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Abstract

Context : Software library reuse has significantly increased the productivity of
software developers, reduced time-to-market and improved software quality
and reusability. However, with the growing number of reusable software
libraries in code repositories, finding and adopting a relevant software library
becomes a fastidious and complex task for developers.

Objective: In this paper, we propose a novel approach called LibFinder
to prevent missed reuse opportunities during software maintenance and evo-
lution. The goal is to provide a decision support for developers to easily
find “useful” third-party libraries to the implementation of their software
systems.

Method : To this end, we used the non-dominated sorting genetic algo-
rithm (NSGA-II), a multi-objective search-based algorithm, to find a trade-
off between three objectives : 1) maximizing co-usage between a candidate
library and the actual libraries used by a given system, 2) maximizing the
semantic similarity between a candidate library and the source code of the
system, and 3) minimizing the number of recommended libraries.

Results : We evaluated our approach on 6,083 different libraries from
Maven Central super repository that were used by 32,760 client systems
obtained from Github super repository. Our results show that our approach
outperforms three other existing search techniques and a state-of-the art
approach, not based on heuristic search, and succeeds in recommending use-

∗Corresponding author: Ali Ouni, Email address: ali@ist.osaka-u.ac.jp

Preprint submitted to Information and Software Technology November 29, 2016



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ful libraries at an accuracy score of 92%, precision of 51% and recall of 68%,
while finding the best trade-off between the three considered objectives. Fur-
thermore, we evaluate the usefulness of our approach in practice through an
empirical study on two industrial Java systems with developers. Results show
that the top 10 recommended libraries was rated by the original developers
with an average of 3.25 out of 5.

Conclusion: This study suggests that (1) library usage history collected
from different client systems and (2) library semantics/content embodied in
library identifiers should be balanced together for an efficient library recom-
mendation technique.

Keywords: Search-based Software Engineering, Software Library, Software
Reuse, Multi-objective Optimization.

1. Introduction

Modern software systems build on a significant number of third-party
software libraries to deliver feature-rich and high-quality software. Several
studies have shown that software library reuse promotes efficient and effec-
tive software development. Consequently, library reuse leads to a significant
increase in the productivity, reduction in time-to-market, improvement in the
overall software quality, as well as reducing the inherent testing costs [1, 2].
Reusing mature software modules can benefit from the collective experience
of previous users of the module, as many bugs as well as deficiencies in the
documentation have already been discovered [3, 4].

Indeed, it is recognized that replacing legacy code with quality compo-
nents and libraries typically reduces the amount of source code that must
be maintained [5]. The benefits of replacing legacy code by external quality
software components was best articulated by Seacord et al. [5]: “replacing
functional components may also provide additional capabilities and improve
on such attributes of system quality as robustness or performance”. In fact,
replacing legacy code by third-party libraries has recently attracted much
attention in both academia and industry. One example is the refactoring
of “synchronized” blocks in Java by replacing them with the utility library
java.util.concurrent [6, 7].

Today, software systems utilize online code repositories such as Maven
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Central repository1 to access to a host of reusable Open Source Software
(OSS) libraries. Indeed, reusable software libraries are often reused multiple
times and are therefore proven solutions that can provide better quality char-
acteristics compared to newly developed code [8]. Recent empirical studies
have found that 93.3% of modern OSS projects use third-party libraries, with
an average of 28 libraries per project [9]. On the other hand, recent work
indicate that developers are still often reinvent the wheel and spend effort
and time, on re-implementing functionality, that could be saved by reusing
mature and well-tested libraries [10, 11].

We conjure two key reasons for this occurrence. First, due to the mag-
nitude of available libraries we consider that, most of the time, developers
are unaware or overwhelmed by related libraries. Online sources2 report that
available libraries are growing at an exponential rate. Hence, searching rele-
vant software libraries can be a fastidious task for software developers, which
would have an impact their productivity. Second, in addition to different
reasons of distrust [12], developers are wary of the inherent costs and risks of
library incompatibilities [13] associated with integrating new and unknown
libraries into their existing systems. With the motto ‘if not broke don’t fix ’,
systems as a consequence risk outdated libraries.

To help developers, most of existing library recommendation approaches
are based on commonly used together library methods, e.g., API usage pat-
terns, at the method level of granularity [14, 15, 16, 17, 18]. The most related
work of recommendation at the library level of granularity is by Thung et
al. [9]. The authors use collaborative filtering and association rule mining
on historic software artifacts to determine commonly used libraries without
considering the library content. However, a library usage history-based ap-
proach would not be able to recommend libraries to projects that only use
a small number of libraries or do not use any libraries at all. Thus, the
content of a library is an extremely important asset that should be more in-
formative and explicit for an effective library recommendation method. This
approach deal with library recommendation as a single objective problem
based on usage history. We believe that library recommendation is rather a
complex decision making problem where several considerations should be bal-
anced. These complex multi-objective decision problems with competing and

1http://search.maven.org
2http://www.modulecounts.com,mvnrepository.com
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conflicting constraints are well suited to Search Based Software Engineering
(SBSE) [19, 20].

To address the library recommendation problem, we introduce a novel ap-
proach called LibFinder based on the following two heuristics: a candidate
library L can be useful for a given system S if (i) L has been commonly used
with one or more libraries adopted by S, and (ii) L uses identical or similar
identifiers, i.e., belongs to the same application domain, as S. To this end,
we used the history of library usage as a ‘wisdom of the crowd’ and semantic
similarity embodied in library identifiers mined from large code repositories
from the internet. Our multi-objective formulation aims at finding optimal
solutions providing the best trade-off between the three following objectives:
1) maximize co-usage between a candidate library and the actual libraries
used by a given system, 2) maximize the semantic similarity between a candi-
date library’s code and the system’s code, and 3) minimize the total number
of recommended libraries. To this end, we used the popular multi-objective
search-based algorithm the non-dominated sorting genetic algorithm (NSGA-
II) [21] to find the best trade-off between the three objectives. The complex-
ity of the addressed library recommendation problem is combinatorial since
our formulation consists of assigning libraries to different code fragments and
the search is guided based on the above dependent evaluation functions.

To evaluate the efficiency of our approach, we used the history of 32,760
software projects mined from Github, that were clients for 6,083 Maven li-
braries. The obtained results show that our approach is efficient in recom-
mending relevant software libraries. We compare our approach with random
search and two other popular search-based algorithms as well as a state-of-
the-art approach. The statistical analysis shows better performance of our
approach with 92% of accuracy, 51% of precision and 68% of recall. Fur-
thermore, we evaluate the usefulness of our approach in practice through an
empirical study on two industrial Java systems with developers. Results show
that the top 10 recommended libraries was rated by the original developers
of both systems with an average of 3.25 out of 5.

The main contributions of this paper can be summarized as follows:

1. We propose a new search-based approach called LibFinder, to detect
and recommend third-party libraries that may be relevant to software
systems that have already been implemented, and that it is intended
for maintenance and evolution. To the best of our knowledge, this is
the first attempt to use SBSE to address the library recommendation
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problem.

2. We collect a rich dataset by (i) mining the usage history, and (ii) ex-
tracting the identifiers of a large set of popular libraries from Maven
Central Repository. The dataset is publicly available to encourage fu-
ture research in the field of library recommendation3.

3. We present an empirical evaluation of the performance of our approach
using a 10-fold cross validation, along with statistical analysis of the
obtained results. The obtained results show that our approach outper-
forms random search and two other search techniques at a confidence
level of 95% and outperforms a state-of-the-art library recommendation
approach [9] with an accuracy score of 92%, precision score of 51% and
recall score of 68% while finding the best trade-off between the consid-
ered objectives. We present the results of a second empirical study to
evaluate our approach in two industrial systems in real world setting
where the recommended libraries were rated 3.25 out of 5 on average.

The rest of the paper is organized as follows. Section 2 presents the
necessary background and a motivating example. Section 3 presents the basic
concepts of our approach. Section 4 introduces our search-based approach
for library recommendation LibFinder. Section 5 describes our empirical
study and reports the obtained results, while Section 6 presents the threats
to validity of the study. Section 7 presents the related work. Finally, Section
8 concludes and presents our future research directions.

2. Background and motivating example

In this section, we first describe the necessary background related to the
proposed approach. We then present an example to help readers to better
understand the motivation for library recommendation.

2.1. Search Based Software Engineering (SBSE) and Mining Software Repos-
itories (MSR)

Our approach is largely inspired by contributions in SBSE and MSR.
SBSE studies the application of meta-heuristic optimization techniques to
software engineering problems [22]. Once a software engineering task is

3http://sel.ist.osaka-u.ac.jp/~ali/libRecommendation/
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framed as a search problem, by formulating it in terms of solution representa-
tion, objective function, and solution change operators, there are a multitude
of search algorithms that can be applied to solve that problem. SBSE aims
at exploring large search spaces of possible solutions for a particular problem
in order to discover near optimal solutions.

On the other hand, the Mining Software Repositories (MSR) field an-
alyzes the rich data available in software repositories to uncover interest-
ing and actionable information about software systems and projects. MSR
transforms software repositories to gain empirical understanding of software
development. This can be leveraged by software practitioners to estimate
and manage various aspects of their projects [23, 24].

In recent years, both fields are widely applied to solve several software
maintenance and evolution problems including refactoring, testing, modular-
ization, planning, and so on [22, 23, 24]. However, despite the innate link
between both fields, SBSE and MSR communities are still not unified. In-
deed, library recommendation is a complex task, and one of the non-obvious
software engineering problems that can benefit from both SBSE and MSR
techniques.

2.2. Recommendation systems

Recommendation systems support users and developers of various com-
puter and software systems to overcome information overload, perform in-
formation discovery tasks and approximate computation, among others [25].
With the increasing size and complexity of software systems and software en-
gineering data, recommendation systems play an important role in providing
a decision support for software engineers. Indeed, recommendation systems
have recently become popular in software engineering and have attracted a
wide variety of application scenarios from business process modeling to source
code maintenance and manipulation [9, 26, 27]. Recommendation systems
use a number of different technologies [28, 29], and can be classified into two
broad classes.

• Content-based systems: These systems focus on properties of items.
Similarity of items is determined by measuring the similarity in their
properties and features.

• Collaborative-Filtering systems: These systems focus on the relation-
ship between users and items based on the usage history. Similarity of
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items is determined by the similarity of the utilization/ratings of those
items by the users who have used/rated both items.

Each class has its own advantages and disadvantages. For instance,
content-based approaches provide user independence, in contrast to collabo-
rative filtering that needs other users’ history to find the similarity between
them and then give the recommendations. Content-based methods only need
to analyze users and items features. Moreover, collaborative filtering meth-
ods provide recommendations for a user based on some unknown users who
might have the same taste, while content-based methods provide recommen-
dations based on what item’s features the users like. On the other hand,
unlike collaborative filtering, new items can be recommended by a content-
based method before being used by a substantial number of users. Thus,
both classes can be combined together in order to provide more effective
recommendation systems.

