Evolution of Code Clone Ratios throughout
Development History of Open-Source C and C++
Programs

Anfernee Goon*, Yuhao Wuf, Makoto Matsushita’, and Katsuro Inouef
*Department of Computer Science and Engineering, University of California San Diego
La Jolla, United States of America
agoon@ucsd.edu
tGraduate School of Information Science and Technology, Osaka University
Osaka, Japan
{wuyuhao, matusita, inoue} @ist.osaka-u.ac.jp

Abstract—A code clone is a fragment of code which is dupli-
cated throughout the source code of a project. Code clones have
been shown to make a project less maintainable because all code
clones will share potential bugs and problems. Unlike other code
clone research, this study analyzes the code clone ratios over the
entire development lifetime of three open-source projects written
in C/C++ to understand code clone growth in software over
development and potential developer habits which could affect
this growth. The study utilizes CCFinderX and Git to detect clone
metrics across development history. The results from each project
show very low, stable ratios across development history, with the
code clone ratios only fluctuating greatly during the beginning
of development mostly and very little refactoring occurring. This
study goes further into the potential cause of low ratios and
different fluctuations at different periods of development.

Index Terms—code clone ratio, refactoring, code clone main-
tenance, open source software

I. INTRODUCTION

A code clone is a duplicated fragment of code. Having
many code clones in a project makes it much less maintainable
because all of these code clones will share potential bugs and
problems [1]. These problems will propagate throughout the
software with continued use of the problematic code clone
fragment, and a fix for this bug may have to be applied to every
one of these fragments present in the code. Detecting code
clones and retrieving code clone metrics for a target software
can aid in bug fixing and general code clone maintenance of
the detected clones.

An abundance of code clone research focuses on the code
clone metrics of software at one particular snapshot. Instead
of focusing on a specific point in time, we analyze the
code clone metrics of software over the entire development
process. In this paper, we seek to understand code clone
growth and maintenance through the analysis of code clone
metrics throughout the entire development process of three
different open source projects primarily written in C/C++.
More specifically, we will investigate the following research
questions in our analysis:

978-1-5090-6595-0/17/$31.00 © 2017 IEEE 47

o RQL1. What patterns can be observed of code clone growth
based on the ratios gathered from each project?

e RQ2. How do the code clone ratios throughout
development characterize code clone maintenance
habits?.

By analyzing code clone growth within developing software,
it is possible to better understand the developer’s efforts in code
clone maintenance, specifically efforts in refactoring. Although
the general consensus is that code clones make software less
maintainable and propagate bugs, some studies have shown that
some clones can actually be beneficial [2]. By understanding
the effectiveness of certain code clone maintenance techniques,
it will be more clear what research needs to be done to increase
the effectiveness of code clone maintenance.

II. APPROACH
A. Target Source Dataset

When deciding on open-source projects to use, we took
into account a couple factors. These factors were how well
studied the project is, how large the project is, and the type
of the project itself. We wanted to use three projects which
varied by these metrics in order to analyze the effects of these
factors on the code clone ratios and what they imply about
the development process. We analyzed the following three
open-source projects which are hosted on GitHub:

1) libcurl: libcurl is a library which curl, a command-line
tool for transferring data, uses. This library is fairly well studied
as seen in Kawamitsu et al. [3]. It is the smallest project we
studied, starting at around 2,500 lines of code, eventually
growing to around 12,500 lines of code over a series of about
20,000 commits.

2) Skynet: Skynet is a lightweight online game framework
which is slightly larger than libcurl, growing from around 2,500
lines of code to around 40,000 lines of code over a series of
about 1,000 commits (we analyze about 800 of those commits).

IWSC 2017, Klagenfurt, Austria

TABLE I
DESCRIPTION OF METRICS USED

Metric H Description

LOC Total lines of code, given by CCFinderX

SLOC Total lines of code not including whitespace or comments, given by CCFinderX

CLOC || Total code clone lines, given by CCFinderX

CCR Ratio of code clone lines to total lines of code, or CLOC divided by LOC

SCCR Ratio of code clone lines to total lines of code not including whitespace or comments, or CLOC divided by SLOC

While not as well studied as the other two projects, it is as
popular as libcurl on Github based on forks and stars.

