considered antipattern types range from eight com-
mon antipatterns, namely god object web service (GOWS),
fine-grained Web service (FGWS), chatty Web service
(CWS), data Web service (DWS), ambiguous Web service
(AWS), redundant port types (RPT), CRUDy interface (CI),
and maybe it is not RPC (MNR) (cf. Section 2.1). In our
study, we employed a 10-fold cross validation procedure.
We split our data into training data and evaluation data.
For each fold, one category of services is evaluated by

TABLE 3: Web services used in the empirical study.

Category #
services

#
antipatterns

average
NOD

average
NOM

average
NCT

Financial 94 67 29.52 57.31 19.01
Science 34 3 8.47 17.14 96.73
Search 37 13 8.35 18.94 26.13
Shipping 38 10 13.36 27.76 20.21
Travel 65 28 16.09 33.13 121.13
Weather 42 15 8.54 17.16 9.14
Media 19 14 10.9 16.4 28.6
Education 26 15 11.3 15.36 32.46
Messaging 29 20 7.6 11.21 18.25
Location 31 22 5.8 28.32 11.15
All 425 136 17.08 34.2 48.6

using the remaining nine categories as a base of examples
(ground-truth). For instance, weather services are analyzed
using antipattern instances from travel, shipping, search,
science financial, media, education, messaging, and location
services. We use precision and recall [33] to evaluate the
accuracy of our approach. Precision denotes the ratio of true
antipatterns detected to the total number of detected an-
tipatterns, while recall indicates the ratio of true antipatterns
detected to the total number of existing antipatterns.

In general, after executing our P-EA technique the best
detectors and detection rules are used to find antipatterns
in new Web services. These antipatterns are ranked using a
severity score defined as:

Severity(wsi) =
Risk(wsi) +RuleDetect(wsi)

2
(9)

where Risk(wsi) is defined by Equation 8, and
RuleDetect(wsi) takes the value 1 if the Web service
wsi is detected by the set of rules, otherwise it takes 0. We
set the risk at 0.75 to be considered as acceptable score to
identify a Web service as an antipattern. We used a trial
and error strategy to find this suitable threshold value after
executing our approach more than 30 times. However, this
threshold could adjusted by the users.

To answer RQ1, we investigate and report on the effec-
tiveness of P-EA, since one of our primary novelties lies in
the adoption of cooperative P-EA. To this end two indepen-
dent search methods for both GP and GA, and a cooperative
P-EA are implemented. For GP and GA, all searches proceed
independently and the best solution is collected at the end.
In P-EA it is hoped that by exchanging information among
the search EAs the efficiency of the global search will in-
crease to yield a higher-quality final solution. Furthermore,
we implemented random search (RS) with the same fitness
functions as P-EA. Indeed, it is important to compare our
search technique to random search, since if an intelligent
search method fails to outperform random search, then the
proposed formulation is not adequate [34].

To answer RQ2, we use both recall and precision to
evaluate the efficiency of our approach in identifying an-
tipatterns.

To answer RQ3, we investigated the antipattern types
that were detected to find out whether there is a bias
towards the detection of specific antipattern types.

To answer RQ4, we compared our approach with the
SODA-W approach of Palma et al. [13], and with our previ-
ous approach [14]. SODA-W manually translates antipattern
symptoms into detection rules and algorithms based on a

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 9

literature review of Web service design. In our earlier work
[14] that we extend in this paper, we used the standard
genetic programming algorithm to generate Web service
antipattern detection rules using only Web service interface
metrics. All three approaches are tested on the same bench-
mark described in Table 3.

5.3 Parameter Tuning and Setting
While the use of different EAs simultaneously in solving a
given problem reduces the sensitivity to the chosen param-
eter values, still an important aspect of research on meta-
heuristics lies in the selection and tuning of the algorithmic
parameters to ensure fair comparison and potential replica-
tion. For GP and GA, the initial populations/solutions are
completely random. The population size is fixed at 100 and
the number of generations at 3,500. For GP, the max depth
of the tree is fixed to 10. For P-EA and RS, the population
size is 100 and number of generations 1,750. In this way, all
algorithms perform 350,000 fitness function evaluations, so
a fair comparison can be made. Crossover rate is set to 0.9
and 0.4 for mutation probability. We used a high mutation
rate to ensure the diversity of the population and prevent
premature convergence from occurring [35]. In fact, after
several trial runs of the simulation, these parameter values
are fixed. Indeed, there are no general rules to determine
these parameters, and therefore we set the combination
of parameter values by a trial-and-error method, which is
commonly used by the SBSE community [36] [37].