2.3. Multi-objective search-based algorithms

Multi-objective problems contain several objectives, and the goal is to
find solutions that are able to optimally satisfy each objective simultane-
ously. However, in real world problems, it is difficult (or even impossible) to
find a solution that is concurrently perfect for each objective for a problem
with two or more objectives due to conflicts that always exist among prob-
lem objectives. Thus, certain expenses and trade-offs always exist between
the multiple objectives of a problem [30]. Many real-world problems involve
simultaneous optimization of several incommensurable and often compet-
ing objectives. Often, there is no single optimal solution, but rather a set
of alternative solutions. One of the most popular multi-objective search-
based algorithms is the non-dominated sorting genetic algorithm (NSGA-II)
[21] that has shown high performance in solving several software engineering
problems [22].

A high-level view of NSGA-II is depicted in Algorithm 1. NSGA-II starts
by randomly creating an initial population P0 of individuals encoded using
a specific representation (line 1). Then, a child population Q0 is generated
from the population of parents P0 (line 2) using genetic operators (crossover
and mutation). Both populations are merged into an initial population R0

of size N (line 5). Fast-non-dominated-sort [21] is the technique used by
NSGA-II to classify individual solutions into different dominance levels (line
6). Indeed, the concept of non-dominance consists of comparing each solution
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x with every other solution in the population until it is dominated (or not)
by one of them. According to Pareto optimality: “A solution x1 is said to
dominate another solution x2, if x1 is no worse than x2 in all objectives and
x1 is strictly better than x2 in at least one objective”. Formally, if we consider
a set of objectives fi , i ∈ 1..n, to maximize, a solution x1 dominates x2 :

iff ∀i, fi(x2) 6 fi(x1) and ∃j | fj(x2) < fj(x1)

The whole population that contains N individuals (solutions) is sorted us-
ing the dominance principle into several fronts (line 6). Solutions on the first
Pareto-front F0 get assigned dominance level of 0 Then, after taking these
solutions out, fast-non-dominated-sort calculates the Pareto-front F1 of the
remaining population; solutions on this second front get assigned dominance
level of 1, and so on. The dominance level becomes the basis of selection of
individual solutions for the next generation. Fronts are added successively
until the parent population Pt+1 is filled with N solutions (line 8). When
NSGA-II has to cut off a front Fi and select a subset of individual solutions
with the same dominance level, it relies on the crowding distance [21] to make
the selection (line 9). This parameter is used to promote diversity within the
population. This front Fi to be split, is sorted in descending order (line 13),
and the first (N- |Pt+1|) elements of Fi are chosen (line 14). Then a new
population Qt+1 is created using selection, crossover and mutation (line 15).
This process will be repeated until reaching the last iteration according to
stop criteria (line 4).

For library recommendation, Pareto optimality means that we do not
recommended to the developer a single solution. Instead, we want to pro-
vide a decision support tool, by showing a variety of solutions, allowing the
developer to see a space of trade-offs between the considered objectives.

2.4. Motivating example

To illustrate the need for an approach to recommending useful libraries,
let us consider the example of JVacation4, an open-source standalone travel-
booking-client for travel-agencies. JVacation is implemented in java and its
current version adopts only one third party library, mysql-connector-java5.
It is clear that this software system does not effectively take advantage of

4http://sourceforge.net/projects/jvacation
5http://dev.mysql.com/downloads/connector/j/
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Algorithm 1 High level pseudo code for NSGA-II

1: Create an initial population P0

2: Create an offspring population Q0

3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |6 N do
9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i+ 1
12: end while
13: Sort(Fi,≺ n)
14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

reusing functionality provided by existing OSS libraries; instead, developers
are trying to reinvent the wheel.

Indeed, several library reuse opportunities are missed. For instance,
JVacation is implementing from scratch several functionalities such as en-
tering/editing dates and integrating a date edit panel manually into their
GUI as illustrated in the code fragment sketched in Figure 1.

While using the standard APIs java.util.Calendar with javax.swing.JPanel

provided by JDK is helpful, other existing libraries such as JCalendar6 can
be more relevant as it is more specialized for GUI-based software systems.
The library JCalender provides an IDateEditor for direct date editing, and
a button implementing JDateChooser for opening a JCalendar for graphi-
cally selecting date, as well as other calender services that can be useful for
this travel-booking software system.

One can notice that JCalendar share several identifiers/terms with JVacation

including Calendar, Date, Panel, Edit, Day, Month, Year, and so on. This
is an indication that they implement similar functionalities, and therefore

6http://toedter.com/jcalendar/
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public DateEdit(String l, Date date, ChangeListener listener) {

calendar.setTime(date);

setLayout(new GridLayout(2, 1, 0, -3)); setOpaque(false);

label = new JLabel(l);

JPanel datePanel = new JPanel();

datePanel.setLayout(new GridLayout(1, 3, 0, 0));

day = new JSpinner(new SpinnerNumberModel(calendar.get(Calendar.DAY_OF_MONTH),1,31,1));

month = new JSpinner(new SpinnerNumberModel(calendar.get(Calendar.MONTH)+1,1,12,1));

year = new JSpinner(new SpinnerNumberModel(calendar.get(Calendar.YEAR), 

calendar.get(Calendar.YEAR), calendar.get(Calendar.YEAR) + 10,1));

day.addChangeListener(listener);

month.addChangeListener(listener);

year.addChangeListener(listener);

datePanel.add(day); datePanel.add(month); datePanel.add(year);

add(label); add(datePanel);

}

Figure 1: Code snippets of date edit panel from JVacation.

JCalendar can be a candidate library that might be relevant for JVacation.
In such situations, recommending libraries based only on the library us-

age history, such as in [9], would not be enough. In fact, more informative
knowledge about the library content is highly required for effective recom-
mendations. On the other hand, using only library usage history might give
no chance for new emerging libraries to be recommended and adopted.

The above observations tell us that effective libraries recommendation
should make the content of library more explicit and informative as well as
libraries usage history.

3. Basic concepts and terminology

This section defines the basic concepts and terminology underlying the
proposed approach in this paper: library usage, co-usage, linked-usage, and
semantic similarity.

3.1. System and Library Dependencies

We are concerned with mining large code repositories to extract the ‘wis-
dom from the crowd ’. Specifically in regards to the dependence of third-party
libraries in software systems.

Suppose l ∈ R , where l is a library that belongs to a set of super
library repositories R. Examples of popular super repositories that host

10
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such libraries include Maven7 and Nuget8. In this study, we are particularly
interested in the frequency count of a set of different systems S that use a
library l. At this stage we do not consider the granularity of library versions.
We define the following terms:

• Usage. Usage refers to the frequency count of systems that have used
a library l. For a specific system Si, Si → l shows that the system Si

uses a library l. Formally, let p the total number of available systems,
for l ∈ R, we define:

usage(l) =

p∑

i=1

[Si → l] (1)

• Co-usage. The co-usage refers to the frequency count of a pair of
libraries used together in one system. Take l1 and l2 as two libraries,
then the co-usage is:

co-usage(l1, l2) =

p∑

i=1

[Si → l1 ∧ Si → l2] (2)

• Linked-Usage. The linked-usage metric is a simple average of co-
usage score in respect to the usage of different libraries l1 and l2. For-
mally:

linked-usage(l1, l2) =
1

2
×
(
co-usage(l1, l2)

usage(l1)
+

co-usage(l1, l2)

usage(l2)

)
(3)

The linked-usage is used as a normalized measure of the co-usage be-
tween two libraries.

3.2. Semantic Similarity

Inspired by information retrieval (IR) technique, our approach uses se-
mantic similarity as a primary mechanism of capturing similar concepts be-
tween a given software system’s code and a third-party library. Our assump-
tion is that the identifiers/vocabulary of a software element are borrowed

7http://search.maven.org
8https://www.nuget.org
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from its domain terminology, and thus identifiers can be used as an indicator
of source code relatedness. This implies that two software elements could
be in the same application domain, i.e., implement similar functionality, if
they use similar vocabulary [31]. One of the widely used techniques in IR to
calculate semantic similarity between documents is cosine similarity.

• Cosine similarity. To capture the semantic relatedness between two
bags of words A and B, the cosine similarity is defined as the cosine of
the angle between both vectors representing A and B in a vector space
using tf-idf (term frequency-inverse document frequency) model. We
interpret term sets as vectors in the n-dimensional vector space, such
that each dimension corresponds to the weight of the term (tf-idf) and
thus n is the overall number of terms. Formally, the semantic similarity
(Sim) between A and B corresponds to the cosine similarity (CS ) of

their two weighted vectors ~A and ~B given by equation 4

Sim(A,B) = CS( ~A, ~B) =
~A · ~B

‖ ~A‖ × ‖ ~B‖
=

∑N
i=1wai × wbi√∑N

i=1wa2i
×
√∑N

i=1w
2
bi

(4)

where wai and wbi are respectively the tf-idf weights of the terms ai
and bi in the bags of words A and B, respectively.

4. Search-based software library recommendation

This section describes our approach that uses SBSE techniques to find
and recommend useful third-party software libraries.

4.1. Framework of the approach

The proposed approach, LibFinder, is expected to be used with systems
that are already implemented. The goal is to keep the developers updated
with potentially useful libraries during the maintenance and evolution of
their systems, especially with the exponentially growing number of software
libraries in open-source repositories. LibFinder, is based on two main as-
sumptions for a library could be potentially useful for a given software project
(i) if it has been commonly used by the crowd with one or more libraries that
the project is currently using, and (ii) if it uses identical or similar identifiers,

12
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Figure 2: Our search-based library recommendation framework LibFinder.

i.e., belongs to the same application domain and thereby implements similar
functionalities.

In order to realize an approach that meets the requirements stated above,
we combine SBSE with MSR techniques. Instead of manually deriving a set
of useful library for a software system with a variety of application domains,
dedicated search algorithms are employed based on a given set of objectives
and constraints. In fact, SBSE techniques allow us to address multi-objective
problems as they aim to find the Pareto-optimal set of solutions, as opposed
to trying to obtain a single optimal solution. For the library recommendation
problem, this would mean that we are interested in a set of solutions where
all objectives are compensated and optimized instead of being combined into
a single metric, which may not achieve optimality [30].

The overall framework of LibFinder is depicted in Figure 2. Our frame-
work consists of two important steps: (1) data extraction and processing,
and (2) data exploration and search process.

4.1.1. Step1: Data extraction and processing

This step consists of collecting the necessary data for our recommendation
system including systems and library dependencies. We first collected a
large set of Java projects and software libraries from GitHub and Maven,
respectively (c.f., Section 5.2.1).