3) Git: Gitis a version control system which is widely used;
even our analysis relies on Git. Although starting relatively
small at 950 lines of code, it grows to around 200,000 lines
of code over a series of about 40,000 commits (we analyze
about 14,000 of those commits) which is significantly larger
than both libcurl and Skynet.

Each of the three open-source projects present a different
range in size which may provide valuable information on
whether size affects code clone growth. Having software which
is popular in use and analysis lessens the chance of abnormal
data coming from one of the projects. The varying functions
of each project ensure that the analysis covers the development
of various types of software.

B. Clone Detection

To detect clones and clone metrics in the source code, we
used CCFinderX, a token-based clone detector [4] [1]. Although
CCFinderX is a multilinguistic clone detector, we only use it’s
C/C++ clone detection capabilities. Using bash scripting, we
automated the use of CCFinderX on every important commit
in the master branch of each project by using git log with
the —first-parent flag. The commits retrieved with this flag are
important because they represent the most linear development
history available by following the first parent down Git’s
history ensuring that parallel development on separate branches
are limited to the merge commit into master. Similarly, we
automate the retrieval of clone metrics from CCFinderX’s

results to streamline collecting the results from each commit.

For each commit, we collected number of C/C++ files, the
metrics found in Table 1, as well as the tag of the commit
if applicable. The scripts were designed to exclude test and
example files whenever possible in order to keep analysis
limited to functionality related files, and only includes .c and
.cpp files. Header files are not included because most header
files are naturally similar to each other, and may be picked
up as false positives by CCFinderX. The minimum number of
tokens that a fragment needs to be considered a clone is 50 in
our study.

C. Qualitative Approach

Our qualitative approach to analyzing each project utilizes
a tool called GemX, which provides GUI options along with
CCFinderX’s normal clone detection. It is an improved version

48

of the program Gemini [5]. GemX’s biggest asset is it’s ability
to show the clone pairs found in the source code. Using this
tool, we were able to analyze a big increase or decrease in
SCCR and see what caused to fluctuation. This was done by
first running GemX on the commit previous to the fluctuation
in SCCR and noting what clone pairs existed at that point. We
then ran GemX on the commit which caused the fluctuation,
and looked at whether the clone pairs that existed previously
still remained, or if they were refactored out of the code base.

III. RESULTS

For our quantitative analysis, we make use of several graphs
containing the metrics SCCR, SLOC, and CLOC discussed in
Section 2.2 displayed by commits in chronological order. The
main metric we focus on is SCCR, which we initially expected
to have mostly gradual increases with periodic sharp declines.
The gradual increases would be a result of functionality being
added over time, which naturally increases SCCR because more
code is being written [6]. Refactoring would be the cause of
the sharp declines, because the initial additions of functionality
may not be clean and would be in need for maintenance to
ensure maintainability before the next round of functionality is
added. The results from all three projects did not quite follow
this trend, and in fact all projects displayed various different
patterns over development.

A. libcurl

Our analysis of libcurl is confined to the files in libcurl’s
src folder in addition to the test and example constraints
previously mentioned. The src folder is the primary folder for
development for libcurl’s C/C++ modules, so it contains the
most relevant information about libcurl’s development process.

1) Quantitative Analysis: Fig. 1 is libcurl’s clone metrics
graph, detailing a series of sharp increases followed by gradual
decreases in SCCR which is the opposite of expectation.
In hindsight, this finding makes sense because the number
of consecutive commits which add functionality will be
significantly less than the total number of commits resulting
in sharp increases in SCCR on the graph when functionality
is added. Although decreases are still occurring, the gradual
nature of these decreases indicates that refactoring is not
necessarily the cause. From a perspective focused on clones,
refactoring would be indicated by a decrease in CLOC and
SLOC, because this means that code clone fragments are being
removed. Looking at the SLOC and CLOC metrics during these

libcurl Clone Metrics Graph

© o
- —— SCCR (Left Axis) - 8
Tag SCCR (Left Axis) o]
—— SLOC (Right Axis)
© _| CLOC (Right Axis)
. 8
< | S
- ©
o N 3
o - o
g g 2
8 g 3
4 o _| a
& - 2
J -
©o -
o
L ©
S
[0
© -
< -
- o