5.4 Inferential Statistical Tests Used
We used the Wilcoxon rank sum test in a pairwise fashion
[38] in order to detect significant performance differences
between the algorithms under comparison. We set the con-
fidence limit, α, at 0.05. In these settings, each experiment is
repeated 31 times, for each algorithm and for each category.
The obtained results are subsequently statistically analyzed
with the aim to compare our P-EA approach against GP, GA
and RS. The results reported in this paper are the median
values of the 31 runs. To assess the effect size, we use
Cohen’s d statistic [38] [36]. The effect size is considered:
(1) small if 0.2 6 d < 0.5, (2) medium if 0.5 6 d < 0.8, or
(3) high if d > 0.8.

5.5 Results
Results for RQ1. The goal of RQ1 is to investigate how
well cooperative P-EA performs against each individual
EA. Table 4 and Figure 6 report the comparative results.
Over 31 runs, RS did not perform well when compared
to P-EA in terms of precision and recall achieving values
of only 36% and 41% respectively. This is mainly due to
the large search-space of possible combinations of metrics
and threshold values to explore. For the different categories,
the statistical analysis provides evidence that our P-EA
approach performs better than both the plain GA and GP.

Furthermore, we observed that P-EA was able to detect
Web service antipatterns in the different categories with
a high median precision and recall scores, 89% and 93%
respectively. The Wilcoxon test results showed that for all
20 experiments (10 categories, 2 measures of precision and

GA GP P−EA RS

0
20

40
60

80
10

0

Financial

GA GP P−EA RS

0
20

40
60

80
10

0

Science

GA GP P−EA RS

0
20

40
60

80
10

0

Search

GA GP P−EA RS

0
20

40
60

80
10

0

Shipping

GA GP P−EA RS

0
20

40
60

80
10

0

Travel

GA GP P−EA RS

0
20

40
60

80
10

0

Weather

GA GP P−EA RS

0
20

40
60

80
10

0

Media

GA GP P−EA RS

0
20

40
60

80
10

0

Education

GA GP P−EA RS

0
20

40
60

80
10

0

Messaging

GA GP P−EA RS

0
20

40
60

80
10

0

Location

(a) Precision

GA GP P−EA RS

0
20

40
60

80
10

0

Financial

GA GP P−EA RS

0
20

40
60

80
10

0

Science

GA GP P−EA RS

0
20

40
60

80
10

0

Search

GA GP P−EA RS

0
20

40
60

80
10

0

Shipping

GA GP P−EA RS

0
20

40
60

80
10

0

Travel

GA GP P−EA RS

0
20

40
60

80
10

0

Weather

GA GP P−EA RS

0
20

40
60

80
10

0

Media

GA GP P−EA RS

0
20

40
60

80
10

0

Education

GA GP P−EA RS

0
20

40
60

80
10

0

Messaging

GA GP P−EA RS

0
20

40
60

80
10

0

Location

(b) Recall

Fig. 6: Boxplots for the precision and recall results through
31 independent simulation runs of P-EA, GA, GP and RS.

recall), P-EA was significantly better than GA, with a Cohen
effect size ‘high’ in 18 out of 20 cases. Similarly, P-EA
was significantly better than GP with a ‘high’ effect size
in 14 out of 20 cases, and a ‘medium’ effect size in 4 out
of 20 cases. In the other cases, the effect size was ‘small’
and identical in one case. On the other hand, overall, GP
provides better results than GA in most of the cases (only in
3 experiments, GA was better than GP as shown in figure
6). This provides evidence that learning from antipattern
examples is a better criterion than deviance from common
design practices. Hence, we conclude that there is strong
empirical evidence that our P-EA formulation is much more
suitable and efficient than GA and GP as well as RS.

Thus the efficiency of cooperative parallel search
techniques for uncertain decision problems shown in this
work provides software engineers this take-home message:
“If your decision problem is uncertain, consider using cooperative
parallel search techniques to achieve a consensus.”

Results for RQ2. The results for RQ2 are presented in
Table 5. As can be seen from the table, we were able to
detect antipatterns in the different categories with a median
precision higher than 87%. The higher precision value for

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 10

TABLE 4: Statistical significance p-value (α=0.05) and effect
size comparison results of P-EA against GA, GP and RS.

P-EA vs GA P-EA vs GP P-EA vs RS
Precision Recall Precision Recall Precision Recall

Financial p-value 1.771E-06 1.166E-06 3.347E-06 1.168E-06 1.215E-06 1.209E-06
effect size high high high high high high

Science p-value 0.1129 identical 0.6752 0.2357 1.019E-05 3.088E-05
effect size small identical medium small high high

Search p-value 1.419E-05 0.00015 0.000128 0.07427 1.228E-06 1.173E-06
effect size high high high small high high

Shipping p-value 0.00205 0.00198 0.009809 0.04906 1.225E-06 1.043E-06
effect size high high medium medium high high

Travel p-value 1.164E-06 9.939E-07 5.514E-05 3.512E-06 1.193E-06 1.014E-06
effect size high high high high high high

