
Evolution of Code Clone Ratios throughout Development
History of Open-Source C and C++ programs

Anfernee Goon1,†1,a) YuhaoWu2,b) MakotoMatsushita2,c) Katsuro Inoue2,d)

Abstract: A code clone is a fragment of code which is duplicated throughout the source code of a project. Code
clones have been shown to make a project less maintainable because all code clones will share potential bugs and prob-
lems. Unlike other code clone research, this study analyzes the code clone ratios over the entire development lifetime
of three open-source projects written in C/C++ to understand development habits and the changing maintainability
of the software. The study utilizes bash scripting in conjunction with CCFinderX and Git to automate the detection
of clones across development history. The results from each project showed very stable ratios across development
history, with the code clone ratios only fluctuating greatly during the beginning of development mostly and very little
refactoring occurring. Despite this, the clone ratios of all three projects were very low compared to the average ratio of
12%, which indicates that refactoring may have occurred before the code was inputted into the version control reposi-
tory. Each project had a general trend of fluctuating greatly at the beginning of development and then becoming very
stable afterwards, which can imply design choices not being concrete during the beginning of development as well as
considerably more functionality being added at the beginning of development relative to the rest of the development
cycle. Overall, the clone ratios over the development of each project analyzed has given some insight on the different
aspects of the development process such as refactoring and how each project handles such aspects. Developers should
be able to improve on their approach to development and increase their software’s maintainability by looking at code
clone ratios over the version evolution of their own projects.

Keywords: Clone ratios, refactoring, maintainability, software development

1. Introduction
A code clone is a duplicated fragment of code. Having many

code clones in a project makes it much less maintainable because
all of these code clones will share potential bugs and problems
[5]. These problems will propagate throughout the software with
continued use of the problematic code clone fragment, and a fix
for this bug may have to be applied to every one of these frag-
ments present in the code. Detecting code clones and retrieving
different metrics about the code clones present in a target software
gives insight on the maintainability of the software and identifies
areas in the code that should be fixed.

Code clone research mostly focuses on the code clone metrics
of a particular snapshot of a target software. Instead of focus-
ing on a specific point in time, we analyze the code clone met-
rics of software over the entire development process. The chang-
ing maintainability of software over development can be tracked
through such an analysis. In turn, many development habits and
a greater understanding of the software development process is

1 Department of Computer Science and Engineering, University of Cali-
fornia San Diego

2 Graduate School of Information Science and Technology, Osaka Univer-
sity

†1 Presently with Osaka University
a) agoon@ucsd.edu
b) wuyuhao@ist.osaka-u.ac.jp
c) matusita@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

possible, such as the frequency of code cleanup and maintenance
to improve readability and maintainability, also known as refac-
toring. In this paper, we seek to understand software development
through the analysis of code clone metrics throughout the entire
development process of three different open source projects pri-
marily written in C/C++. More specifically, we will investigate
the following research questions in our analysis: RQ1. How do
the code clone ratios throughout development characterize de-
velopment of the target software? and RQ2. What do these code
clone characterizations indicate about software development in
general?.

2. Approach
2.1 Target Source Code

When deciding on open-source projects to use, we took into
account a couple factors. These factors were how well studied
the project is, how large the project is, and the type of the project
itself. We wanted to use three projects which varied by these
metrics in order to analyze the effects of these factors on the code
clone ratios and what they imply about the development process.
We analyzed the following three open-source projects which are
hosted on GitHub:

• libcurl: libcurl is a library which curl, a command-line tool
for transferring data, uses. This library is fairly well studied
as seen in Kawamitsu et al. [3]. It is the smallest project
we studied, starting at around 2500 lines of code, eventually



growing to around 12500 lines of code over a series of about
20000 commits.

• Skynet: Skynet is a lightweight online game framework
which is slightly larger than libcurl, growing from around
2500 lines of code to around 40000 lines of code over a series
of about 1000 commits (we analyze about 800 of those com-
mits). While not as well studied as the other two projects, it
is as popular as libcurl on Github based on forks and stars.

• Git: Git is a version control system which is widely used;
even our analysis relies on Git. Although starting relatively
small at 950 lines of code, it grows to around 200000 lines
of code over a series of about 40000 commits (we analyze
about 14000 of those commits) which is significantly larger
than both libcurl and Skynet.