10000

20000

Chronological Commit Number

Fig. 1. SCCR, SLOC, and CLOC changes over all commits of libcurl in chronological order.

periods of decrease, we observe that the SLOC is continually
increasing while the CLOC does not decrease. Since SCCR
is a ratio between CLOC and SLOC, it is clear that it is the
growth in SLOC which is causing the decreases and not a
result of refactoring.

While this trend holds true for the majority of libcurl’s
development, the beginning of libcurl’s development does
have some sharper decreases which are a result of CLOC
decreasing. These decreases are not due to refactoring, which
is discussed in more detail in the next section. Contrary to
the sharp increases depicted on the SCCR graph, the SCCR
is actually quite stable with the sharp increases actually only
being about a 1% difference. Throughout the entire lifetime of
development, the SCCR mostly falls between 3% and 9%.
The stable, low SCCR of libcurl throughout development
may indicate a good development habit of refactoring before
commits. This practice ensures a more stable clone rate with
less clones being introduced each commit, leading to a cleaner
git history and consistent maintainability. Unfortunately we
cannot confirm this technique is in fact in use as we are only
analyzing code that has been committed. Although libcurl does
have relative stability throughout its development, it is still
consistently growing especially towards the end of development,
where a 1,000 commit sequence adds about 2% to the SCCR.

2) Qualitative Analysis: For libcurl’s qualitative analysis,
we studied key rises and falls on the SCCR graph attributed to
CLOC changes in further depth using the qualitative approach
described above. There are four commit points which are looked
at in libcurl: 6562caf, 22d8aa3, b5fdbe8, a0d7a26 (shortened

49

commit hashes). On the clone metrics graph, each of these
commits represent a point before a rise or fall.

The first two commits saw a SCCR decrease of about 2% and
a CLOC decrease of about 30 lines. In both these instances,
the logic of the clone fragments were changed with a few
additions or deletions. These fragments can still be considered
code clones, but are now Type-3 code clones instead of Type-2
code clones, where Type-3 clones have some line additions
and deletions which do not occur in the other fragment [1].
Since CCFinderX cannot detect Type-3 code clones, this was
seen as a decrease in CLOC resulting in the SCCR decreases
[1]. It is clear that the decreases were not due to refactoring
in this case, but rather something more akin to a bug fix to
make the fragments work correctly by changing a few parts of
the fragments (and even still the fragments are Type-3 clones).
This case illustrates the importance of also looking at the
change in SLOC to determine if refactoring occurred, because
if SLOC also decreases by a similar margin then there is a
good chance the clone was removed. This phenomenon of
clones becoming undetectable due to change in type is a threat
to validity discussed in Section 3.5.

Unlike the first two commits, the last two commits show the
most refactoring seen in libcurl. The first of the two commits,
b5fdbe8, shows a huge increase in CLOC (from around 4%
to around 18%) while the other commit, a0d7a26, shows a
symmetrical decrease (from around 18% to around 4% again).
The first commit adds a new experimental functionality through
a new file which is an exact copy of another source file that
is about 600 lines, increasing the CLOC by that margin. The

Skynet Clone Metrics Graph

o

—— SCCR (Left Axis) LS

Tag SCCR (Left Axis) S

—— SLOC (Right Axis)

CLOC (Right Axis) o

o — o

- O

Yol

N

o

o

- O

o
© - N g
(0] el
g g 38
£ S %

- O
® g
-

< 8

- O

o

o

. ©

o

o - n

= O

200

400

600 800

Chronological Commit Number

Fig. 2. SCCR, SLOC, and CLOC changes over all commits of Skynet in chronological order.

second commit significantly changes the new source file to
reuse parts of the original source file along with new features,
this eliminating the entire clone fragment as it was in the
previous commit and reducing the CLOC down once more.
This shows the only clear case of refactoring we have found
libcurl, with the developer implementing reuse of source files
indirectly rather than keeping directly copied pasted code.