System and Library Dependency. To mine the current usage of these
libraries for our linked-usage metrics, our approach is based on pom.xml files

13
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<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>

<groupId>org.codegist</groupId>

<artifactId>codegist-parent</artifactId>

<version>1.0.2</version>

</parent>

<groupId>org.codegist.crest</groupId>

<artifactId>crest-parent</artifactId>

<version>2.0.0-RC2-SNAPSHOT</version>

<packaging>pom</packaging>

<name>CRest Global</name>

<url>http://crest.codegist.org/</url>

...

<dependencyManagement>

<dependencies>

<dependency>

<groupId>org.apache.httpcomponents</groupId>

<artifactId>httpclient</artifactId>

<version>4.0.1</version>

</dependency>

<dependency>

<groupId>com.sun.xml.bind</groupId>

<artifactId>jaxb-impl</artifactId>

<version>2.1</version>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.16</version>

</dependency>

<dependency>

...

</dependencies>

</project>

Figure 3: A POM snippet from the CRest system describing how Maven manage library
dependencies.

that define explicitly all the project dependencies with external libraries. To
this end, we developed a specific tool (PomWalker9) to automatically extract
these dependency information from all versions of POM files in a project
repository. Figure 3 shows an xml snippet of the POM file from the CRest10

system under the CodeGist project repository. The snippet shows the details
including the groupId, artefactId, version, etc. of the system as well as the
information about all external libraries the system depends on including the
library groupId, artefactId and version.

Identifier-based semantic similarity. To calculate the semantic similar-
ity, we extracted all identifiers for both libraries and systems. For library
identifier extraction, as we deal with jar files, i.e., binary code, we used the

9https://github.com/raux/PomWalker
10https://github.com/codegist/crest

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

asm11 library to compile and resolve fully qualified identifier names. A li-
brary is regarded as a set of package, class and method names defined in the
library. In the case of system identifier extraction, as we deal with systems
source code directly, we used the JavaParser12 library to facilitate identifiers
extraction for AST generation without compilation. Note that all identifiers
related to import and invoke external libraries were excluded during the sys-
tem’s identifiers extraction process.

After identifiers extraction, we performed a lexical analysis to pre-process
all the extracted identifiers. Our lexical analysis consists of the four following
steps:

1. Tokenization. All extracted identifiers are tokenized using a camel case
splitter where each identifier is broken down into tokens/terms based
on commonly used coding standards.

2. Filtering. We use a stop word list to cut-off and filter out all common
English words13 (e.g., and, the, to) and reserved words (e.g., static,
string, class) from the extracted tokens. Typically, these words are
irrelevant to the code concept. Such words carry a very low information
value and can affect the semantic similarity process negatively as they
have no direct relation to the application domain [32].

3. Lemmatization. This is a morphological process that transforms each
word to its basic form, also called lemma. This process aims at reducing
a word to its basic form in order to group together the different inflected
forms of a basic word so they can be analyzed as a same word. Hence,
different forms of words that may have similar meanings are grouped
together and handled as identical word. For example, the verb ‘to
walk’ may appear as ‘walk’, ‘walked’, ‘walks’, ‘walking’. The base
form, ‘walk’ is then the lemma of all these words. To do so, we use
Stanford’s CoreNLP14 to find the base forms of all extracted words.

4. Vocabulary expansion. To enhance the effectiveness of the semantic
similarity calculation, our approach utilizes WordNet15, a widely used
lexical database that groups words into sets of cognitive synonyms

11http://asm.ow2.org
12http://javaparser.github.io/javaparser/
13http://www.textfixer.com/resources/common-english-words.txt
14nlp.stanford.edu/software/corenlp.shtml
15wordnet.princeton.edu
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(synsets), each representing a distinct concept. We use WordNet to
enrich and add more informative vocabulary to the extracted bag of
words for each library and system. For instance, the word customer
might be used with different synonyms (e.g., client, purchaser, etc.),
but pertaining to a common domain concepts.

4.1.2. Step2: Data exploration and search process

The collected data from Maven and Github repositories along with all the
processed identifiers represents a very large dataset. To facilitate exploring
these data, we stored them within a single local data model, so that accessing
them becomes easier and faster. Figure 4 depicts the used data model. A
repository consists of a set of systems. Each system depends on set of libraries
that are defined through a pom file. Each system and each library in the
dataset has its vocabulary which consists of a set of terms. A term can have
a lemma and a set of synonyms. Formally, let S = {s1, s2, ...sn} denote the
set of n systems and L = {l1, l2, ...lm} denote the set of m libraries. Let
R ⊂ S × L denote relation that is defined in the pair of one system and one
library. The relation R assumes that si R lj is valid if the system si depends
on the library lj. The relation lj R si means the library lj is used by the
system si. The inverse of the relation R is denoted by R−1 and lj R−1 si is
the same as si R lj. Let S1 a subset of S let let R(S1) denote the set of those
libraries that are dependent on all systems in S1. Similarly, a subset R−1(L1)
denotes the set of systems that use all the libraries in L1.

To explore our data model, efficient search techniques are needed. In-
stead of manually searching for common clients of a particular library and
compare the used vocabulary in a particular scenario, dedicated search al-
gorithms can be employed to do so based on a given set of objectives and
constraints. One way to efficiently explore this huge search space (collected li-
braries, their client systems, and the extracted vocabulary, etc.), is to apply
dedicated SBSE techniques. Hence, SBSE has proven to be efficient tech-
nique in solving several software engineering problems where the number of
potential solutions is very large and even infinite [22].

The next section describes in more details how SBSE techniques are
adopted for this problem.

4.2. NSGA-II adaptation

Complex decision problems with multiple variables and large search spaces,
similarly to this, are well-matched to SBSE, which has proven good perfor-
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Figure 4: The data model of the collected dataset.

mance to provide decision support in several software engineering problems
[22]. Our approach adopts SBSE [19], as it provides best practice to for-
mulate software engineering problems in terms of (i) computational search
algorithm, (ii) solution representation, (iii) fitness function, (iv) change op-
erators, and so on. In the following we describe our SBSE formulation.

4.2.1. Search algorithm

As a search method, we employed a widely used multi-objective evolu-
tionary algorithm (MOEA) namely NSGA-II [21]. NSGA-II tries to ensure
diversity to avoid the situation where populations have been filled only with
dominating solutions (because of the elitism mechanism, i.e., best solutions
are preserved).

Identifying a Pareto front is useful as the software engineer can use the
frontier to make a well-informed decision that balances the trade-offs be-
tween the different objectives. In our context, one could select recommended
libraries achieving the highest semantic similarity, i.e., implementing similar
functionality, the highest linked-usage, the lowest recommendation set size,
or a compromise among these objectives. Using Pareto optimality, we can
plot the set of solutions found to be non-dominating. In the case where
there are three objectives, such as ours, this leads to a three dimensional
Pareto surface where the developer can go through and make his decision
(c.f., Section 5.4).

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2.2. Solution representation

A solution in general consists of a number of (decision) variables that are
optimized by the respective SBSE algorithm, a number of constraints that
need to be fulfilled in order for the solution to be valid, and a number of
objective values, one for each of the objective dimensions evaluated by the
defined fitness function.

Candidate solutions for our problem are encoded as chromosomes of
length n, where each gene represents a candidate third-party library. The
length n of a chromosome corresponds to the number of classes in the input
software system for which we want to recommend relevant libraries. Note
that each class could be assigned either a candidate library or a “NONE”
element, i.e., no library is recommended for this specific class. Figure 5
represents an example of a chromosome that consists of eight recommended
libraries. The figure can be interpreted as follows: the library httpclient

is recommended for the class C1, the library bcel is recommended for the
classes C2 and C3, log4j is recommended for the class C4, and guava is
recommended for the classes C5, C6, C7 and C8.

Additionally, a solution candidate may be subjected to a number of con-
straints in order for the solution to be valid. Depending on the algorithm,
invalid solutions may be filtered out completely or may receive a low ranking
in relation to the magnitude of the constraint violation. In our approach,
each candidate solution should fulfill the two following constraints:

1. A candidate library for a class should be different from the ones already
used by that class. To check this constraint, we are based on the
GroupId (i.e., domain name) , without considering the library version.
Note that an already used library by a system could be recommended
for new classes that are not using it.

2. A candidate solution should not contain similar libraries with different
GroupId, e.g., log4j and commons-logging. To check this constraint,
we are based on a library-to-library semantic similarity. Indeed, having
similar libraries in a recommendation set does not add value from the
developers’ perspective as the recommendations will seem redundant
and it takes longer for developers to explore [25]. Moreover, based
on recent studies [33], some libraries are potentially copies of other
libraries, which might lead to undesirable redundancies, security vul-
nerabilities, and license violations. This constraint assumes that two
libraries are similar if the the Jaccard similarity between their identifiers
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is equals or higher than 0.8. Thus, if a class uses log4j, this constraint
will prevent LibFinder from recommending commons-logging.

httpclient bcel bcel log4j guava guava guava guava

C1    C2   C3   C4     C5        C6     C7      C8

Figure 5: Chromosome representation for a candidate solution.

Ranking. The recommended libraries are then ranked according to their
frequency count in the chromosome. The more the number of classes for
which a library is recommended, the more the library is useful for the system.
For instance, for the chromosome depicted in Figure 5, libraries can be ranked
as follows: (1) guava, (2) bcel, (3) httpclient and log4j.

4.2.3. Objective functions

The quality of each candidate solution is defined by a fitness function
that evaluates multiple objective and constraint dimensions. Each objective
dimension refers to a specific value that should be either minimized or maxi-
mized for a solution to be considered “better” than another solution. In our
approach, we optimize the following three objectives:

1. Maximize Library linked-usage (LU): Let L a candidate solution,
i.e., chromosome, that consists of a set of libraries L = {l1, ..., ln} for a
given system S that currently uses a set of libraries LS = {ls1 , ..., lsm}.
The linked usage is calculated as follows:

LU(L) =
n∑

i=1

m∑

j=1

linked-usage(lsj, li)×
1

m
× 1

n
(5)

where the function linked-usage(lsj, li) is given by Equation 3.

2. Maximize Semantic similarity (SS): Let L a candidate solution
that consists of a set of libraries L = {l1, ..., ln} for a given system
S that contains n classes where S = {c1, ..., cn}. SS is calculated as
follows:

SS(L) =
n∑

i=1

Sim(ci, li)×
1

n
(6)

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where the function Sim(ci, li) calculates semantic similarity between a
class ci and a library li as described in Equation 4, of course after iden-
tifiers tokenization, filtering, lemmatization and vocabulary expansion
(c.f., Section 4.1.1).