Each of the three open-source projects present a different range
in size which makes our analysis size-independent, disregarding
extremely large systems or software. Having software which is
popular in use and analysis lessens the chance of abnormal data
coming from one of the projects. The varying functions of each
project ensure that the analysis covers the development of all
types of software.

2.2 Clone Detection
To detect clones and clone metrics in the source code, we

used CCFinderX, a token-based clone detector [2] [5]. Although
CCFinderX is a multilinguistic clone detector, we only use it’s
C/C++ clone detection capabilities. Using bash scripting, we au-
tomated the use of CCFinderX on every important commit in
the master branch of each project by using git log with the –
first-parent flag. The commits retrieved with this flag are impor-
tant because they represent the most linear development history
available by following the first parent down Git’s history ensur-
ing that parallel development on separate branches are limited to
the merge commit into master, which is why the entire commit
range does not appear in our data. Similarly, we automate the
retrieval of clone metrics from CCFinderXs results to streamline
collecting the results from each commit. For each commit, we
collected number of C/C++ files, total lines of code (LOC), to-
tal lines of code not including whitespace or comments (SLOC),
total code clone lines (CLOC), as well as the tag of the commit
if applicable. Along with these metrics we collected the actual
clone ratios of each commit, including the clone ratios including
whitespace and comments (CCR) and the clone ratios not includ-
ing whitespace or comments (CVRL). These ratios are derived
from the lines of code metrics, with CCR being CLOC divided
by LOC, and CVRL being CLOC divided by SLOC. The scripts
were designed to exclude test and example files whenever possi-
ble in order to keep analysis limited to functionality related files,
and only includes .c and .cpp files. Header files are not included
because most header files will be similar, and may be picked up
as false positives by CCFinderX. The minimum number of tokens
that a fragment needs to be considered a clone is 50 in our study.

3. Results
For our quantitative analysis, we make use of several graphs

containing the metrics CVRL, SLOC, and CLOC discussed in
Section 2.2 displayed by commits in chronological order. The
main metric we focus on is CVRL, which we initially expected to
have mostly gradual increases with periodic sharp declines. The
gradual increases would be a result of functionality being added
over time, which naturally increases CVRL because more code
is being written [1]. Refactoring would be the cause of the sharp
declines, because the initial additions of functionality may not be
clean and would be in need for maintenance to ensure maintain-
ability before the next round of functionality is added. The results
from all three projects did not quite follow this trend, and in fact
all projects displayed various different patterns over development.

3.1 libcurl
Our analysis of libcurl is confined to the files in libcurl’s src

folder in addition to the test and example constraints previously
mentioned. The src folder is the primary folder for development
for libcurl’s C/C++ modules, so it contains the most relevant
information about libcurl’s development process.

3.1.1 Quantitative Analysis
libcurl’s CVRL graph details a series of sharp increases fol-

lowed by gradual decreases, which is opposite of expectation.
In hindsight, this finding makes sense because over the span of
20000 commits, the number of consecutive commits which add
functionality will be significantly less than the total number of
commits resulting in sharp increases in CVRL on the graph when
functionality is added. Although decreases are still occurring,
the gradual nature of these decreases indicates that refactoring is
not necessarily the cause. From a perspective focused on clones,
refactoring would be indicated by a decrease in CLOC and SLOC,
because this means that code clone fragments are being removed.
Looking at the SLOC and CLOC metrics during these periods
of decrease, we observe that the SLOC is continually increasing
while the CLOC does not decrease. Since CVRL is a ratio be-
tween CLOC and SLOC, it is clear that it is the growth in SLOC
which is causing the decreases and not a result of refactoring.