Observation 1 - Overall, libcurl’s SCCR fluctuations display
opposite trends to our original expectations. The SLOC and
SCCR follows a general trend of increase occurring mostly with
sharp increases over a small number of commits, but there
are gradual decreases among the fluctuations. Our manual
analysis shows that code refactoring is not the cause of most
decreases but rather from a lack of CLOC increase. Even
without refactoring, SCCR is still very low indicating that
refactoring may be occurring before commits or that the
developers are simply able to write good code with a low
amount of clones.

B. Skynet

Unlike libcurl’s analysis, our analysis of Skynet takes
account all C/C++ files that the project contains excluding files
in the test folder. There was no single folder consolidating all
of Skynet’s C/C++ modules, so analyzing all the files in the
project was a necessity.

1) Quantitative Analysis: Skynet’s clone metrics graph,
shown in Fig. 2, shows SCCR fluctuations that partially
resemble what was initially expected, but with some significant
differences. The resemblance is in the graph’s sharp declines,

50

which occur only a few times throughout the entire commit
history. The unexpected differences are the sharp increases
which mirror the sharp declines, as well as the extreme stability
which characterizes the second half of the development history.
Similar to libcurl, Skynet’s SCCR graph’s sharp increases
most likely indicate an addition in functionality. These only
occur during the first half of development, but are considerable
increases, with the largest increase going from 6% to around
9%. The mirrored sharp decreases may indicate refactoring after
large functionality additions. Most of these sharp decreases
have corresponding CLOC decreases, but only a few have
corresponding SLOC decreases as well indicating refactoring
is not necessarily the case for every instance. The qualitative
analysis of Skynet in the next section confirms refactoring
efforts, showing that refactoring does occur in some of these
instances.

Although the development of Skynet has fairly sharp
fluctuations during the beginning of its development, it actually
shows greater stability than libcurl after its initial fluctuations,
occurring directly after the first release. The stability after
release seems to be logical, as a polished product should
be delivered at release, reducing the additions to mostly
bug fixes which are less likely to introduce new clone additions.

2) Qualitative Analysis: Skynet’s qualitative analysis used
the same approach as libcurl’s, where we looked at big
fluctuations on the SCCR graph that resulted from CLOC
changes in detail using GemX. The main commits that we
looked at in Skynet are 28dc840 and 58aa755. Again as in

Git Clone Metrics Graph

o
S
S —— SCCR (Left Axis) - S
Tag SCCR (Left Axis) 0
—— SLOC (Right Axis)
m\ CLOC (Right Axis)
L
© — |
P A 3
b R = ' I~ 8
‘”\ T 2 [0}
[°
> L <]
g © - (&)
S 5
8 [%2]
& g
o e e g 3
~ - S
<+ 3
o~ -
- o

5000

10000 15000

Chronological Commit Number

Fig. 3. SCCR, SLOC, and CLOC changes over all commits of Git in chronological order.

libcurl, these commits represent a point before a rise or fall
on the clone metrics graph.

The two commits show decreases in SCCR of about 1%
and 2% respectively. The cause of these decreases can both
be attributed to changes in libraries which Skynet was using.
The first commit sees a removal of a part of a library which
contains 7,000 lines of code, 500 of those being clone lines.
Although not a refactoring of their own modules, this library
removal is in fact an instance of refactoring because it removes
unnecessary code, potentially opting for reuse like in libcurl’s
instance of refactoring which in turn reduces CLOC. The
second commit adds on a large library of code to the project
which proportionally has very little code. Through this addition,
the CLOC only increases slightly, by about 260 lines, while
the SLOC increases significantly, by about 10,000 lines. Unlike
the first commit, this is not a result of refactoring as none of
the originally existing clone pairs were removed.