3. Minimize the Recommendation Set Size (RSS): This objective
function aims at reducing the number of recommended libraries. Al-
though the number of libraries in our solution representation is propo-
sitional to the number of classes in a system, we aim at reducing the
number of different libraries in our recommendation set. This objec-
tive function is motivated by two reasons. First, we start from the
assumption that, typically, developers are unlikely to go through a
large recommendation set. Second, adopting a large set of libraries is
a costly and error-prone task as it requires an extensive effort from
the developer. Indeed, our goal is to get the most from a small set of
relevant library recommendations. Formally, let L a candidate solution
that consists of a set of libraries L = {l1, ..., ln}, then RSS is given by
the following function:

RSS(L) =
n∑

i=1

Unique(li) (7)

where the function Unique(li) returns 1 if the library li is distinct from
the previous i− 1 libraries in L, 0 otherwise.

The search process is then guided by these three objective functions where
LU and SS are to maximize, while RSS is to be minimized.

4.2.4. Genetic operators

Population-based search algorithms deploy crossover and mutation op-
erators to improve the fitness of the solutions in the population in each
iteration (the initial population is completely random). Change operators
such as crossover and mutation aim to drive the search towards near-optimal
solutions.

The crossover operator is responsible for creating new solutions based on
already existing ones, e.g., re-combining solutions into ones. In our adap-
tation, we use a single, random cut-point crossover to construct offspring
solutions. It starts by selecting and splitting at random two-parent solu-
tions. Then crossover creates two child solutions by putting, for the first
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child, the first part of the first parent with the second part of the second par-
ent, and vice versa for the second child. An example of crossover is depicted
in Figure 6.

Parent 1

Parent 2

Child 1

Child 2

Crossover

K=2

Xerces jetty-server junit lo4j bcel

httpclient xom bcel groovy guava

Xerces jetty-server bcel groovy guava

httpclient xom junit lo4j bcel

Cutting 

point

C1      C2       C3       C4      C5

C1    C2   C3       C4      C5 C1      C2       C3       C4     C5

C1    C2   C3   C4     C5

Figure 6: Crossover operator.

The mutation operator is used to introduce slight, random changes into
candidate solutions. This guides the algorithm into areas of the search space
that would not be reachable through recombination alone and avoids the
convergence of the population towards a few elite solutions. With library
recommendation, we use a mutation operator that picks at random one or
more genes (i.e., libraries) from their chromosome and replaces them by other
ones from our set of libraries extracted from Maven Central Repository (in-
cluding the “NONE” element) as shown is Figure 7.

Mutation

m=2

Xerces jetty-server junit lo4j bcel

C1    C2     C3   C4      C5

Xerces guava junit lo4j bcel

C1    C2     C3   C4      C5

Figure 7: Mutation operator.

5. Evaluation

This section first presents experiment design including: (1) research ques-
tions required to be addressed, (2) evaluation methods and metrics, and (3)
the datasets used in our experiments. Moreover, we also describe the in-
ferential statistical methods used for our experiments and the algorithms
parameters tuning and setting.

5.1. Research questions

We design our experiments to address five research questions:
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• RQ1 (Sanity check): How does the proposed approach performs,
in exploring the search space, compared to random search and other
existing search algorithms?

• RQ2 (Accuracy): How accurate is our proposed approach in recom-
mending libraries to client software systems?

• RQ3 (Impact of library usage history and semantic similarity):
What is the contribution of each of library usage history and semantic
similarity heuristics on the overall performance of LibFinder?

• RQ4 (State-of-the-art comparison): How does LibFinder compar-
ing to existing library recommendation approaches, LibRec [9]?

• RQ5 (Usefulness): Is LibFinder useful for software developers in a
real-world setting?

5.2. Experimental design

We evaluate our approach from two perspectives. First, we evaluate
our approach from SBSE perspective by following Harman’s guidelines [19].
Then, we evaluate our approach from recommendation system perspective
[25].

5.2.1. Dataset

To evaluate the feasibility of our approach on real world scenarios, we
carried out an empirical study on real-world Open Source Software (OSS)
projects. As we described in Section 4.1.1, our study is based on dataset
collected from two popular code repositories Github and Maven. Since github
is host to varying projects, to ensure validity of quality github projects, we
performed the following filtering on the dataset:

• Size. We only included java projects that had more than 1,000 commits.

• Forks. We only include projects that are unique and not forks of other
projects.

• Maven dependent project. Our projects only include projects that em-
ploy the maven build process (use pom.xml configuration file).
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Table 1: Github dataset used in the experiment

Dataset

Snapshot Date 15th January 2015
# of github repositories 4,305
# of github systems 32,760
# of unique dependent libraries 6,083

Each github repository may contain multiple projects, each which may
comprise of several systems. Each of these systems are dependent on a set
of maven libraries, that are defined in a pom.xml file within the project.

For client libraries, we selected the latest release of the library at that
period of time. In the beginning we started with 40,936 dependent libraries.
However, to remove noise, we filtered out libraries having less than 50 identi-
fiers. This removed specialized libraries that we assume will not be a useful
recommendation for other systems. Our dataset resulted in 6,083 differ-
ent maven libraries extracted from unique 32,760 client systems (from 4,305
repositories) from Github.

The dataset is a snapshot of the projects procured as of 15th January
2015. As depicted in Figure 6, our dataset is very diversified as it includes
a multitude of libraries and software systems from different application do-
mains and different sizes. We found in our dataset, that the average number
of used libraries per system is 10.56 while having an average number of 4,729
identifiers per library. Our dataset is available for future replications and to
encourage future research in the field of automated library recommendation
(http://sel.ist.osaka-u.ac.jp/~ali/libRecommendation/).

Table 2: Statistics of the maven library dataset size used in the experiment

min mean median max

# of dependent libraries per system 3.00 6.00 10.56 292.00
# of maven identifiers per library 51.0 731.0 4,729.0 74,080.0

5.2.2. Evaluation Method and Metrics

To evaluate our approach, we have performed a ten-fold cross validation
on our dataset. The basic idea is to randomly split the data into ten equal-
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sized parts. Each fold consists of a training data (nine parts) and a test data
(the remaining part), then train the recommendation system on the training
data and evaluate the recommendations using the test data. Note that only
client systems are split into ten parts of size 3,276 each.

To answer RQ1, we compare our NSGA-II formulation against random
search (RS) [34] from two perspectives (1) search algorithm performance, and
(2) recommendation system performance, i.e., the performance in solving
the problem in hands. The goal is to make sure that there is a need for
an intelligent method to explore our search space. Indeed, it is important to
compare our search technique to random search, that is if an intelligent search
method fails to outperform random search, then the proposed formulation
is not adequate [19]. In addition, to justify the adoption of NSGA-II, we
compared our approach against two other popular search algorithms namely
MOEA/D [35] and IBEA [36]. RQ1 is a sanity check and standard ’baseline’
question asked in any attempt at an SBSE formulation [19].

For the search algorithm performance, we provide a quantitative assess-
ment of the performance of each search algorithm in terms of search space
exploration. Unlike mono-objective search algorithms, multi-objective evo-
lutionary algorithms return as output a set of non-dominated (also called
Pareto optimal) solutions obtained so far during the search process. To
this end, we employ three common performance indicators for evaluating
multi-objective optimization algorithms, namely Hypervolume, Spread and
Generational Distance [37].

• Hypervolume (HV): calculates the proportion of the volume covered by
the non-dominated solution set returned by the algorithm. A higher HV
value means better performance, as it indicates solutions closer to the
optimal Pareto front. The most interesting features of this indicator
are its Pareto dominance compliance and its ability to capture both
convergence and diversity [30, 37].

• Spread (∆): measures the distribution of solutions into a given front.
The idea behind the spread indicator is to evaluate diversity among
non-dominated solutions. An ideal distribution has zero value for this
metric when the solutions are uniformly distributed. An algorithm
that achieves a smaller value for Spread can get a better diverse set of
non-dominated solutions [37].

• Generational Distance (GD): computes the average distance between
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the set of solutions, S, from the algorithm measured and the reference
front RF (also called reference set). The distance between S and RF
in an n objective space is computed as the average n-dimensional Eu-
clidean distance between each point in S and its nearest neighbouring
point in RF. GD is a value representing how “far” S is from RS (an error
measure) [38]. The reference front refers to the set of non-dominated
solutions found by the union of all algorithms compared [39]

For further details about the formulation of these performance indicators,
interested readers could refer to [30], [37] and [38]. Although Hypervolume,
Spread and Generational distance are widely used performance indicators
when comparing multi-objective algorithms, they ensure the effectiveness of
LibFinder as a recommendation system by providing a reasonably diversified
set of recommendations.

For the performance in solving the problen in hands, i.e., finding relevant
library recommendations, we used the top-k accuracy, precision and recall
on historical datasets. These metrics are commonly used for evaluating rec-
ommendation systems in software engineering [25, 40, 14]. Library ranking
is based on the frequency count a library in the recommendation list as de-
scribed in Section 4.2.2. We conduct a 10-fold cross validation by randomly
splitting our datasets D (c.f. Section 5.2.1) into 10 equal parts of size n each.
For each fold, we run our approach using a part Px ∈ D, while training from
the 9 other parts PT where PT = D \ {Px}. For each system Si ∈ Px, we
randomly drop half of the set of its currently used libraries L. Let Ld ⊂ L
the subset of dropped libraries where | Ld |= b |L|2 c. LibFinder will then try
to retrieve the dropped libraries in its recommendation set.

• Top-k accuracy of our recommendation for a part Px is calculated as
follows.

Top-k accuracy(Px) =

n−1∑
i=0

isFound(Si, l ∈ Ld)

| Px |
× 100% (8)

where the function isFound(Si, l ∈ Ld) returns 1 if at least one dropped
library l ∈ Ld is part of the returned recommendation set, and returns
0 otherwise. For instance, a top-10 accuracy value of 75% indicates
that for 75% of the systems, at least one correct dropped library was
returned in the top 10 results.
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The overall accuracy of our approach corresponds to the average accu-
racy of the 10 folds.

• Top-k precision is calculated from the number of libraries that are either
dropped or non-dropped contained in the recommendation set or not.
The ground truth is the set of dropped libraries. All possible scores can
be arranged in a contingency table (also called the confusion matrix )
(see Table 3). Once these scores are defined, precision can be calculated.
Precision corresponds to true positive accuracy and is calculated as the
ratio of recommended libraries that are dropped over the total number
of recommended libraries as described in Equation 9.

Table 3: Contingency table that accumulates the numbers of true/false positive/negative
recommendations.

Dropped Non-dropped Total

Recommended TP FP TP+FP

Non-recommended FN TN FN+TN

Total TP+FN FP+TN N

Top-k precision =
TP

TP + FP
(9)

• Top-k recall is calculated similarly to precision from the contingency
table (Table 3. Recall in corresponds to true positive rate and is calcu-
lated as the ratio of recommended libraries that are dropped over the
total number of dropped libraries as described in Equation 10.