While this trend holds true for the majority of libcurl’s
development, the beginning of libcurl’s development does have
some sharper decreases which are a result of CLOC decreasing.
These decreases are not due to refactoring, which is discussed
in more detail in the next section on the qualitative analysis of
libcurl. Contrary to the sharp increases depicted on the CVRL
graph, the CVRL is actually quite stable with the sharp increases
actually only being about a 1% difference. Throughout the entire
lifetime of development, the CVRL mostly falls between 3%
and 9%. The average clone rate is about 12% for clones with a
minimum of 100 tokens [4], so libcurl’s CVRL is significantly
lower than average even with a more lenient minimum token
size. The stable, low CVRL of libcurl throughout development
may indicate a good development habit of refactoring before
commits. Refactoring before committing will ensure less clones

c© 1992 Information Processing Society of Japan



Fig. 1 CVRL, SLOC, and CLOC changes over all commits of libcurl in chronological order. The blue
line represents CVRL, with the orange points along it displaying release points. The yellow line
represents SLOC and the green line represents CLOC. The CVRL adheres to the left axis, while
the other two metrics adhere to the right axis.

being introduced into the git history and in turn keep the clone
rate in check for each commit. The advantages of this practice
are that the git history will be very clean and the software
will be consistently easy to maintain. Although libcurl does
have relative stability throughout its development, it is still
consistently growing especially towards the end of development,
where a 1000 commit sequence adds about 2% to the CVRL, but
this growth still keeps the CVRL under the average.

3.1.2 Qualitative Analysis
For libcurl’s qualitative analysis, we studied key rises and falls

on the CVRL graph attributed to CLOC changes in further depth
to see what their cause was. In order to do this, we used a tool
called GemX, which is an improved version of Gemini [6] which
utilizes CCFinderX with GUI options. GemX’s biggest asset is
it’s ability to show the clone pairs found in the source code. Us-
ing this tool, we were able to analyze a big increase or decrease
in CVRL and see what was the cause of the change by looking
at the specific commit causing the change as well as the previ-
ous commit. There are four commit points which are looked at in
libcurl: 6562caf, 22d8aa3, b5fdbe8, a0d7a26 (shortened commit
hashes).

The first two commits saw a CVRL decrease of about 2% and
a CLOC decrease of about 30 lines. In both these instances,
the logic of the clone fragments were changed with a few ad-
ditions or deletions. These fragments can still be considered code
clones, but are now Type-3 code clones instead of Type-2 code
clones, where Type-3 clones have some line additions and dele-
tions which do not occur in the other fragment [5]. Since CCFind-
erX cannot detect Type-3 code clones, this was seen as a decrease
in CLOC resulting in the CVRL decreases [5]. It is clear that
the decreases were not due to refactoring in this case, but rather
something more akin to a bug fix to make the fragments work
correctly by changing a few parts of the fragments (and even still
the fragments are Type-3 clones). This case illustrates the im-

portance of also looking at the change in SLOC to determine if
refactoring occurred, because if SLOC also decreases by a similar
margin then there is a good chance the clone was removed. This
phenomenon of clones becoming undetectable due to change in
type is a threat to validity discussed in Section 3.5.

Unlike the first two commits, the last two commits show the
most refactoring seen in libcurl. The first of the two commits,
b5fdbe8, shows a huge increase in CLOC (from around 4% to
around 18%) while the other commit, a0d7a26, shows a symmet-
rical decrease (from around 18% to around 4% again). The first
commit adds a new experimental functionality through a new file
which is an exact copy of another source file that is about 600
lines, increasing the CLOC by that margin. The second com-
mit significantly changes the new source file to reuse parts of the
original source file along with new features, this eliminating the
entire clone fragment as it was in the previous commit and reduc-
ing the CLOC down once more. This shows the only clear case of
refactoring we have found libcurl, with the developer implement-
ing reuse of source files indirectly rather than keeping directly
copied pasted code.

From our qualitative analysis, we see that even the biggest de-
creases in CVRL are mostly not due to refactoring, with one ex-
ception. It can be deduced from these findings that libcurl’s de-
velopers most likely have a good habit of refactoring before com-
mits, because even though there is only one case of refactoring
throughout the development history the CVRL is still very low.

3.2 Skynet
Unlike libcurl’s analysis, our analysis of Skynet takes account

all C/C++ files that the project contains excluding files in the test
folder. There was no single folder consolidating all of Skynet’s
C/C++ modules, so analyzing all the files in the project was a
necessity.