Observation 2 - The fluctuations in Skynet’s SCCR during
the beginning of development display similarity to the original
hypothesis, but fluctuations become less significant and frequent
during the later stages of development, showing that instability
occurs at the start of development. Upon qualitative code
analysis, it is evident that refactoring efforts on libraries are the
cause of most sharp decreases in SCCR. A lack of growth in
code during the second half of development indicate that most
functionality was added during the beginning of development.
If this is the case, it is unlikely that Skynet’s developers
employ refactoring before commits because the beginning of
development would be more stable and cases of refactoring

51

were shown during this time although this is not provable
unless source code prior to commits is available for analysis.

C. Git

Similar to the analysis of Skynet, our analysis of Git takes
into account all C/C++ files that the project contains excluding
test and example files. Git’s C/C++ modules were dispersed
all throughout the project which is why all files in the project
needed to be analyzed. Unfortunately all analysis of Git was
done quantitatively, as a qualitative analysis was difficult
given the size of the project. We hope to perform a qualitative
analysis on Git in the future to reinforce our quantitative
analysis.

1) Quantitative Analysis: The results of Git’s SCCR analysis
is shown in Fig. 3 and follows a similar trend as Skynet. Unlike
our initial expectation, Git’s SCCR sees a large growth towards
the beginning of development, but after a certain point sees
a gradual but consistent decrease up to the present state of
development. After its large growth over around 2,000 commits,
the SCCR is around 9%. The gradual decrease sees the SCCR
decrease to 4% over the course of about 8,000 commits, and
afterwards there is stability near 4% until the present state
of development. Like in Skynet, the initial growth can be
attributed to many additions of functionality at the beginning
of development. After that initial stage, the CLOC barely
increases while the SLOC continues to grow at a fast rate,
which is what causes the gradual decline in SCCR, which
indicates functionality is still being added unlike in Skynet’s
stable period. The gradual decrease may be due to better code

being written or code being refactored before being committed,
thus having the SCCR shrink and the CLOC grow only to
maintain the 4% SCCR during the stability period.

Unlike in Skynet, the first release does not correspond to
the beginning of the gradual decrease, but happens during the
large growth period. Despite this, the SCCR is still very low.
This may simply be due to good developer habits, such as code
being refactored before being committed as we have mentioned
about libcurl. As stated before, we did not do a qualitative
analysis on Git, but we reserve the right to look into this in
the future. Despite this, the quantitative data still provides us
with the ability to characterize the development of Git with
the help of the analyses on libcurl and Skynet.

Observation 3 - The SCCR of Git exhibits a trend of
increase during the beginning of development and a gradual
trend of decrease thereafter, implying that the early development
stages are more volatile than the rest of development. The
extremely low average SCCR suggests refactoring before
commits, but a qualitative analysis is needed to confirm this
notion.

IV. DISCUSSION

Based on the SCCR graphs of each open-source project,
it is clear that every project will most likely follow it’s
own trends. In spite of this, there is a very broad trend
which is apparent from the results for each project. All three
projects have an initial period of instability and fluctuations,
followed by a period of stability. This overall trend suggests a
general workflow of code clone maintenance. The beginning
of development has a lot of fluctuations because by nature not
everything is very concrete and many large design choices are
most likely being made or still in discussion. As a result of
this, SCCR will change as design choices are made since code
will need to be changed or refactored to accommodate for new
design choices and general code clone maintenance may be
initially neglected to focus on functionality implementation
alone. Once design has been established, the period of stability
begins where additions to the project can be refactored easily
beforehand to fit with certain design principles, reducing the
code clones added with each commit. While the period of
stability may differ depending on what kind of development
occurs after the design principles are established, these periods
are still mostly stable. For example, libcurl is still developing
on functionality, which results in a gradual increase during
the period of stability. Meanwhile, Skynet has stopped major
development of functionality resulting in an almost completely
stable SCCR.