Top-k recall =
TP

TP + FN
(10)

We thus used accuracy, precision and recall to compare the performance
of NSGA-II against IBEA, MOEA/D and RS with top-10 recommendations.

To answer RQ2, we evaluated LibFinder using our three evaluation mea-
sure defined above, accuracy, precision and recall. To better investigate the
behavior of LibFinder, we conduct the experiment with different k values 1,
2, 4, 6, 8 and 10.

To answer RQ3, we assess the effect of our two heuristics for a library to
be useful of a client application if (i) if it has been commonly used by the
crowd with one or more libraries that the project is currently using, and (ii)
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it uses similar identifiers, i.e., implements similar functionalities. We thus in-
vestigate the potential of combining both heuristics formulated respectively
through the objective functions libraries linked-usage and semantic similarity.
To this end, we assess the accuracy, precision and recall results while exclud-
ing 1) LU objective function, and 2) SS objective function from LibFinder. If
our approach is demonstrated to outperform each individual heuristic, then
we can claim that our formulation is appropriate. To this end, we used
NSGA-II with same adaptation described in Section 4.2 to investigate each
combination LU with RSS and SS with RSS objectives functions.

To answer RQ4, we compare our approach with a recent state-of-art
approach called LibRec [9]. LibRec is library recommendation approach that
combines association rule mining and collaborative filtering. The association
rule mining component recommends libraries based on library usage history.
The collaborative filtering component recommends libraries based on those
that are used by other similar projects. However, the library content is not
considered. To the best of our knowledge, this is the only existing approach
for library recommendation. To conduct a comparative study, we replicated
the LibRec on the same collected dataset (c.f., Section 5.2.1) using the same
metrics top-k accuracy, precision and recall.

To answer RQ5, we conducted a qualitative evaluation to better evaluate
LibFinder with developers in practice. Indeed, it is important to qualitatively
evaluate the relevance and usefulness of the recommended libraries from de-
veloper’s perspective. To this end, we performed a qualitative evaluation
with two large industrial projects provided by our industrial partner, the
Ford Motor Company as described in Table 4. The first project is a market-
ing return on investment tool, called MROI, used by the marketing department
of Ford to predict the sales of cars based on the demand, dealers’ information,
advertisements, etc. The tool can collect, analyze and synthesize a variety of
data types and sources related to customers and dealers. It was implemented
over a period of more than eight years and frequently changed to add and
remove new/redundant features. The second project is a Java-based soft-
ware system, namely JDI, that helps the Ford Motor Company to create
the best schedule of orders from the dealers based on thousands of business
constraints. This system is also used by Ford Motor Company to improve
their vehicles sales by selecting the right vehicle configuration to match the
expectations of their customers. JDI is highly structured and software de-
velopers have developed several versions of it at Ford over the past 10 years.
Due to the importance of the application and the high number of updates
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Table 4: Studied industrial systems.

System Release #Classes #Libraries KLOC

JDI-Ford v5.8 638 11 247
DROI-Ford v6.4 786 19 264

performed on both systems, it is critical to ensure that they reuse and adopt
high quality software libraries so to reduce the time required by developers
to introduce new features in the future and maintain high quality software.

Our experiment is based on a survey to collect the feedback of Ford de-
velopers about LibFinder ’s recommendations. One of the advantages of this
industrial validation is the participation of the original/current developers
of a system in the evaluation of the recommended libraries. The experiment
is conducted as follows. We executed LibFinder on each of JDI-Ford and
DROI-Ford using our library dataset (cf. Section 5.2.1) and selected the top
10 recommended libraries. Thereafter, the software engineers from Ford were
asked to manually evaluate each of the recommended libraries by answering
the following question:

Is the recommended library useful for the implementation of your
system?

For each library, the participants were asked to assign a score using a five-
point Likert scale [41] to express their level of agreement: 1: Not useful at all ;
2: some what useful ; 3: Useful ; and 4: Very useful ; and 5: Extremely useful.
Furthermore, the developers where asked to comment on their ratings by an
additional (optional) question “If so, are you willing to adopt this library in
your code?”

Subjects. Our study involved 8 industrial developers from the Ford
Motor Company. Prior the study, the participants were invited to fill a
pre-questionnaire about their experience, with Java programming, software
library reuse and their experience with the subject systems. The eight sub-
jects claimed they are familiar with Java programming, software maintenance
activities with an experience ranging from 8 to 17 years. All claimed to
frequently using third-party software libraries in their projects. The eight
participants were selected based on having similar development skills, their
motivations to participate in the survey and their availability. We organized
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the participants into two equal groups, each consists of four developers. The
first group contains developers who are part of the development team of
JDI, while the second group consists of developers who are current develop-
ers of the DROI system, and three of them are already part of the original
developers’ team. The first group evaluated the recommendations for JDI,
while the second group assessed the DROI system. The survey is completed
anonymously thus ensuring the participants confidentiality.

In a first meeting with the participants, we explained the overall purpose
of the study, without giving any details, concerning the libraries and the
method used for the recommendation. Following, we gave to each participant
a document that contained the following information (a) each recommended
libraries, (b) a brief description of the main features of the library and its
website url and Maven link, and (c) the list of classes for which the library is
recommended. In a second meeting with each of the developers, we collected
the documents and we analyzed the developers’ feedback.

5.2.3. Inferential Statistical Test Methods Used

Due to the stochastic nature of the used algorithms, they may produce
slightly different results when applied to the same problem instance over
different runs. To cope with this stochastic nature, the use of a rigorous
statistical testing is essential to provide support to the conclusions derived
from analyzing such data [42]. To this end, we used the Wilcoxon Signed
Rank test in a pairwise fashion [43] in order to detect significant performance
differences between the algorithms under comparison. The Wilcoxon test
does not require that the data sets follow a normal distribution since it
operates on values ranks instead of operating on the values themselves. We
set the confidence limit, α, at 0.05. In these settings, each experiment is
repeated 30 times, for each algorithm and for each fold. The obtained results
are subsequently statistically analyzed with the aim to compare our NSGA-II
approach to MOEA/D, IBEA, as well as random search (RS).

While Wilcoxon Signed Rank test allows verifying whether the results are
statistically different or not, it does not give any idea about the difference
magnitude. To this end, we assess the effect size based on Cohen’s d [43].
The effect size is considered: (1) small if 0.2 6 d < 0.5, (2) medium if
0.5 6 d < 0.8, or (3) high if d > 0.8.
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5.2.4. Parameter Tuning and Setting

An important aspect for metaheuristic search algorithms lies in the pa-
rameters tuning and selection, which is necessary to ensure not only fair
comparison, but also for potential replication. The initial population/solu-
tion of NSGA-II, MOEA/D, IBEA, and RS are completely random. The
stopping criterion is when the maximum number of fitness evaluations, set
to 350,000, is reached. After several trial runs of the simulation, the param-
eter values of the four algorithms are fixed to 100 solutions per population
and 3,500 iterations. There are no general rules to determine these parame-
ters, and thus, we set the combination of parameter values by trial-and-error
method, which is commonly used in the SBSE community [44, 45].

For the variation operators, we set crossover probability at 0.9 and a
mutation one at 0.4. We used a high mutation rate since we are employ-
ing an elitist schema with diverse library contents and co-usage. In fact, as
noted by Cohen [43], elitism may encourage premature convergence to occur,
e.g., reaching the last iteration with solutions having high LU and SS, but
belongs to only one application domain. For instance, returning all recom-
mended libraries related to xml parsers, which seems redundant and do not
add value from the users perspectives. In order to avoid such a problem, in
each generation, we emphasize the diversity of the population by means of
the high mutation rate.

Note that, while for RQ1, we compare our resulted Pareto solutions of
each algorithm, for RQs 2–5, we need only one solution for our automated
evaluation. As NSGA-II returns a set of optimal solutions instead of sin-
gle one, the developer can choose one of them according to his preference;
however at least for our evaluation as we seek a fair comparison, we need to
automatically pick up one single solution from the Pareto front and then com-
pare it with LibRec. To address this issue, we proposed a technique that aims
at automatically selecting the nearest solution to a ‘reference’ point from the
Pareto front that represents the desired values of the objective function. Ide-
ally, this reference point has the optimum values of each objective function,
i.e., a score of 1 for the linked-usage (LU), 1 for the semantic similarity (SS),
and 1 for the recommendation set size (RSS), after normalization within the
interval [0,1] (c.f. Figure 12). Our recommended solution, RecSol, corre-
sponds to the nearest point pi from the Pareto front PF to the ‘reference’
point in terms of Euclidean distance. RecSol is calculated as follows:

RecSol = min
∀pi∈PF

√
(1− LU(pi))2 + (1− SS(pi))2 + (1−RSS(pi))2 (11)

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3. Results

In this section, we present the results of our empirical evaluation with
respect to our research questions RQs 1–4 set out in Section 5.1.

Results for RQ1. For RQ1, we compared NSGA-II against RS, MOEA/D,
and IBEA, using the same objective functions, solution representation, and
change operators. We describe the obtained results in terms of Hypervolume
(HV), Spread (∆), Generational Distance (GD), Accuracy@10, Precision@10
and Recall@10.

Table 5: Statistical significance p-value (α = 0, 05) and effect size comparison results of
NSGA-II against MOEA/D, IBEA and RS for the hypervolume, spread and generational
distance, accuracy@10, precision@10 and recall@10.