Weather p-value 2.218E-06 0.00175 0.001537 0.02254 1.226E-06 1.065E-06
effect size high high high medium high high

Media p-value 3.151e-06 3.927e-05 1.807e-06 3.833e-05 1.229e-06 1.19e-06
effect size high high high high high high

Education p-value 1.228e-06 1.163e-06 1.077e-05 1.221e-05 1.229e-06 1.157e-06
effect size high high high high high high

Messaging p-value 1.224e-06 1.132e-06 2.623e-06 5.426e-06 1.223e-06 1.1e-06
effect size high high high high high high

Location p-value 4.945e-06 1.248e-05 1.247e-05 8.493e-06 1.223e-06 1.211e-06
effect size high high high high high high

TABLE 5: Median precision and recall scores obtained for
P-EA over 31 independent simulation runs.

Category Precision (%) Recall (%)

Financial 88 91
Science 87 92
Search 86 92
Shipping 82 90
Travel 90 96
Weather 87 91
Media 93 93
Education 93 93
Messaging 90 95
Location 91 95
Average 89 93

travel and finance (greater than 88%) can be explained by
the fact that these Web services are larger than the others
and contain a greater number of operations and complex
types that match the GOWS antipattern. For shipping, the
precision is lower (82%), but is still an acceptable score.
This is due to the nature of the antipatterns involved
which are typically data or chatty Web services. Indeed,
some false positives are recorded for the DWS and CWS
antipatterns. These antipatterns are likely to be difficult to
detect using metrics alone, but using the deviance from
common practices such antipatterns can be detected if
we use a severity score lower than 75 percent. Similar
interpretations can be made for recall. The obtained results
indicate that our approach is able to achieve a recall of
92%. The highest values were recorded for travel services
with 96% where most of the detected services are GOWS
and AWS. The lowest recall score was recorded for the
weather service (87%) which is attributable mostly to
FGWS. Indeed, weather Web services typically provide one
or two operations that return the temperature for a given
city, which falsely matches the symptoms of FGWS.
Results for RQ3. Based on the results of Fig. 7, we observe
that P-EA does not have a bias towards the detection of any
specific antipattern type. As described the figure, we had
an almost equal distribution of each antipattern type. On
some Web services such as weather, the distribution is not as
balanced. This is principally due to the number of actual an-
tipattern types detected. Overall, all the 8 antipattern types
are detected with good precision and recall scores (more

AWS CI CWS DWS FGWS GOWS MNR RPT

Antipattern types

P
re
ci
si
on

 s
co

re
 (

%
)

0

20

40

60

80

100
GA GP P−EA

(a) Precision

AWS CI CWS DWS FGWS GOWS MNR RPT

Antipattern types

R
ec
al
l s

co
re

 (
%

)

0

20

40

60

80

100 GA GP P−EA

(b) Recall

Fig. 7: Detection results for each antipattern type.

than 85%). Most existing guidelines/definitions [22] [13]
rely heavily on the notion of size to detect antipatterns. This
is reasonable for antipatterns like GOWS and FGWS that
are associated with a notion of size, but for antipatterns like
AWS, however, the notion of size is less important and this
makes this type of anomaly hard to detect using structural
information. This difficulty limits the performance of GP
and GA alone in detecting this type of antipattern. Thus, we
can conclude that our P-EA approach detects well all the
types of considered antipatterns (RQ3).

Furthermore, we report in Table 6 a random sample of
Web service antipattern instances that are detected using P-
EA. For instance, the XigniteRegistration Web service
is detected as god object Web service (GOWS) because it has
3 port types (NPT = 3) with 107 operations declared (NOD
= 107) making the Web service very large. This service also
suffers from a high response time RT = 4.28. Furthermore, it
defines 251 complex types in its interface, thus causing it to
be identified also as a data Web service antipattern. Similarly
the Web service XigniteQuotes is detected as both GOWS
and DWS as it has large NPT (NPT = 3), a large number of
declared operations (NOD = 98) with 95 of them being ac-
cessor operations (NAOD = 95), a large number of messages
(NOM = 230), relatively low cohesion (COH = 0.4), as well as
a large number of complex types (NCT = 39). Furthermore,
the code of XigniteQuotes exhibits high coupling (CBO
= 3.696), a high response of class score (RFC = 11.91) and
a low Measure of Functional Abstraction (MFA = 0.076).
A client that uses such interdependent and tightly-coupled
web services is exposed to all these dependencies, while
all that may be desired is to use one particular operation.
Successful Web service reuse is predicated on well-defined,
well-understood components [22]. A murky Web service
will confuse, appear less credible and reliable, and most
developers will opt to look elsewhere or reimplement it.