Fig. 2 CVRL, SLOC, and CLOC changes over all commits of Skynet in chronological order. The blue
line represents CVRL, with the orange points along it displaying release points. The yellow line
represents SLOC and the green line represents CLOC. The CVRL adheres to the left axis, while
the other two metrics adhere to the right axis.

3.2.1 Quantitative Analysis
Skynet’s CVRL graph partially resembles what was initially

expected, but still has significant differences. The resemblance
is in the graph’s sharp declines, which occur only a few times
throughout the entire commit history. The unexpected differences
are the sharp increases which mirror the sharp declines, as well
as the extreme stability which characterizes the second half of the
development history. Similar to libcurl, Skynet’s CVRL graph’s
sharp increases most likely indicate an addition in functionality.
These only occur during the first half of development, but are
considerable increases, with the largest increase going from 6%
to around 9%. With each big increase there is a sharp decrease,
which may indicate refactoring after large functionality additions.
Most of these sharp decreases have corresponding CLOC de-
creases, but only a few have corresponding SLOC decreases as
well indicating refactoring is not necessarily the case for every
instance. The qualitative analysis of Skynet in the next section
confirms refactoring efforts, showing that refactoring does occur
in some of these instances.

Although the development of Skynet has fairly sharp fluc-
tuations during the beginning of its development, it is akin to
libcurl through its smaller than average CVRL and stability.
Skynet actually shows greater stability than libcurl after its
initial fluctuations, occurring directly after the first release. The
stability after release seems to be logical, as a polished product
should be delivered at release, reducing the additions to mostly
bug fixes which are less likely to introduce new clone additions.

3.2.2 Qualitative Analysis
Skynet’s qualitative analysis used the same approach as

libcurl’s, where we looked at big fluctuations on the CVRL graph
that resulted from CLOC changes in detail using GemX. The
main commits that we looked at in Skynet are 28dc840 and
58aa755.

The first two commits are decreases in CVRL of about 1% and
2% respectively. The cause of these decreases can both be at-

tributed to changes in libraries which Skynet was using. The first
commit sees a removal of a part of a library which contains 7000
lines of code, 500 of those being clone lines. Although not a
refactoring of their own modules, this library removal is in fact
an instance of refactoring because it removes unnecessary code,
potentially opting for reuse like in libcurl’s instance of refactoring
which in turn reduces CLOC. The second commit adds on a large
library of code to the project which proportionally has very little
code. Through this addition, the CLOC only increases slightly,
by about 260 lines, while the SLOC increases significantly, by
about 10000 lines. Unlike the first commit, this is not a result
of refactoring as none of the originally existing clone pairs were
removed.

Our qualitative analysis of Skynet shows many of the decreases
being attributed to library changes. Since Skynet’s stable period
saw much less growth, it can be inferred that most functional-
ity was added during the initial unstable period (reinforced by
the SLOC only gradually increasing during the stable period). If
this is the case, it is much more unlikley that Skynet’s develop-
ers employ refactoring before commits because the time where
refactoring would be needed to keep the CVRL stable showed
great instability and there was evidence of refactoring after com-
mits during this period. Out of all three projects, Skynet shows
the most resemblance to our initial hypothesis, but only when an-
alyzing the beginning of its development.

3.3 Git
Similar to the analysis of Skynet, our analysis of Git takes

into account all C/C++ files that the project contains excluding
test and example files. Again like Skynet, Git’s C/C++ modules
were dispersed all throughout the project which is why all files in
the project needed to be analyzed. Unfortunately all analysis of
Git was done quantitatively, as a qualitative analysis was difficult
given the size of the project. We hope to perform a qualitative
analysis on Git in the future to reinforce our quantitative analysis.

c© 1992 Information Processing Society of Japan



Fig. 3 CVRL, SLOC, and CLOC changes over all commits of Git in chronological order. The blue line
represents CVRL, with the orange points along it displaying release points. The yellow line rep-
resents SLOC and the green line represents CLOC. The CVRL adheres to the left axis, while the
other two metrics adhere to the right axis.