Metric Stat. NSGA-II vs MOEA/D NSGA-II vs IBEA NSGA-II vs RS

Hypervolume
p-value 7.27e-10 8.071e-10 7.68e-10
effect size high high high

Spread
p-value 1.239e-06 4.933e-08 7.656e-10
effect size medium high high

Genergational
Distance

p-value 9.313e-10 9.313e-10 9.313e-10
effect size high high high

Accuracy@10
p-value 6.918e-06 5.145e-06 1.863e-09
effect size high high high

Precision@10
p-value 9.22e-06 2.716e-05 1.863e-09
effect size high high high

Recall@10
p-value 1.419e-06 1.563e-05 1.863e-09
effect size high high high

Figure 8 and Table 5 present the results of the significance and effect size
tests through 30 independent runs (3 runs for each fold) of each search algo-
rithm. The higher the HV, accuracy@10, precision@10, recall@10, and the
lower the ∆ and GD values, the more likely the recommendation results are
better. We observe that RS results are generally poor, whereas MOEA/D,
IBEA and NSGA-II obtain higher results. This provides evidence that there
is a need for an intelligent search technique to provide better library recom-
mendation results. Furthermore, for all six quality indicators (HV, ∆, GD,
accuracy, precision and recall), the Wilcoxon test results showed that NSGA-
II achieves significantly better performance than MOEA/D, IBEA and RS
with high effect size. This provides evidence that NSGA-II is effective in
finding a well-converged and diversified set of Pareto-optimal solutions, i.e.,
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Figure 8: Boxplots for the Hypervolume, Spread, Generational distance, accuracy@10,
precision@10 and recall@10 performance indicators for NSGA-II, IBEA, MOEA/D and
RS.

recommended libraries. For the ∆, it is also desired that a multi-objective
evolutionary algorithm maintains a good spread of returned solutions. This
gives more options to the developer on which library can be useful for his
code. The Wilcoxon test results showed that for 17 out of 18 experiments
(6 performance indicators, and 3 pairs of algorithms), the quality indicators
achieved by NSGA-II were significantly better than those of random search
with a Cohen effect size “high”. Only for the Spread indicator, a Cohen
effect size of “meduim” is achieved against MOEA/D.
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As part of our sanity check, we also studied the extent to which the
linked usage (LU) and semantic similarity objective (SS) functions are con-
flicting. Indeed, if the two objectives are not conflicting, i.e., correlated, then
the problem should be formulated as a single objective optimization prob-
lem. Figure 9 presents the results of studying the conflict relation between
our LU and SS objectives. To this end, we execute a mono-objective GA
maximizing one of the objectives and we study the behavior of the second
objective by recording its values over 100 independent runs. From Figure 9a,
we observe that the maximization of LU objective function does not cause
any maximization or minimization of the SS objective function as their cor-
relation is less than -0.21. Similar phenomenon could be seen in Figure 9b
where a genetic algorithm was used to maximize the SS objective function
while recording the behavior of the LU values. The observed correlation was
less than 0.18. Based on this finding, we conjuncture that both LU and SS
objectives are conflicting.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Semantic Similarity (SS)

L
in

k
e
d
−

u
s
a
g
e
 (

L
U

)

(a) GA results for maximizing the LU objec-
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(b) GA results for maximizing the SS objec-

tive function while recording the LU values.

Figure 9: Relation study between the Linked Usage (LU) and Semantic Similarity (SS)
objective functions.

To sum up, we conclude that there is a compelling evidence that our
multi-objective formulation using NSGA-II is adequate (this answers RQ1).

Results for RQ2. Table 6 reports the top-1, top-2, top-4, top-6, top-8
and top-10 accuracy, recall and precision results for each of the ten folds
obtained over 30 runs of LibFinder using NSGA-II.

For the top-k accuracy, we observe that LibFinder achieves the top-10
accuracy with 91.8% on average over the ten folds. The lowest top-10 accu-
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racy score is 91.26% while the best one is 92.45%. This provides evidence
that the accuracy of our approach is relatively stable over the ten folds for
30 independent runs. The average lowest accuracy score was in the top-1
with a score of 63.34%. This indicates that the chance to have at least one
of the dropped libraries in the first rank is 0.63. Furthermore, we found in
most cases where our approach fails in finding at least one of the dropped
libraries that it relies on libraries from the same category, i.e., application
domain. For instance, instead of recommending/retrieving the dropped li-
brary commons-logging, most of the cases our recommendation set includes
the competitor logging library log4j. This may due to the popularity of
log4j manifested by its growing usage score commons-logging and log4j

have respectively 3,587 and 6,254 usage scores in Maven Central Repository,
as of November 24th, 2015. in Maven while having similar identifiers.

For precision and recall, LibFinder achieves also good results. LibFinder
achieves the top-10 precision of 51.06% on average over the ten folds. The
highest precision score was achieved by the top-1 with a precision of 61.34%.
From the recall side, LibFinder achieves better results with a top-10 recall
of 68,13% and a top-1 recall of 47.94%. However, still precision and recall
scores relatively lower than the accuracy. In fact, an important point to
highlight is that these two metrics implies that recommended libraries that
the system has not used (i.e., not in the dropped set) are uninteresting or
useless. This assumption is not always appropriate in practice. That is, a
system might not use a specific library for many reasons mainly when (i)
the system’s developers are not aware by such a library especially with the
exponentially growing number of available libraries in code repositories, or
(ii) due to some resource constraints, e.g., budget limitations or deadline
pressure.

To conclude, the obtained accuracy, precision and recall results indicate
that leveraging a history of library usage from large source code repositories,
with semantic similarity embodied in library identifiers can accurately rec-
ommend useful software libraries for client software systems.

Results for RQ3. Table 7 reports the median accuracy, precision and
recall values of each of linked-usage and semantic similarity heuristics with
top-10 recommendations. The aim is to investigate the effectiveness of our
two heuristics that are formulated through LU and SS objective functions
and how well they work separately. As shown in the table, the linked-usage
reaches an accuracy score of 63.1%, whereas the semantic similarity reaches
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Table 6: Obtained top-k accuracy, Precision and Recall median results for of the 10-fold
cross-validation obtained through 30 independent runs of NSGA-II.

Accuracy@k Precision@k Recall@k
Fold

top-1 top-2 top-4 top-6 top-8 top-10 top-1 top-2 top-4 top-6 top-8 top-10 top-1 top-2 top-4 top-6 top-8 top-10

1 62,52 69,69 81,17 87,56 90,16 92,45 62,52 58,23 58,16 56,33 53,63 51,87 48,16 57,47 56,02 61,58 63,01 67,16

2 63,19 70,98 82,36 86,15 89,16 91,45 59,19 58,26 56,29 55,03 53,18 50,98 49,03 56,87 55,16 60,33 62,47 69,56

3 62,15 69,02 80,21 87,24 90,45 91,46 62,15 60,48 58,36 56,17 52,33 49,87 48,44 55,13 56,31 61,04 63,09 68,36

4 60,43 70,78 81,06 88,62 91,03 92,13 60,43 59,15 57,33 56,04 53,1 51,22 48,17 54,18 56,09 60,63 62,18 67,12

5 63,25 70,21 81,71 88,36 90,43 92,36 59,25 58,03 58,04 56,14 53,36 50,13 49,11 53,24 55,89 59,49 61,34 68,03

6 65,47 69,8 81,53 87,56 90,56 91,26 62,47 61,62 57,98 55,32 53,24 51,86 47,64 54,48 56,55 60,44 62,07 68,17

7 63,41 68,48 82,09 87,28 89,98 91,36 60,41 59,22 58,68 56,87 52,11 49,89 48,21 51,17 55,92 61,3 62,29 68,43

8 64,87 70,47 81,39 87,14 90,26 91,89 62,87 60,39 59,74 57,33 53,49 51,76 47,29 51,89 56,67 60,39 64,33 67,89

9 62,45 70,33 81,69 88,47 91,03 92,02 62,45 59,11 57,71 56,09 52,78 51,44 46,33 52,03 56,58 59,11 63,08 68,11

10 65,66 69,15 80,36 88,36 91,27 92,16 61,66 59,17 58,6 56,54 52,07 51,6 47,04 54,86 55,77 60,03 61,37 68,51

Average 63,34 69,89 81,35 87,67 90,43 91,85 61,34 59,36 58,08 56,186 52,929 51,06 47,94 54,13 56,09 60,43 62,52 68,13

61.26%. However, using each heuristic separately is still far from the accu-
racy score of LibFinder (92%). Similarly, our approach reaches a precision
score of 51% while having only 38% and 41% for each individual heuristic,
linked usage and semantic similarity respectively. Recall is also following the
same trend as the accuracy by a score of 68% for LibFinder while only 34%
and 37% are achieved by linked usage and semantic similarity respectively.
This finding suggests that both linked-usage and context similarity should
be balanced together for an effective library recommendation.

Table 7: Effect of each individual heuristic on the accuracy, precision and recall results
with top-10 rank.

Approach Accuracy@10 Precision@10 Recall@10

Linked-usage 63% 38% 34%

Semantic Similarity 61% 41% 37%

LibFinder 92% 51% 68%

Results for RQ4. Table 8 presents the results of top-1, top-2, top-4, top-8
and top-10 accuracy, precision and recall of our approach, LibFinder, and a
state-of-the-art approach LibRec,Thung2013librec. LibFinder achieves much
better results for all 18 experiments (3 metrics and 6 top-k values). For
instance, LibFinder achieves the top-10 with an accuracy of 92% and the
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top-1 with an accuracy of 63% while LibRec achieves only 73% and 12% for
top-10 and top-1 respectively. Similarly for the precision and recall scores,
LinFinder achieves the top-10 with 51% of precision and 68% of recall while
only 23% of precision and 46% of recall was achieved by LibRec. This in-
dicates that leveraging only a history of library usage is not enough for
recommending relevant libraries. Thus a a content-based recommendation
should be balanced with usage history for better recommendations. In fact,
a history-based approach (e.g., collaborative filtering method and associa-
tion rule mining methods) provides recommendations for a user based on
some unknown users who might have the same taste, while a content-based
method provide recommendations based on what item’s features the users
need. Furthermore, unlike pure history-based approaches such as LibRec,
new libraries can be recommended by a content-based method before being
used by a substantial number of software projects. Indeed, LibRef is not able
to recommend libraries to projects that only use a small number of libraries
or do not use any libraries at all. Thus, we believe that finding a trade-off
between usage history and content-based method, such as LibFinder is a
suitable way in formulation library recommendation problem.

Table 8: Comparison results of our approach LibFinder against LibRec in terms of accu-
racy, precision and recall scores.

rank@k Approach accuracy@k precision@k recall@k

LibFinder 63 61 48

LibRec 12 41 28

LibFinder 70 59 54

LibRec 24 36 31

LibFinder 81 58 56

LibRec 51 31 39

LibFinder 88 56 60

LibRec 58 29 40

LibFinder 90 53 63

LibRec 64 27 42

LibFinder 92 51 68

LibRec 73 23 46

top-1

top-2

top-4

top-6

top-8

top-10

Results for RQ5. Figure 10 reports the developer’s rating results of the
recommended libraries for the system JDI-Ford. For the ten recommended
libraries, the developers ratings were ranging from 2.25 to 4.25. The highly
rated library was Quartz, a richly-featured, enterprise-category library, that
solves complex and small schedules, and get an average rating of 4.25 from the
4 developers. Features in Quartz include JTA clustering and transaction, real
time management and monitoring. The four developers claimed that Quartz
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is a relevant library that could be useful for their current implementation,
especially for creating and scheduling the orders with their dealers. On the
other hand, while opencsv, a simple library for reading and writing CSV, was
ranked lowest (an average of 2.25) as it was only recommended for few classes
that are not related to core functionalities in JDI-Ford. Indeed, developers
found it not as useful comparing to their current in-house code. Another
recommended library was Joda-time which also get a high rating of 3.75 as
it provides a quality replacement for the Java date and time classes with
more useful and efficient features, relieving the developers from the burden
of implementing date related features from scratch or based on the basic
features provided by Java Development Kit (JDK).