The Web service GHT_HotelDirectUpdateService

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 11

is detected as a fine-grained Web service (FGWS) antipattern.
This Web service has only one port type (NPT = 1) declaring
a single operation (NOD = 1) with low number of messages
(NOM = 2). Similarly, FlightsNearSoapApiService and
Conversor are also detected as FGWS antipatterns. A client
of such a Web service must execute multiple interactions to
complete a meaningful task, and poor performance results
because each interaction takes significant time at each end-
point. Furthermore, the client is required to know details of
the Web Service to coordinate it correctly.

XigniteOutlook is also identified as an ambiguous
Web service, providing several operations, messages, and
types with very long signatures with ALOS = 4.9, AMTM
= 0.63 and AMTO = 0.48. For instance, the interface ele-
ment signatures include several baroque names, e.g., Mar-
ketReflectionsAndWhosSpeakingAndFYIAlerts, GetOutlookFor-
RangeLengthBackwardResult and GetOutlookForRangeLength-
BackwardHttpPostOut. Thus, the developers of this Web
service appear to have ignored service interface naming
principles and years of consensus on the correct way to cod-
ify software APIs. Developers are advised to write names
according to common practices [39] to facilitate Web service
reuse, automated analyses and human interpretation [40].

Results for RQ4. Figure 8 reports the comparison result
of P-EA, Ouni et al. [14], and SODA-W. While SODA-
W shows promising results with an average precision of
71% and recall of 83%, it is still less than P-EA in all the
eight considered antipattern types. We conjecture that a key
problem with SODA-W is that it simplifies the different no-
tions/symptoms that are useful for the detection of certain
antipatterns. Indeed, SODA-W is limited to a set of WSDL
interface metrics, but ignores the source code of the Web
service artifacts. In fact, service design may look promising
at the interface level, but can prove to be an antipattern
if the source code is not implemented well. In contrast,
our approach is based on both interface and code metrics.
Another limitation of SODA-W is that in an exhaustive
scenario, the number of possible antipatterns to manually
characterize with rules can be very large, and rules that are
expressed in terms of metric combinations need substantial
calibration efforts to find the suitable threshold value for
each metric. By contrast, our approach needs only some
examples of antipatterns to generate detection rules. Figure
8 also shows that our earlier work [14] provides lower
detection results for the eight studied antipatterns with an
average of 72% for both precision and recall. The lower
performance can be explained by the fact that of our earlier
work is based only on interface metrics that may not be able
to capture all possible antipattern symptoms.

An important consideration is the impact of the size
of the base of examples on detection quality. Drawn from
weather-related Web service category, the results of Figure
9 show that our approach also proposes reasonably good
detection results in situations where only a few Web service
antipattern examples are available (94 instances in this case).
The precision and recall scores seem to grow steadily and
linearly with the number of examples, and rapidly grow to
acceptable values (87%). Thus, our approach does not need
a large number of examples to obtain good detection results.

AWS CI CWS DWS FGWS GOWS MNR RPT

Antipattern types

P
re

ci
si

on
 (%

)

0

20

40

60

80

100
Ouni et al. P−EA SODA−W

(a) Precision

AWS CI CWS DWS FGWS GOWS MNR RPT

Antipattern types
R

ec
al

l (
%

)

0

20

40

60

80

100
Ouni et al. P−EA SODA−W

(b) Recall

Fig. 8: Comparison results of P-EA, Ouni et al. and SODA-W

0

20

40

60

80

100

size of the base of examples

0

20

40

60

80

100

94 128 165 203 268 187 313 342 373P
re

ci
si

on
 a

nd
 r

ec
al

l d
et

ec
tio

n
sc

or
e

(%
) Precision

Recall

Fig. 9: The effect of the base of examples-size variation on
the detection results.

6 THREATS TO VALIDITY

This section describes threats to the validity of our study.
External threats to validity may arise because we did not

evaluate the detection of all antipattern types. However, the
eight types of Web service antipatterns we employed con-
stitute a broad representative set of standard antipatterns.
In addition, we validated our approach only on SOAP Web
services, and therefore cannot generalize our results to other
technologies such as REST Web services. However, a large
body of web services use SOAP so the antipattern detection
for this architecture is important.

Construct threats to validity are concerned with the re-
lationship between theory and what is observed. Most of
what we measure in our experiments are standard metrics
such as precision and recall that are widely accepted as
good proxies for the quality of antipattern and code smell

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 12

TABLE 6: A sample of Web service antipattern instances detected using P-EA.