3.3.1 Quantitative Analysis
Git’s CVRL graph follows a similar trend as Skynet. Unlike

our initial expectation, Git’s CVRL sees a large growth towards
the beginning of development, but after a certain point sees a
gradual but consistent decrease up to the present state of devel-
opment. After its large growth over around 2000 commits, the
CVRL is around 9%. The gradual decrease sees the CVRL de-
crease to 4% over the course of about 8000 commits, and after-
wards there is stability near 4% until the present state of develop-
ment. Like in Skynet, the initial growth can be attributed to many
additions of functionality at the beginning of development. After
that initial stage, the CLOC barely increases while the SLOC con-
tinues to grow at a fast rate, which is what causes the gradual de-
cline in CVRL, which indicates functionality is still being added
unlike in Skynet’s stable period. The gradual decrease may be
due to better code being written or code being refactored before
being committed, thus having the CVRL shrink and the CLOC
grow only to maintain the 4% CVRL during the stability period.

Unlike in Skynet, the first release does not correspond to the
beginning of the gradual decrease, but happens during the large
growth period. As mentioned about the previous two projects,
the CVRL is still significantly smaller than the average CVRL,
where even at its peak Git’s CVRL is smaller. This may simply
be due to good developer habits, such as code being refactored
before being committed as we have observed about libcurl. As
stated before, we did not do a qualitative analysis on Git, but we
reserve the right to look into this in the future. Despite this, the
quantitative data still provides us with the ability to characterize
the development of Git with the help of the analyses on libcurl
and Skynet.

3.4 Implications
Based on the CVRL graphs of each open-source project, it is

clear that every project will most likely follow it’s own trends. In
spite of this, there is a very broad trend which is apparent from the

results for each project. All three projects have an initial period
of instability and fluctuations, followed by a period of stability.
This overall trend suggests a general workflow of development.
The beginning of development has a lot of fluctuations because
by nature not everything is very concrete and many large design
choices are most likely being made or still in discussion. As a re-
sult of this, CVRL will change as design choices are made since
code will need to be changed or refactored to accommodate for
new design choices. Once design has been established, the period
of stability begins where additions to the project can be refactored
easily beforehand to fit with certain design principles, reducing
the code clones added with each commit. While the period of sta-
bility may differ depending on what kind of development occurs
after the design principles are established, these periods are still
mostly stable. For example, libcurl is still developing on func-
tionality, which results in a gradual increase during the period of
stability. Meanwhile, Skynet has stopped major development of
functionality resulting in an almost completely stable CVRL.

Developers can analyze their own projects in similar fashion
in order to discover different ways to improve their develop-
ment process, such as how the time at which design choices were
made affected their software’s maintainability. This can be bro-
ken down to understanding their development phases and their
development habits. The style of development chosen could po-
tentially have a large effect on the trends in clone ratios, as an
iterative approach would may contain a lot of instability during
sprint periods. If using an iterative approach, this analysis could
help identify trends during these instability periods to give insight
on how the software is being maintained during such periods and
if more refactoring is necessary. On the other hand, if a lot of
functionality is developed at a certain stage of a project’s lifetime
and this project has been difficult to maintain, the clone ratios
can illustrate where this maintainability issue originated and en-
lighten the developer on what kind of functionality to develop
initially for future projects to prevent such issues.



The most important developer habit to consider when dis-
cussing maintainability is the frequency of refactoring. Looking
at the clone ratios over development history can show how of-
ten refactoring occurs and whether this frequency is enough to
keep the software maintained. Although ideally refactoring oc-
curs before commits and a CVRL graph similar to the stable part
of Git’s graph is produced, time constraints may not allow for
such intense refactoring practices, which is where understanding
how frequently refactoring should occur can be vital to a project’s
maintainability. Finally, to meet the needs of a developer’s sched-
ule, past clone metrics can be used to infer exactly what kind of
development habits are needed to make the process the most ef-
ficient. This can range from how quickly design choices need
to be made to finding the right balance between an iterative and
non-iterative approach when resources are variable during the de-
velopment time period.