Developers can analyze their own projects in similar fashion
in order to understand their own software’s code clone growth
and how certain maintenance techniques affect this growth.
Looking at instability periods of code clone growth and
analyzing what code clone maintenance techniques were
employed during these times can help the developer understand
the effectiveness of these techniques, and make inquiries on why
these techniques may not have been effective at the time. As
mentioned before, changing design choices could increase the

52

amount of code clones added due to difficulty in refactoring or
a simple neglect of code clone maintenance due to functionality
concerns. If software design is not the issue, the frequency
of refactoring itself could be a large factor. Looking at the
clone ratios over development history can show how often
refactoring occurs and whether this frequency is enough to
keep the software maintained. Although ideally refactoring
occurs before commits and a SCCR graph similar to the stable
part of Git’s graph is produced, time constraints may not
allow for such intense refactoring practices, which is where
understanding how frequently refactoring should occur can be
vital to a project’s code clone maintenance.

V. THREATS TO VALIDITY

Since our analysis relies heavily on the output of CCFind-
erX, it’s limitations pose a threat to our data. CCFinderX’s
inability to detect Type-3 clones could possibly allow for a
misinterpretation of the SCCR graph to see more refactoring
than actually occurred. This would mostly affect our analysis
of Git because we did not have the time to qualitatively analyze
it and could not confirm notions on refactoring efforts. The
other two projects saw thorough analysis of pivotal commit
points which may have had this problem. Despite this, the data
we gathered should still hold weight because there were not
many refactoring points to consider in the first place, especially
in Git. As mentioned earlier carefully analyzing the SLOC
changes could still help distinguish these occurrences. Since
our data can still potentially distinguish these occurrences and
there are a means of confirming such suspicions, CCFinderX’s
limitations on detecting Type-3 clones should not be an issue.
It should be noted that conducting a similar analysis again
may benefit from the use of a clone detector which can detect
Type-3 clones to mitigate the issue completely.

Although mostly being composed of C/C++ files, each
project did contain files of significance to development from
different languages, which could mean that development with
different languages could be occurring simultaneously, making
certain periods more stable because functionality is being added
through different undetected means. Since all projects had in
fact a majority of C/C++ files, this issue should not be very
prevalent as the developers should be more likely to continue
development in the language used most frequently for ease of
compatibility.

Due to the differing organization structures of each project,
we were not able to exclude libraries in our analysis in
every project analyzed. Depending on the project, this could
drastically change the clone ratios. Whether the libraries should
or should not be included are up for debate, as they still do
serve a purpose in development, but are not necessarily written
by the developer themselves. Along with this, our analysis
only cover 3 different projects which in hindsight seem to be
very well developed based on their relatively low clone ratios.
In order to fully understand the anomaly which is software
development, an analysis of code clone ratios over the version
evolution of more projects is necessary, in particular projects
which have higher clone rates than our three. This will help us

distinguish different development patterns as well as understand
exactly how libraries affect clone ratios.

VI. RELATED WORK

Software clones has been a very popular topic of research in
recent years, and many different studies have reported findings
about code clone ratios as well as the effect of clones on
software maintainability. Koshchke et al. report an average
clone rate of 12% for open-source C and C++ programs [7].
The average clone rate has been reported differently among
different studies, with Zibran et al. reporting a clone rate
between 9% and 17% for programs written in C, C#, and
Java [8]. Chen et al. reports a range of 4.6% and 24.9% when
analyzing open-source games written in C, Java, and Python
[9]. Clearly ratios differ among studies for different reasons,
including the clone detection tool used, the languages that the
analyzed software is written in, and the type of software which
was analyzed. More research needs to be done to understand
what these different metrics indicate about the presence of
clone ratios in software.