WSDL Service name GOWS FGWS DWS CWS AWS RPT CI MNR

http://developer.ebay.com/webservices/finding/latest/FindingService.wsdl FindingService
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/14890 United States bankdemo.wsdl BankingService
http://www.xignite.com/xregistration.asmx?wsdl XigniteRegistration X X
http://www.xignite.com/xOutlook.asmx?WSDL XigniteOutlook X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/7242 Russian Federation currency.wsdl Service1 X
http://www.xignite.com/xReleases.asmx?WSDL XigniteReleases X
http://webservices.lb.lt/ExchangeRates/ExchangeRates.asmx?WSDL ExchangeRates X
https://esb.alfabank.kiev.ua:8243/services/Currency?wsdl Currency X
http://www.xignite.com/xBATSLastSale.asmx?WSDL XigniteBATSLastSale X
http://www.xignite.com/xcompensation.asmx?WSDL XigniteCompensation X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/17528 Ireland currencyservice.wsdl CurrencyService X
http://www.xignite.com/xMaster.asmx?WSDL XigniteMaster X X
http://webservices.eurotaxglass.com/wsdl/specification.wsdl SpecService X
http://www.xignite.com/xanalysts.asmx?WSDL XigniteAnalysts X X
http://www.xignite.com/xQuotes.asmx?WSDL XigniteQuotes X
https://taxrequest.exactor.com/request/soap/?wsdl ExactorTaxService X
https://api.taxcloud.net/1.0/?wsdl TaxCloud X
http://apps.hha.co.uk/mis/api.asmx?WSDL Api X
https://www.myshawtracking.ca/otsWebWS/services/OTSWebSvcs/wsdl/OTSWebSvcs.wsdl OTSWebSvcsService X
http://vlbapi.bvdep.com/VlbOnlineAPI.asmx?WSDL VlbNewOnlineApi X
http://www.carrierrate.com/RateQuoteService/service.asmx?WSDL Service X X
http://shippingapi.ebay.cn/production/v3/orderservice.asmx?WSDL OrderService X
http://www.elguille.info/Net/WebServices/CelsiusFahrenheit.asmx?WSDL Conversor X
http://climhy.lternet.edu/wambam/soap server.pl?wsdl=climdb raw climdb raw X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/13868 United States ShowWeatherSvc.wsdl ShowTheWeather X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/18249 United States FastTrack.wsdl FlightExplorerFastTrack X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/service43.wsdl USWeather
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/11200 United States FastWeather.wsdl DOTSFastWeather X X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/service38.Accounts.wsdl DOTSFastWeather X
http://climhy.lternet.edu/wambam/soap server.pl?wsdl=climdb agg climdb agg X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/service60.Utility.wsdl WorldWeatherByICAO X
http://eil.cs.txstate.edu/ServiceXplorer/wsdl files/10736 United States WeatherForecast.wsdl WeatherForecast X
https://api.flightstats.com/flex/schedules/docs/v1/lts/soap/scheduledFlightsService.wsdl ScheduledFlightsV1SoapService
http://toolbox.webservice-energy.org/TOOLBOX/WSDL/AIP3 PV Impact/AIP3 PV Impact.wsdl AIP3 PV Impact X
https://api.flightstats.com/flex/flightstatus/soap/v2/flightsNearService?wsdl FlightsNearSoapApiService X
https://www.platforma-broker.ro/ws/travel.svc?wsdl&wsdl TravelService
http://weather.terrapin.com/axis2/services/HurricaneService?wsdl HurricaneService X
http://webservices.sabre.com/wsdl/sabreXML1.0.00/GHT/HotelDirectUpdate.wsdl GHT HotelDirectUpdateService X
http://tpb1.cangooroo.net/ws/2013/hotel a.asmx?wsdl Hotel a X X
http://flytour-ad-01.dualtec.com.br:4122/FTV Hotel/Venda.svc?wsdl VendaService X
https://wcffs.travelexplorer.com.br/FlightService.svc?wsdl FlightService X X
https://api.flightstats.com/flex/alerts/docs/v1/lts/soap/flightAlertsService.wsdl FlightAlertsV1SoapService X
http://www.flyfrontier.com/f9 services/wordwheel/wordwheellocal.asmx?WSDL WordWheelLocal X
http://xml.bookingengine.es/webservice/OTA HotelAvail.asmx?wsdl OTA HotelAvail X X

detection solutions [13] [12] [14]. Another threat is related to
the corpus of antipattern examples, as developers may not
all agree if a candidate Web service is an antipattern or not.
Since this is one of the first attempts to address this problem
of automated detection of web service antipatterns, there is
no currently established state of the art in terms of auto-
mated detection. Indeed, we found little literature to guide
us on what we should consider to constitute Web service
antipatterns [22] [23] [13]. In addition, various threshold val-
ues were used in our experiments based on trial-and-error,
however these values can be configured once then used
independently from the Web services to evaluate. Another
threat is related to the automatic generation of code using
JAX-WS. While using other tools (such as WSDL2Java) may
yield different code, this cannot bias our results as we are
using the same tool for all the experiments.

7 RELATED WORK

Detecting and specifying antipatterns in SOA and Web
services is a relatively new field. Only few works have ad-
dressed the problem of SOA antipatterns. The first book in
the literature was written by Dudney et al. [22] and provides
informal definitions of a set of Web service antipatterns.
More recently, Rotem-Gal-Oz described the symptoms of
a range of SOA antipatterns [4]. Furthermore, Král et al.

