
Understanding Popularity Growth of Packages in
JavaScript Package Ecosystem

Shi Qiu∗, Raula Gaikovina Kula‡ and Katsuro Inoue∗

∗Graduate School of Information Science and Technology, Osaka University, Japan
Email: {qiujitsu, inoue}@ist.osaka-u.ac.jp

‡Graduate School of Information Science, Nara Institute of Science and Technology, Japan
Email: raula-k@is.naist.jp

Abstract—In open-source software (OSS) ecosystems, software
popularity is valuable information to developers because they
continually want to know whether their software is attracting
and gaining acceptance. Meanwhile, software popularity is also
an important indicator to suggest if a software is beating its
competitors in an OSS ecosystem. Accordingly, it is important
to understand the popularity growth of packages (i.e., how
fast packages become popular). In this paper, we conduct an
exploratory study on packages in the node package manager
(npm) to understand: (1) the characteristics of popularity growth,
and (2) the factors that could affect popularity growth. We
propose a method to model popularity growth as a curve
and find that popularity growth mathematically follows three
models — accelerated growth model (i.e., quadratic model),
steady growth model (i.e., linear model), and decelerated growth
model (i.e., square root model). The results show that 51.56%
of the studied packages depict steady growth model, followed by
accelerated growth model and decelerated growth model, 40.02%
and 7.20% respectively. Furthermore, we reveal that factors
including age, dependents, new features and functionalities have
impacts on popularity growth. Our study shows potential tips for
helping practitioners on developing and evolving packages in a
competitive OSS ecosystem.

I. INTRODUCTION

A software ecosystem consists of software projects that are
developed and evolve together in a shared environment [13].
Open-source software (OSS) ecosystem is software ecosystem
consisting of open-source software (OSS) software projects.
Usually, these OSS software projects are contributed by the
users of this OSS ecosystem. The development of software
ecosystems has resulted in an abundance of free software
packages that are easily reused by both new and existing
projects. Also, this kind of software reuse has long been
proved to be a good method to increase software productivity
[15], [16], [4]. One example is npm, which serves as a large
repository of JavaScript-based software packages. It hosts over
650,000 JavaScript packages to become the largest software
ecosystem, with millions of packages being installed from
the npm repository on an everyday basis. In such a large
number of packages, some packages are significantly more
attractive than others, being downloaded more times by end
users. Software popularity is used to measure this difference.
It is a useful indicator of whether a package is successful and
is attracting and gaining acceptance in the software ecosys-
tem [5]. Understanding the popularity growth of packages

in OSS ecosystem is very important because developers are
continually wanting to know whether or not their software is
attracting and gaining acceptance. Especially, the competition
of packages in OSS ecosystem is becoming more and more
fiercely nowadays. For example, it’s reported by the homepage
of npm1 that about 200,000 new packages were uploaded onto
npm during the last year, which account for nearly 30% of
all the packages uploaded in the past 8 years. It’s no doubt
that the large and rapidly growing number of packages makes
OSS ecosystem more competitive. Therefore, understanding
the popularity growth will also help developers on improving
their packages to survive in the competitive OSS ecosystem.

Studies of popularity are firstly conducted on the social
platforms such as YouTube [1] and Twitter [12] aimed for
recommendations on how to produce successful content. Un-
fortunately, to date, there have been few studies on software
popularity growth. One exception is an effort on understanding
the evolution of popularity by case study [17], but they only
examine the top 5 popular packages in npm. Borges et al.
aim to investigate common patterns of popularity growth of
the projects on GitHub [5]. They use KSC algorithm [11] to
achieve this, but due to the restriction of the algorithm, this
approach can hardly be applied to a large and irregular dataset.

In this paper, we would like to understand how fast packages
become popular (defined as popularity growth). We
propose that popularity growth over time can be modeled as
a mathematical equation, and is plotted visually as a growth
curve. Actually, this kind of application of the mathematical
models is very common in many fields of biology, medicine,
economics and the social sciences [3]. Especially, growth
curve models have been used in various disciplines as well, for
example in biological sciences to study crop growth, popula-
tion processes, and bacterial growth. They are often estimated
to understand defining characteristics, including initial levels,
rates of change, periods of acceleration and deceleration,
and final or asymptotic levels [8]. In software engineering,
different models have been applied in the context of software
reliability (e.g., [2], [18]) and modeling the evolution of library
usage [10].