Similarly, most recommended libraries for DROI-Ford get high ratings as
sketched in Figure 11. The library mahout-math, a high performance sci-
entific and technical computing data structures and methods library, gets
the highest rating reaching 3.75 on average by the four developers. Same
rating was obtained for Guava, a suite of core and expanded libraries that
include utility classes, google’s collections, io classes, and much much more
useful utilities, get a high ranking of 3.75. However, slf4j, which a simple
logging facade library which serves as a simple facade or abstraction for var-
ious logging frameworks, get the lowest score of 1.5 for this system. Overall,
the eight developers who participated in the survey was generally satisfied
with most recommended libraries based on their average score and their feed-
back. In both systems, we have two cases, opencsv for JDI-Ford and slf4j
for DROI-Ford for which some of the developers was not satisfied and rated
them by a score 1 (Not useful at all).

To better investigate the usefulness of the recommended libraries, we
asked the eight developers if they are willing to consider adopting the libraries
that they judged as ‘useful’ in the next releases of their system. Most of
the developers (5 out of 8) expressed a high interest to adopt at least 4
libraries including mahout-math, quartz, guava, and pdfbox, for the coming
releases. Their main reservations about such adoption are 1) the quality of
the system after using the library and how to make sure that such a library
will improve their code quality and 2) the time required to understand the
entire library. Indeed, while Joda-time was highly rated, the developers did
not express a high interest to adopt it for the short term as it might require
additional efforts to incorporate several changes with several classes in the
code. However, one of the developers claimed that they can keep their current
code, but use Joda-time for the new features and changes in the next releases.
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Figure 10: Average developers ratings for the 10 recommended libraries by LibFinder for
the system JDI-Ford.
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Figure 11: Average developers ratings for the 10 recommended libraries by LibFinder for
the system DROI-Ford.
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Most of developers from both JDI-Ford and DROI-Ford claimed that this is
a valuable reuse opportunity that they missed in the initial design of their
system.

Another situation highlighted in some comments was that most classes
for which Joda-time and opencsv was recommended have very low change fre-
quency during the last two years. Thus, developers would adopt libraries for
more frequently changed and active classes in the project. This gives us in-
teresting insights to incorporate the change frequency of classes in LibFinder
to improve its recommendation usefulness in practice.

5.4. Discussions

In this section, we further discuss related aspects to our approach includ-
ing library selection in terms of trade-off, .

5.4.1. Library selection

To help developers on selecting a library from the set of recommendations,
LibFinder provides a user friendly manner to select recommended libraries
through 3D visualizations of the Pareto front, as shown in Figure 12. This
visualization shows the trade offs between the three objectives linked-usage,
semantic similarity, and the recommendation set size. Each point in the
Pareto surface in figure 12b represents a recommended solution, each solution
comprises a set of libraries that will be sorted according to the frequency of
each library in the solution (c.f., Section 4.2.2).

The distributions of these recommended solutions on the Pareto from
gives more insights. Hence, if a developer is interested in new emerging li-
braries that implement similar functionality to his system, then he should
focus his attention on the back corner of the Pareto surface, i.e., high se-
mantic similarity score. For the developer who seeks to reduce the library
integration costs and incompatibility risks, he needs rather to focus on the
top corner of the Pareto surface as it recommends libraries that are com-
monly used with his current system’s libraries, i.e., high linked-usage score.
If the developer seeks to check a small set of recommended libraries, the he
should focus on the left side of the Pareto surface, or the right side for a
variety of recommended libraries, i.e., high RSS score, otherwise. If the de-
veloper seeks a kind of trade-off between all objectives, he should then focus
his attention on the middle part of the Pareto surface. Hence, as the three
objectives are conflicting, maximizing semantic similarity could be possible
but with cost of scarifying by some linked-usage.
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Figure 12: Example of Pareto optimal solutions obtained by LibFinder for JVacation.

For instance, following our motivating example JVacation which is using
only the mysql-connector-java library, the recommended solutions com-
prises {JCalendar, glazedlists, mail, cxf-api, jetty-http, berkeleydb,

javaosc-core, webapp-runner}. Most of them are likely to be useful for
JVacation. For instance, JCalendar is likely to be good candidate as de-
scribed in Section 2.4. Glazedlists is an event-driven lists for dynamically
filtered and sorted tables. It is typically co-used with mysql-connector-java

to process the results of SQL queries. In addition, mail can be useful for
JVacation to directly contact customers, send invoices and so on. Berkeley
is a high performance, transactional storage engine for Java applications.
This makes sense as JVacation is a database related software system. Other
recommendations such as cxf-api, jetty-http and webapp-runner are
more related to web servers, building and developing services.

5.4.2. Developer insights on third-party library recommendation

The decision to keep in house code or reuse third-party libraries could be
a delicate decision to be made by the developer in her individual context.
It is important to get some insights from a developer’s perspective on the
situations where it is useful to adopt a recommended third-party library. To
this end, we conducted a think-aloud survey with 17 developers from Ford
including the 8 developers who participated in our experiment conducted in
RQ5. The participants were first asked to answer the following question:

When do you think it is appropriate to apply a recommended third-
party library to your code?
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Figure 13: Answers to the question: when do you think it is appropriate to apply a rec-
ommended third-party library to your code?

Figure 13 shows the different answers collected from the survey. A total
of 5 out of 17 developers (29%) answered that they would be interested
in adopting a recommended library as replacement of buggy code. Four
developers answered that if the overall quality of the system will be improved
when the recommended library is adopted, then it is worth. Similarly, a total
of four developers answered that they are willing to adopt a recommended
library if it provides additional features that are useful for the implementation
of their system, especially if their current solution is not extendible enough.
Furthermore, three out of the 17 developers answered that they would adopt
a library if it will support software migration to provide portable and reusable
code. Some other answers were also related to the library popularity and its
API stability/quality. Overall, all developers expressed a hight interest to
adopt third-party libraries in their code for different motivations and reasons
as described in Figure 13. This justifies the exponentially increasing trend
in adopting third-party software libraries from open source repositories.

These results have actionable insights. For example, it would be interest-
ing to consider a profile-based library recommendation system to focus the
recommendations on buggy classes, or smelly/low quality classes, or on some
packages related to particular features that the developer is interested in.

Moreover, as a second part of the survey, we wanted to assess how re-
alistic is our problem formulation for the library recommendation, i.e., do
the three defined objective functions match the developers high-level expec-
tations. Our second part of the survey consists of three questions about the
meaningfulness of our objective functions. It consists of the three following
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questions:

• Q1. When searching for a relevant library, do you prefer to select/find
libraries that are related/commonly used with your current adopted
libraries?

• Q2. When searching for a relevant library, do you prefer to select/find
libraries that belong to the same application domain as your imple-
mented features, e.g., have textual similarity?

• Q3. When searching for a relevant library, do you look for a mini-
mum number of libraries to adapt such as libraries relevant for multiple
tasks/features to integrate?

Participants were asked to answer each of the three questions by following
a five-point Likert scale to express their level of agreement: 1: Strongly
disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Fully agree.

Figure 14 reports the obtained results from the survey. On average, a
score of 4.17, 4.52, and 4.11 were obtained for Q1, Q2 and Q3, respectively.
As shown in the figure, the ratings distribution is within the range 3 to 5
with a median of 4 for Q1 and Q3, and 5 for Q3. Indeed, since library
recommendation is a subjective decision process, it is normal that not all the
developers have the same opinion. Thus, it is important to study the level of
agreement between developers. To address this issue, we evaluated the level
of agreement using Fleiss’s Kappa coefficient κ [46], which measures to what
extent the developers agree when answering to the three questions about
each of our defined objectives. The Kappa coefficient assessments is 0.63,
which is characterized as “substantial agreement” by Landis and Koch [47].
This obtained score makes us more confident that our defined objectives for
library recommendation makes sense from software developer’s perspective.
However, this finding does not necessary mean that these three objectives are
the only objectives that should be considered for library recommendation.
Indeed, some of the developers suggested to involve library popularity and
quality in the recommendation process. As part of our future work, we plan
to personalize LibFinder with the defined objectives based on the developer’s
profile/preferences and make it a more interactive process to learn from the
developer decision in which situations he accept or reject a recommended
library.
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Figure 14: Developers answers for the three questions Q1, Q2 and Q3.

It is worth notice that LibFinder allows the developers to give more im-
portance to one objective over the other objectives using the pareto visualiza-
tion as described in Section 5.4.1. This visualization supports to the develop-
ers to select their libraries based on their preferences between all objectives.
Furthermore, LibFinder allows to easily remove or add new objectives to
guide the search space based on the developer requirements/preferences.

5.4.3. LibFinder scalability

It is important to assess the scalability of our approach, as scalability is
widely considered as one of the key issues for software engineering research
and development [48]. Indeed, there is a pressing need for scalable solutions
to Software Engineering problems. To evaluate the scalability of the perfor-
mance of our approach for systems of increasing size, we report the results
of LibFinder per system size in terms of number of classes. The scalability
assessment of LibFinder is only concerned with the exploration and search
process (Step 1 in Figure 2 is not taken into account for the scalability). The
results of the experiment are depicted in Figure 15. We noticed that when
the size of the system increase, the CPU time is still relatively stable as it
ranges from 24 seconds to 35 seconds for systems with less than 200 classes
up to systems with more than 2600 classes, receptively. We also noticed that
accuracy, precision and recall are not significantly affected by the systems’
size as it tends to be stable with a standard deviation score of 1.15, 073 and
1.23 respectively.

In fact, we expected that the CPU time will slightly increase when the
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system size increase as the solution size depends on the number of classes in
the system (c.f., Section 4.2.2. To further investigate this behavior we use the
JVM Monitor16 profiler for Java for tracking which operations are the most
expensive. The results obtained from this profiling show that over 46% of the
execution time is spent on finding new candidate libraries by evaluating our
two constraints: (i) recommended libraries should be different than the ones
used by the system, and (ii) recommended libraries should not be similar as
described in Section 4.2.2. These operations are executed when constructing
initial solutions or during crossover and mutation operators. Consequently,
execution time is slightly increased with larger solutions that require in turn
more constraints to be checked. Overall, we can say that LibFinder is scalable
with respect to system size since it provides high precision and recall values,
and reasonable execution time.
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Figure 15: Scalability of LibFinder with respect to the systems size.

Another important point to highlight is about to stability of LibFinder
over different folds. Stable results over different folds reflect the suitability of
both the data and the exploration technique based on NSGA-II. To this end,
we studied the standard deviation of the obtained accuracy, precision and
recall for the different top-k results. The result for this experiment is shown

16http://jvmmonitor.org/, version 3.8.1
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in Table 9. We notice that the highest standard deviation of the accuracy
score was 1.53 with the accuracy@1, while the lowest score was 0.41 with the
accuracy@10. Similarly precision and recall scores does not vary significantly
as their standard deviation was lower than 1.32 and 1.98 respectively. This
indicates that LibFinder is relatively stable over different systems as they
was randomly split over the different folds.