[7] listed seven “popular” SOA antipatterns that violate
accepted SOA principles. In addition, a number of research
works have addressed the detection of such antipatterns.
Recently, Moha et al. [41] have proposed a rule-based ap-
proach called SODA for SCA systems (Service Component
Architecture). Later, Palma et al. [13] extended this work
for Web service antipatterns in SODA-W. The proposed
approach relies on declarative rule specification using a
domain-specific language (DSL) to specify/identify the key
symptoms that characterize an antipattern using a set of
WSDL metrics. In another study, Rodriguez et al. [42] [24]
and Mateos et al. [23] provided a set of guidelines for service
providers to avoid bad practices while writing WSDLs.
Based on some heuristics, the authors detected eight bad
practices in the writing of WSDL for Web services. In other
work [43], the authors presented a repository of 45 general
antipatterns in SOA. The goal of this work is a comprehen-
sive review of these antipatterns that will help developers to
work with clear understanding of patterns in phases of soft-
ware development and so avoid many potential problems.
Mateos et al. [44] have proposed an interesting approach
towards generating WSDL documents with less antipatterns
using text mining techniques. Recently, Ouni et al. [14]
proposed a search-based approach based on standard GP to
find regularities, from examples of Web service antipatterns,

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 13

to be translated into detection rules. However, the proposed
approach can deal only with Web service interface metrics
and cannot consider all Web service antipattern symptoms.
Similar to [13], the latter consider neither deviation from
common design practices nor code metrics, which leads to
several false positives.

Unlike service-oriented computing, there is an exten-
sive body of research that tries to detect object oriented
antipatterns and code smells [10] [9] [11] [12] [45]. One of
the first attempts to automate code smell detection for Java
programs was conducted by van Emden and Moonen [46].
The authors examined a list of code smells and found that
each of them is characterized by a number of “smell aspects”
that are visible in source code entities such as packages,
classes, methods, etc. A given code smell is detected when
all its aspects are found in the code. The identified aspects
are mainly related to non-conformance to coding standards.
Later, Marinescu el al. [9] have proposed a mechanism called
“detection strategy” to detect object oriented code smells
by formulating metric-based rules that capture deviations
from design principles and heuristics. Similarly to SODA-
W [13], Moha et al. [10] proposed a description of an-
tipattern symptoms using a domain-specific-language (DSL)
for their antipatterns detection approach called DECOR.
They proposed a consistent vocabulary and DSL to specify
antipatterns based on their review of existing work on
code smells found in the literature. To describe antipattern
symptoms different notions are involved, such as class roles
and structures. Symptoms descriptions are later mapped to
detection algorithms. Recently, Ouni et al. [11] proposed
a search-based approach to detect code smells in object
oriented software systems, which was the first approach to
infer detection rules from examples. Kessentini et al. [12]
proposed an extended version using a cooperative parallel
search technique to detect code smells in Java systems.

However, code smell detection techniques are not ap-
plicable in the context of Web services as we deal with
different level of granularity (service vs class levels), and dif-
ferent technologies and metrics. Furthermore, unlike object
oriented software systems, Web service source code is not
open source; that is, only Web service interfaces are publicly
available for clients from which only the skeleton of the code
can be automatically generated. This makes the detection of
such antipatterns more challenging.

8 CONCLUSION AND FUTURE WORK

In this paper, we introduced a new SBSE approach for Web
Service antipattern detection. In our cooperative parallel
metaheuristic adaptation, two populations evolve simulta-
neously with the objective of finding consensus regarding
the identification of Web service antipatterns. The proposed
approach is evaluated on a benchmark of 415 Web services
and eight common Web service antipattern types. Statistical
analysis of the obtained results provides compelling evi-
dence that cooperative P-EA outperforms individual popu-
lation, random search, and a recent state-of-the art approach
with a median precision of more than 89% and a median
recall of more than 93%.

As future work, we plan to validate our approach with
additional antipattern types in both individual Web ser-

vices and business process in order to investigate more
thoroughly the general applicability of our methodology.
In addition, we plan to include other SOAP static and
dynamic metrics and empirically investigate their effect on
the quality of Web services. We also plan to extend the
approach to detect business process antipatterns in SBS
in addition to individual Web service antipatterns. Finally,
another promising research direction is to automate the
correction, through refactoring, of the detected antipatterns.

REFERENCES

[1] M. D. Hansen, SOA Using Java Web Services. Pearson Education,
2007.

[2] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, “Developing
web services choreography standards - the case of rest vs. soap,”
Decision Support Systems, vol. 40, no. 1, pp. 9–29, 2005.

[3] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best
practices for describing, consuming, and discovering web services:
a comprehensive toolset,” Software: Practice and Experience, vol. 43,
no. 6, pp. 613–639, 2013.