As stated previously, the general consensus is that code
clones can be harmful to software development due to main-
tainability problems and bug propagation, and this is the
assumption used when qualitatively analyzing each of the three
projects in this study. Juergens et al. observed software faults
being induced from cloned code in various commercial and
open-source programs [10]. Lague et al. looked specifically
at a large telecommunication system and found several cases
where cloned code has propagated to software bugs which
the customer had experienced, and has proposed methods to
prevent these faults from reaching the customers [11]. Lozano
et al. analyzed method changeability with clones present, and
reported higher costs in changing methods with code clones
present [12]. Although several studies have shown detriments
that come with the presence of code clones, some studies have
observed that code clones can actually be beneficial to software,
with Kapser et al. describing several benefits such as preventing
instabilities in code through the use of code clones to introduce
new features [2]. They also report that as many as 71% of
clones have a positive impact on software maintainability. With
the ongoing debate about how code clones actually effect
software maintainability, it is important that further research is
done to truly understand what harms or benefits cloned code
can have on software to allow proper qualitative analysis of
clones and to develop efficient software maintenance practices
which make use of clone awareness [2].

VII. CONCLUSION

In this paper, we analyzed code clone ratios over the
version evolution of three very different open-source projects.
Our analysis primarily focused on the SCCR throughout
version evolution in conjunction with the SLOC and CLOC
at each particular commit point to understand different parts
of the development process. With this data it was possible

53

to determine the role which code clone refactoring played

during development, as well as make inferences on code
clone maintenance techniques. Each project displayed very

different short term trends, but overall all projects showed a
period of instability followed by a period of relative stability
which may be attributed to project design not being concrete
during the initial phase of development. Similar analysis of a
developer’s own software can help the developer understand the
effectiveness of their code clone maintenance. From there, the
developer can adjust their code clone maintenance techniques
in order to better control code clone growth in their software.

ACKNOWLEDGMENT

This work was supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Scientific Research (S)
JP25220003, and also by Osaka University Program for
Promoting International Joint Research.

REFERENCES

[1] A. Sheneamer and J. Kalita, “Article: A survey of software clone detection
techniques,” International Journal of Computer Applications, vol. 137,
no. 10, pp. 1-21, March 2016.

[2] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful”
considered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, p. 645, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10664-008-9076-6

[3] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. D. Roover, and K. Inoue,
“Identifying source code reuse across repositories using lcs-based source
code similarity,” in Source Code Analysis and Manipulation (SCAM),
2014 IEEE 14th International Working Conference on, Sept 2014, pp.
305-314.

[4] T. Kamiya, “Ccfinderx,” http://www.ccfinder.net/.

[5]1 Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Gemini:
Code clone analysis tool,” in Proceedings 1st International Symposium
on Empirical Software Engineering, vol. 2, 2002, pp. 31-32.

[6] M. Dagenais, E. Merlo, B. Lagug, and D. Proulx, “Clones occurence

in large object oriented software packages,” in Proceedings of the

1998 Conference of the Centre for Advanced Studies on Collaborative

Research, ser. CASCON °98. IBM Press, 1998, pp. 10-. [Online].

Available: http://dl.acm.org/citation.cfm?id=783160.783170

R. Koschke and S. Bazrafshan, “Software-clone rates in open-source

programs written in ¢ or c++,” in 2016 IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering (SANER),

vol. 3, March 2016, pp. 1-7.

[8] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy, “Analyzing

and forecasting near-miss clones in evolving software: An empirical

study,” in 2011 16th IEEE International Conference on Engineering of

Complex Computer Systems, April 2011, pp. 295-304.

Y. Chen, I. Keivanloo, and C. K. Roy, “Near-miss software clones in

open source games: An empirical study,” in 2014 IEEE 27th Canadian

Conference on Electrical and Computer Engineering (CCECE), May

2014, pp. 1-7.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code

clones matter?” in Proceedings of the 31st International Conference

on Software Engineering, ser. ICSE ’09. Washington, DC, USA:

IEEE Computer Society, 2009, pp. 485-495. [Online]. Available:

http://dx.doi.org/10.1109/ICSE.2009.5070547

B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl,

“Assessing the benefits of incorporating function clone detection in a

development process,” in 1997 Proceedings International Conference on

Software Maintenance, Oct 1997, pp. 314-321.

A. Lozano and M. Wermelinger, “Assessing the effect of clones on

changeability,” in 2008 IEEE International Conference on Software

Maintenance, Sept 2008, pp. 227-236.

[7

—

[9

—

[10]

(11]

[12]