3.5 Threats to Validity
Since our analysis relies heavily on the output of CCFinderX,

it’s limitations pose a threat to our data. CCFinderX’s inability
to detect Type-3 clones could possibly allow for a misinterpre-
tation of the CVRL graph to see more refactoring than actually
occurred. This would mostly affect our analysis of Git because
we did not have the time to qualitatively analyze it and could not
confirm notions on refactoring efforts. The other two projects
saw thorough analysis of pivotal commit points which may have
had this problem. Despite this, the data we gathered should still
hold weight because there were not many refactoring points to
consider in the first place, especially in Git. As mentioned ear-
lier carefully analyzing the SLOC changes could still help dis-
tinguish these occurrences. Since our data can still potentially
distinguish these occurrences and there are a means of confirm-
ing such suspicions, CCFinderX’s limitations on detecting Type-3
clones should not be an issue. It should be noted that conducting a
similar analysis again may benefit from the use of a clone detector
which can detect Type-3 clones to mitigate the issue completely.

Although mostly being composed of C/C++ files, each project
did contain files of significance to development from different
languages, which could mean that development with different
languages could be occurring simultaneously, making certain pe-
riods more stable because functionality is being added through
different undetected means. Since all projects had in fact a ma-
jority of C/C++ files, this issue should not be very prevalent as
the developers should be more likely to continue development in
the language used most frequently for ease of compatibility.

Due to the differing organization structures of each project, we
were not able to exclude libraries in our analysis in every project
analyzed. Depending on the project, this could drastically change
the clone ratios. Whether the libraries should or should not be
included are up for debate, as they still do serve a purpose in
development, but are not necessarily written by the developer
themselves. Along with this, our analysis only cover 3 different
projects which in hindsight seem to be very well developed based
on their relatively low clone ratios. In order to fully understand
the anomaly which is software development, an analysis of code
clone ratios over the version evolution of more projects is neces-

sary, in particular projects which have higher clone rates than our
three. This will help us distinguish different development patterns
as well as understand exactly how libraries affect clone ratios.

4. Conclusion
In this paper, we analyzed code clone ratios over the version

evolution of three very different open-source projects. Our analy-
sis primarily focused on the CVRL throughout version evolution
in conjunction with the SLOC and CLOC at each particular com-
mit point to understand different parts of the development pro-
cess. With this data it was possible to determine the role which
refactoring played during development, as well as make infer-
ences on possible methodologies of development. Each project
displayed very different short term trends, but overall all projects
showed a period of instability followed by a period of relative
stability which may be attributed to project design not being con-
crete during the initial phase of development. Our data gives us
an understanding of the development process that can also help
a developer improve their software during development through
similar analysis of their software. Looking at data from such an
analysis will highlight instances of large CVRL changes, which
can be further examined to understand what these changes meant
to the project’s development phases and how to make better de-
velopment decisions in the future.

References
[1] Dagenais, M., Merlo, E., Laguë, B. and Proulx, D.: Clones Occurence

in Large Object Oriented Software Packages, Proceedings of the 1998
Conference of the Centre for Advanced Studies on Collaborative Re-
search, CASCON ’98, IBM Press, pp. 10– (online), available from
〈http://dl.acm.org/citation.cfm?id=783160.783170〉 (1998).

[2] Kamiya, T.: CCFinderX, http://www.ccfinder.net/.
[3] Kawamitsu, N., Ishio, T., Kanda, T., Kula, R. G., Roover, C. D. and

Inoue, K.: Identifying Source Code Reuse across Repositories Using
LCS-Based Source Code Similarity, Source Code Analysis and Manip-
ulation (SCAM), 2014 IEEE 14th International Working Conference on,
pp. 305–314 (online), DOI: 10.1109/SCAM.2014.17 (2014).

[4] Koschke, R. and Bazrafshan, S.: Software-Clone Rates in Open-Source
Programs Written in C or C++, 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 3, pp. 1–7 (online), DOI: 10.1109/SANER.2016.28 (2016).

[5] Sheneamer, A. and Kalita, J.: Article: A Survey of Software Clone De-
tection Techniques, International Journal of Computer Applications,
Vol. 137, No. 10, pp. 1–21 (2016).

[6] Ueda, Y., Higo, Y., Kamiya, T., Kusumoto, S. and Inoue, K.: Gemini:
Code clone analysis tool, Proceedings 1st International Symposium on
Empirical Software Engineering, Vol. 2, pp. 31–32 (2002).

c© 1992 Information Processing Society of Japan