For an empirical evaluation of our popularity growth mod-

1https://www.npmjs.com/

TABLE I
MATHEMATICAL MODELS

Model Equation
accelerated growth model Popularity = at2(a > 0)
steady growth model Popularity = at(a > 0)
decelerated growth model Popularity = a

√
t(a > 0)

els, we conducted an exploratory study of packages in npm to
understand: (1) the characteristics of popularity growth, and
(2) the factors that could affect popularity growth. This paper
aims at answering two research questions:
(RQ1) Do packages in npm share common characteristics
of popularity growth? If so, what are these characteristics?
The goal is to find different kinds of characteristics of popu-
larity growth and the proportion of them. The answer to this
question will provide a general view of how fast the popularity
grows for packages in npm.
(RQ2) Are there some factors which could affect the
popularity growth of packages in npm? If so, what are
the effects of these factors? This investigation can reveal the
factors that could be utilized to accelerate popularity growth
or to prevent the deceleration of it.

To answer RQ1, we first proposed a method of modeling
popularity growth as a curve. To answer RQ2, we select
some main factors including total downloads count, age, the
number of contributors, dependencies, dependents, versions,
and functionalities. We reveal the impact of these selected fac-
tors by examining their significant difference across proposed
models. We also give some suggestions based on the results
we observed.

II. MODELING POPULARITY GROWTH AS A CURVE

In this paper, we are interested in the popularity growth of
the packages in npm. Kula et al. have succeeded in modeling
the evolution of library usage as a curve to study the library
aging [10]. Inspired by this work, we proposed a method
of modeling popularity growth as a curve. We assume that
popularity growth has the following three types: (1) grow
slowly at first but accelerate over time, (2) grow steadily, with
no sign of accelerating or decelerating, (3) grow rapidly at
first but gradually decelerate.

We define these three kinds of growth as the accelerated
growth model, steady growth model and decelerated growth
model. When popularity growth is modeled as a curve, the
accelerated growth can be represented by a convex while the
decelerated growth can be represented by a concave. The
convex on curve indicates the speed of growth is accelerating
over time while the concave indicates the speed is deceler-
ating. Similarly, the steady growth can be represented by a
straight line, indicating that the speed is steady over time.
Furthermore, we use three mathematical equations to represent
the characteristics of the proposed three growth models. The
linear growth model is the most commonly fit growth curve
to describe a steady growth. For nonlinear change, many
researchers turn to the quadratic growth model when a linear

TABLE II
SUMMARY STATISTICS OF THE COLLECTED DATASET

Dataset statistics
observation period 2010-Oct to 2017-Apr
packages 152,812
total size of projects 365 GB

change model does not fit well or when a nonlinear trend is
seen in the longitudinal plot [8]. When we limit the coefficient
to be positive, the quadratic growth model becomes a good
choice to describe an accelerated growth. Another reason we
select quadratic equation is that its rate of growth increases
slowly and gently. So if popularity growth has a tendency to
accelerate, even not dramatically, it will still be well fitted
by this equation. For the same reason, we select square root
equation as the opposite equation to describe the decelerated
growth.

To summarize, we use three models as shown in Table I
and Figure 1 for our curve fitting. Thus, for the relationship
between the popularity and time t, key characteristics of each
model are described below:

• Accelerated growth model. The quadratic equation is
depicted in Figure 1(a) as having a convex toward the
lower right corner. The curve of this model indicates that
popularity grows slowly at first but accelerates over time.

• Steady growth model. The linear equation is depicted
in Figure 1(b) as having the single linear line and no
convex and concave. It indicates that the popularity grows
steadily, with no sign of accelerating or decelerating.

• Decelerated growth model. The square root equation is
depicted in Figure 1(c) as having a concave toward the
lower right corner. The growth of popularity fitting this
model grows rapidly at first but gradually decelerates.

For the metric to measure popularity, we choose downloads
count. Downloads count is incremented every time a package
is installed from npm in any cases — redistribution, test or
development. We use downloads count because it is a value to
show how many times the package is downloaded, indicating
how popular the package is used by end users intuitively. Note
that, as shown in Figure 2, when a package is installed from
npm, those packages which are in the dependency chain of
this package are also installed. In this case, downloads count is
incremented for all these packages. We obtained the historical
data of downloads counts for each package on a daily basis
through the web API of npm2. Finally, we accumulate the
downloads counts to represent popularity growth.

III. EMPIRICAL EVALUATION

A. (RQ1) Do packages in npm share common charac-
teristics of popularity growth? If so, what are these
characteristics?

1) Research Method: Our research method comprises of
two steps. In the first step, we need to collect empirical data

2source: https://api.npmjs.org/downloads/range/2010-10-1:2017-04-
07/packageName

(a) accelerated growth model (b) steady growth model (c) decelerated growth model

Fig. 1. The popularity growth for three packages representing the three proposed models. In each plot, the blue curve is the one created with the original
data while the red curve is the model that fits best. Note that Figure 1(a) represents the accelerated growth model (grunt), Figure 1(b) represents the steady
growth model (wcsize) and Figure 1(c) illustrates the best-fits for decelerated growth model (active).