Table 9: Standard deviation of the obtained accuracy@k, precision@k and recall@k results
over the 10 folds.

Top-k
Standard deviation

accuracy@k precision@k recall@k

Top-1 1.537 1.329 0.83
Top-2 0.771 1.088 1.982
Top-4 0.651 0.859 0.433
Top-6 0.738 0.635 0.727
Top-8 0.579 0.545 0.851
Top-10 0.415 0.768 0.660

6. Threats to validity

Several factors can bias the validity of empirical studies. In this sub-
section, we elaborate on several factors that may threat the validity of our
results.

Internal threats can be related to the stochastic nature of search al-
gorithms algorithms employed[42]. To mitigate this, we conducted non-
parametric statistical testing. We used the Wilcoxon Signed Rank test [43]
over 30 independent runs with a 95% (α < 0.05) confidence level to test if sig-
nificant differences exist between the measurements for different treatments
along with Cohen effect size for measuring the difference magnitude. This
test makes no assumption on the data distribution and is suitable for ordinal
data. We are, thus, confident that the observed statistical relationships are
significant. Other threats to internal validity refers to experimenter bias.
Most of our experimental process is automated and randomized. Thus we
believe there is little experimenter bias.
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Construct threats to validity may arise from our evaluation metrics accu-
racy@k, precision@k and and recall@k to measure the effectiveness of our ap-
proach. Although these metrics are well known measure that are widely used
in evaluating recommendation systems is software engineering [25, 14, 49],
we believe that there is a little bias towards using these measures. That
is, a common assumption when evaluating recommendation systems using
such metrics is that items that the user has not selected are uninteresting,
or useless, to other users [25]. Hence, in the library recommendation prob-
lem, a system might not adopt a specific library for many reasons mainly
if the system’s developers are not aware by such a library especially with
the exponentially growing number of available libraries in code repositories,
or due to other constraints such as budget limitations or deadline pressure,
etc. We are thus planning to further evaluate LibFinder with developers in
an industrial setting. Another potential threat to validity can be related to
extracted identifiers. In fact, identifiers in a system may be influenced by
class names and method names from its dependent library. Usually library
import statements involve identifiers (package/class names) from the original
library, and similarly for method calls which involve method names from the
library. The presence of library identifiers in the projects code might bias
our semantic similarity measure to retrieve the removed library. In other
words, the library dependency is removed, but some of the library identifiers
are still in the projects code. To mitigate this potential threat to validity, we
excluded all identifiers related to library import and invoke from the projects
code.

Moreover, another possible threat could be related to the dependencies
extraction from pom files. Having a dependency declared in the pom.xml
does not necessary grantee that the project is actually using it (i.e., invoking
it). To address this issue, we compiled and inspected a random set of over 300
projects using jcabi-aether17 library and JavaCompiler (ver.1.6) eclipse
compiler18 to automatically log all loaded classes. In our effort, less than
4% of library dependencies are not used by their projects. The percentage
is insignificant and we believe it does not affect the results of dependency

17Aether adapter for maven plugins, http://aether.jcabi.com/index.html, accessed
08-09-2016.

18Javacompiler tool, http://docs.oracle.com/javase/7/docs/api/javax/tools/

JavaCompiler.CompilationTask.html, accessed 08-09-2016.
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analysis.
External threats to validity refers to the generalizability of our findings.

We considered a large set of open-source Java projects collection from Github
that use libraries from Maven. Although Maven is a large and popular tool
for the development community, in practice only a subset of developers are
based in Maven to help manage their build process. To mitigate this threat,
we have tested LibFinder with 32,760 projects with different sizes and from
different application domains. We are also planning to conduct an industrial
evaluation of our recommendation system to assess its effect on code quality
as well as developers productivity.

7. Related work

In recent years, there has been much interest in academia as well as in
industry on providing tools to help developers on understanding and using
library APIs. Most of the related work relies on library method recommen-
dation and API usage patterns.

Library method recommendation. Heinemann et al. [15] proposed an
approach for recommending library methods using data mining for learn-
ing term-method associations based on identifiers similarity, similarly to our
approach. Rascal [50] uses collaborative filtering to suggest API methods
based on a set of already employed methods within a class. Similarly, Java-
wock,tsunoda2005javawock uses same technique to recommend API classes
instead of methods. Thung et al. [14, 16] have proposed a technique for
recommending API methods based on textual description of feature requests
and method history usage. While most of existing approaches suppose that
developer has already find his library and he needs support on how to use it,
our approach recommends whole library. LibRec [9] is the approach most re-
lated to ours. LibRec uses association rule mining and collaborative filtering
on historic software artefacts to determine commonly used together libraries.
The main limitation of LibRec is that a library is regarded as a black box
where recommendations are based on how other client systems previously
use it. Consequently, the proposed approach was not able to recommend
libraries to projects that only use a small number of libraries or do not use
any libraries at all. Unlike LibRec, our approach opts a content-based recom-
mendation combined with library usage history. As shown in our empirical
evaluation, effective library recommendation should be driven, most impor-
tantly, by the content of the library. Furthermore, our approach is based on

47



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a larger dataset of 32,760 client systems, while LibRec uses only 500.
API usage patterns. Several approaches have been proposed to mine

API usage patterns to help developers on using their library APIs. Most
of them propose temporal [17], unordered [51, 52] and sequential [53, 54]
usage patterns, based on clients usage. For instance, MAPO [53] mines API
usage patterns from existing source code. The patterns are given by methods
that are frequently called together and that follow certain sequential rules.
We believe that these approaches would be complementary to ours, as they
provide support on how to use the recommended libraries.

Use of code identifiers. Source code vocabulary has been widely used
in several purposes in software engineering [15, 16, 55, 56, 57, 58, 59, 60].
Bajracharya et al. [61] used structural semantic indexing (SSI) to associate
words to source code entities based on API usage similarities. Their goal
is to improve the retrieval of API usage examples from code repositories.
Mudablue [62] is a tool that categorizes software systems based on their code
identifiers. Ouni et al. [31, 63] proposed a vocabulary-based approach to
recommend refactoring in order to preserving the semantic coherence of the
code based on the semantic information embodied in code identifiers.

Conbining SBSE and MSR. Software practitioners and researchers are
recognizing the benefits of SBSE and MSR techniques to support the mainte-
nance and evolution of software systems, improve software design/reuse, and
empirically validate novel ideas and techniques [22, 23, 24]. In fact, there is
recently an increase in the interactions between these two fields. Harman et
al . [64] used Genetic Improvement for Adaptive Software Engineering where
genetic programming is used as a means of program improvement based on a
dataset of code fragments collected from software repositories. The research
area has come to be known as ‘genetic improvement’. You et al. [65] have pro-
posed an SBSE approach to optimize non-functional properties of a system
such as JIT compilation, and hardware dependent algorithm using libraries.
In the area of bug prediction, Canfora et al. [66] used a multi-objective
optimization approach, named MODEP, to train from 10 datasets from the
PRedictOrModels In Software Engineering Software (PROMISE) repository.
The proposed approach allows software engineers to choose predictors achiev-
ing a specific compromise between the number of likely defect-prone classes
or the number of defects that the analysis would likely discover, and lines
of code to be analysed/tested. Minku et al. [67] formulated the problem of
software effort estimation as a multiobjective learning problem to understand
the trade-off among different performance measures. The conducted study

48



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

was based on five data sets from the PROMISE repository.
Another software engineering problem where SBSE has been used to mine

software repositories is software product lines (SPL) recommendation and
configuration focusing on feature model selection [68, 69]. A Software Prod-
uct Line represents a set of software products that share features in order to
satisfy a specific market segment where a feature represents a functionality
that is visible for the user. Sayyad et al. [70] studied the use of search-based
algorithms for SPL feature selection as a multi-objective problem. They make
explicit the link between search based software engineering for requirements
selection and search based optimization of choices pertaining to feature mod-
els. Guo et al. [71, 72] introduced a genetic algorithm to find SPL feature sets
while considering the cost and value objective (value-per-unit-cost). Muller
[73] also formulated the choice of products to be built from an SPL as a cost-
value trade off, using the simulated annealing algorithm to find suggested
choices of features that would form products that balance these trade offs.
They focus on differing customer segments (stakeholder groups), observing
that not all such groups can necessary be satisfied by the products offered
(due to budgetary constraints). Cruz et al. [74] use a hybrid approach, which
combines fuzzy inference systems and the well-known multi-objective genetic
algorithm, NSGA-II,to help decision makers manage product lines by gen-
erating portfolios of products. These portfolios are based on user segments
and the development cost of SPL products.

Indeed, we expect more adoption and unification of both SBSE and MSR
techniques to solve several other software engineering problems in the future.

8. Conclusion and future work

In this paper, we have introduced LibFinder, a novel approach for third-
party library recommendation. LibFinder unifies SBSE and MSR techniques,
by exploring a large dataset collected from library usage history and iden-
tifiers mined from code in large repositories. The goal is to prevent missed
reuse opportunities during software maintenance and evolution, by attract-
ing the attention of developers to potentially useful third-party libraries to
their software systems. We empirically evaluated our approach, we mined
the usage history of 6,083 libraries and 32,760 client systems from Maven
and Github repositories, respectively. The obtained results show that our
approach is efficient in recommending useful libraries comparing to random
search and two other popular search algorithms with more than 92% of ac-
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curacy, 51% of precision and 68% of recall with top-10 recommendations.
Furthermore, we have shown that LibFinder is significantly better than a
state-of-the-art technique which is based on the usage history libraries. Fur-
thermore, we evaluated the usefulness of our approach in practice through an
empirical study on two industrial Java systems with developers. Results show
that the top 10 recommended libraries was rated by the original developers
with an average of 3.25 out of 5.

As part of our future work, we plan to conduct an industrial evaluation
of LibFinder with developers to better understand the impact of adopting
external libraries on the quality of their systems as well as their productiv-
ity. We also plan to consider more software artifacts from other popular
code repositories to better validate and generalize our results. More impor-
tantly, we will extend LibFinder by formulating the library recommendation
problem as an interactive optimization problem to integrate the developer
in the loop when recommending libraries. Another interesting extension of
LibFinder can be to consider the change history of a system, so that library
recommendation can be addressed to classes that are actively changed and
maintained by developers. Moreover, we are planning to integrate LibFinder
as an Eclipse plugin and try to provide ‘on-the-fly’ recommendations in such
a way that the developer will be automatically notified by relevant libraries
while he is writing his code. Yet another direction is to consider the library
version and the internal quality of the recommended library to ensure high
quality software systems.
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