[4] A. Rotem-Gal-Oz, SOA Patterns. Manning Publications, 2012.
[5] M. P. Singh and M. N. Huhns, Service-oriented computing - semantics,

processes, agents. Wiley, 2005.
[6] J. Král and M. Žemlička, “Crucial service-oriented antipatterns,”

International Journal On Advances in Software, vol. 2, no. 1, pp. 160–
171, 2009.

[7] J. Král and M. Zemlicka, “Popular SOA Antipatterns,” in Fu-
ture Computing, Service Computation, Cognitive, Adaptive, Content,
Patterns, 2009. COMPUTATIONWORLD’09. Computation World:.
IEEE, 2009, pp. 271–276.

[8] J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino, “Estimating
web service interface quality through conventional object-oriented
metrics,” CLEI Electron. J., vol. 16, no. 1, 2013.

[9] R. Marinescu, “Detection strategies: Metrics-based rules for detect-
ing design flaws,” 2013 IEEE International Conference on Software
Maintenance, vol. 0, pp. 350–359, 2004.

[10] N. Moha, Y. Gueheneuc, L. Duchien, and A. Le Meur, “Decor:
A method for the specification and detection of code and design
smells,” Software Engineering, IEEE Transactions on, vol. 36, no. 1,
pp. 20–36, Jan 2010.

[11] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Main-
tainability defects detection and correction: a multi-objective ap-
proach,” Automated Software Engineering, vol. 20, no. 1, pp. 47–79,
2013.

[12] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A Cooperative Parallel Search-Based Software Engineering Ap-
proach for Code-Smells Detection,” Software Engineering, IEEE
Transactions on, vol. 40, no. 9, pp. 841–861, 2014.

[13] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, “Specifica-
tion and detection of soa antipatterns in web services,” in Software
Architecture. Springer, 2014, pp. 58–73.

[14] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, “Web
service antipatterns detection using genetic programming,” in
Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference, ser. GECCO’15. ACM, 2015, pp. 1351–1358.

[15] E. Alba, Parallel Metaheuristics: A New Class of Algorithms. Wiley-
Interscience, Aug. 2005.

[16] T. Back, Evolutionary algorithms in theory and practice. Oxford Univ.
Press, 1996.

[17] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[18] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman, 1989.

[19] “Experimental data,” https://github.com/ouniali/
WSantipatterns, accessed: 2015-08-14.

[20] R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and S. Weer-
awarana, “Web services description language (wsdl) version 2.0
part 1: Core language,” W3C working draft, vol. 26, 2004.

[21] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of soft-
ware evolvability using code smells: An empirical study,” Empiri-
cal Softw. Engg., vol. 11, no. 3, pp. 395–431, Sep. 2006.

[22] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE
Antipatterns. John Wiley; Sons, Inc., 2003.

https://github.com/ouniali/WSantipatterns
https://github.com/ouniali/WSantipatterns

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2502595, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. , NO. , 14

[23] C. Mateos, A. Zunino, and J. L. O. Coscia, “Avoiding WSDL Bad
Practices in Code-First Web Services,” SADIO Electronic Journal of
Informatics and Operational Research, vol. 11, no. 1, pp. 31–48, 2012.

[24] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Au-
tomatically detecting opportunities for web service descriptions
improvement,” in Software Services for e-World. Springer, 2010,
pp. 139–150.

[25] A. Heß, E. Johnston, and N. Kushmerick, “ASSAM: A Tool for
Semi-automatically Annotating Semantic Web Services,” in The
Semantic Web ISWC 2004, S. McIlraith, D. Plexousakis, and F. van
Harmelen, Eds. Springer Berlin Heidelberg, 2004, vol. 3298, ch. 23,
pp. 320–334.

[26] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, “Detect-
ing WSDL bad practices in codefirst Web Services,” International
Journal of Web and Grid Services, vol. 7, no. 4, pp. 357–387, 2011.

[27] M. Perepletchikov, C. Ryan, and Z. Tari, “The impact of service co-
hesion on the analyzability of service-oriented software,” Services
Computing, IEEE Transactions on, vol. 3, no. 2, pp. 89–103, 2010.

[28] R. Sindhgatta, B. Sengupta, and K. Ponnalagu, “Measuring the
quality of service oriented design,” in Service-Oriented Computing,
ser. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2009, vol. 5900, pp. 485–499.

[29] J. Coscia, M. Crasso, C. Mateos, A. Zunino, and S. Misra, “Pre-
dicting web service maintainability via object-oriented metrics:
A statistics-based approach,” in Computational Science and Its Ap-
plications ICCSA 2012, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7336, pp. 29–39.

[30] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” Software Engineering, IEEE Transactions on, vol. 20,
no. 6, pp. 476–493, 1994.

[31] M. Harman, “The current state and future of search based software
engineering,” in Future of Software Engineering (FOSE ’07). IEEE,
2007, pp. 342–357.

[32] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput-
ing Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

[33] W. B. Frakes and R. Baeza-Yates, Eds., Information Retrieval: Data
Structures and Algorithms. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1992.

[34] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[35] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calcula-
teurs paralleles, reseaux et systems repartis, vol. 10, no. 2, pp. 141–171,
1998.

[36] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Software Engineering (ICSE), 2011 33rd International Conference
on. IEEE, 2011, pp. 1–10.

[37] A. Eiben and S. Smit, “Parameter tuning for configuring and
analyzing evolutionary algorithms,” Swarm and Evolutionary Com-
putation, vol. 1, no. 1, pp. 19 – 31, 2011.

[38] J. Cohen, Statistical power analysis for the behavioral sciences. Aca-
demic press, 1988.

[39] M. Blake and M. Nowlan, “Taming web services from the wild,”
Internet Computing, IEEE, vol. 12, no. 5, pp. 62–69, Sept 2008.

[40] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Discov-
erability anti-patterns: frequent ways of making undiscoverable
web service descriptions,” in Proceedings of the 10th Argentine
Symposium on Software Engineering - 38th JAIIO, 2009, pp. 1–15.

[41] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc,
B. Baudry, and J.-M. Jézéquel, “Specification and detection of soa
antipatterns,” in Service-Oriented Computing. Springer, 2012, pp.
1–16.

[42] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best
practices for describing, consuming, and discovering web services:
a comprehensive toolset,” Software: Practice and Experience, vol. 43,
no. 6, pp. 613–639, 2013.

[43] M. A. Torkamani and H. Bagheri, “A Systematic Method for Iden-
tification of Anti-patterns in Service Oriented System Develop-
ment,” International Journal of Electrical and Computer Engineering,
vol. 4, no. 1, pp. 16–23, 2014.

[44] C. Mateos, J. M. Rodriguez, and A. Zunino, “A tool to improve
code-first web services discoverability through text mining tech-
niques,” Software: Practice and Experience, vol. 45, no. 7, pp. 925–948,
2015.

[45] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “Detecting bad smells in source code using

change history information,” in IEEE/ACM 28th International Con-
ference on Automated Software Engineering. IEEE, 2013, pp. 268–278.

[46] E. van Emden and L. Moonen, “Java quality assurance by detect-
ing code smells,” in Reverse Engineering, 2002. Proceedings. Ninth
Working Conference on, 2002, pp. 97–106.

Ali Ouni is a research Assistant Professor at
Osaka University, Japan. He is a member of the
software engineering laboratory (SEL). He holds
a Ph.D. in computer science from University of
Montreal, Canada, in 2014. For his exceptional
Ph.D. research productivity, he was awarded the
Excellence Award from the University of Mon-
treal. His research interests are in software en-
gineering including software maintenance and
evolution, refactoring of software systems, soft-
ware antipatterns, service-oriented computing,

and the application of artificial intelligence techniques to software en-
gineering. He served as a program commitee member and reviewer in
several conferences and journals.

Marouane Kessentini is a tenure-track assis-
tant professor at University of Michigan, Dear-
born campus. He is the founder of the re-
search group: Search-based Software Engineer-
ing@Michigan. He holds a Ph.D. in Computer
Science, University of Montreal (Canada), 2012.
His research interests include the application of
artificial intelligence techniques to software en-
gineering (search-based software engineering),
software testing, model-driven engineering, soft-
ware quality, and re-engineering. He has pub-

lished around 50 papers in conferences, workshops, books, and jour-
nals including three best paper awards. He has served as program-
committee/organization member in several conferences and journals.

Katsuro Inoue received the BE, ME, and DE
degrees in information and computer sciences
from Osaka University, Japan, in 1979, 1981,
and 1984, respectively. He was an assistant
professor at the University of Hawaii at Manoa
from 1984-1986. He was a research associate
at Osaka University from 1984-1989, an assis-
tant professor from 1989-1995, and a professor
beginning in 1995. His interests are in various
topics of software engineering such as program
analysis, repository mining, software develop-

ment environment, and software process modeling. He is a member of
the IEEE, the IEEE Computer Society, and the ACM.

Mel Ó Cinnéide holds BSc, MSc and PhD de-
grees in Computer Science from University Col-
lege Cork, National University of Ireland and
Trinity College Dublin respectively, and is a char-
tered engineer. He worked in the software indus-
try for several years before moving to academia
and is currently a lecturer in the School of Com-
puter Science, University College Dublin. Dr. Ó
Cinnéide has published over 45 papers in the ar-
eas of software quality and reuse, including two
best paper awards. His primary research interest

is currently the automated improvement of software design quality using
Search-Based Software Engineering techniques.