Fig. 2. The effect of dependencies on downloads in npm. When package a
is installed, package b, c and d is downloaded at the same time.

TABLE III
BEST FITTING RESULTS FOR THE 102,341 TARGET PACKAGES.

Model # Fitted % of Studied Packages
accelerated growth model 40,953 40.02%
steady growth model 52,769 51.56%
decelerated growth model 7366 7.20%
Not Fit 1,253 1.22%
Total 102,341 100%

that represents popularity and other main software ecosystem
factors for npm. Table II shows a summary of collected npm
packages. The observation period is from October 1st, 2010
to April 7th, 2017, and all data we collected only cover this
range as well. At last, we collect 152,812 packages. Then
we filter out packages whose age is younger than 1 year or
total downloads count is less than 1,000. This step ensures the
reliability of the following curve fitting because the popularity
growth of packages with few downloads or short lifetime is
meaningless. For example, a package was published two days
ago and downloaded once for each day. In this extreme case,
this package will still be fitted by the steady growth model,
which is not expected. We end up with 102,341 packages in
total. Then for the second step, we run the experiment by
which popularity growth is fitting against the three proposed
growth models. Firstly, for the curve fitting, we rely on a

Python-based package called scipy3 to fit popularity growth
against the proposed three growth models. Secondly, We use
the widely-used the coefficient of determination [14], denoted
by R2, to evaluate the goodness of fit for each growth model.
The one with the largest R2 value among three proposed
models is determined as the best-fitted model. Additionally,
no matter which model is determined as the best-fitted model,
the R2 value of it must be larger than 0.7. The value is
decided as 0.7 because if the R2 value is larger than 0.7,
this value is generally considered strong effect size [7]. For
the case that all R2 values of three proposed models are less
than 0.7, the package is not well fitted by any models. By
this, we ensure that the best-fitted model fits the popularity
growth curve enough well. Meanwhile, we can also examine
whether our three proposed models are effective or not. If
a large number of packages could not be well fitted by any
proposed models, our three proposed models are obviously not
good enough to model popularity growth.

2) Findings: Table III lists the percentage of packages that
are best-fit by each model. Notice that the percentage of not fit
is only 1.22%. It suggests that only a small part of all packages
could not be fitted by any proposed growth model. The
percentage proves that our method is effective in modeling the
popularity growth of packages. The result shows that 51.56%
of the studied packages depict steady growth model, followed
by accelerated growth model and decelerated growth model,
40.02% and 7.20% respectively. The most important finding
is that only 7.20% of the studied packages are best-fitted by
decelerated growth model, which indicates that npm is still
very active and the number of packages installed from npm is
still growing with no sign of deceleration. Specifically, 40.02%
of the studied packages are best-fitted by accelerated growth
model, which interprets that a large number of packages in
npm are gaining popularity in accelerating speed. The result
suggests that the reuse of packages in npm is still active, with
more and more packages being installed from the npm.

Hence, we answer RQ1:

3https://www.scipy.org/

Packages in npm do share common characteristics of
popularity growth. Specifically, 51.56% of the studied
packages depict steady growth model, followed by ac-
celerated growth model (40.02%) and decelerated growth
model (7.20%). The distribution suggests that the reuse of
packages in npm is still active.

B. (RQ2) Are there some factors which could affect the
popularity growth of packages in npm? If so, what are the
effects of these factors?

The result from RQ1 indicates that most studied packages
depict steady growth model and accelerated growth model
while only a few packages depict decelerated growth model.
Hence our motivation for RQ2 is to make use of a quanti-
tative approach to examine the effect of some main software
ecosystem factors on popularity growth.

1) Research Method: To solve this research question, we
select some main software ecosystem factors and examine
whether or not these factors are significantly different among
the packages fitted by three proposed growth models. By this
way, we aim to find the impact of these selected factors on
popularity growth. The main software ecosystem factors we
selected include total downloads count, age and the number
of contributors, dependencies, dependents, versions.

The study on total downloads count could interpret if the
packages with accelerated popularity growth are also the
popular ones. Note that the downloads counts are accumulated
on a daily basis. So the downloads count of the last day is the
total downloads count. The investigation on age answers the
question that whether or not the early packages are more likely
to gain popularity in accelerated speed than the new ones. The
age is represented by the number of passing through days after
the first publication of a package. The number of contributors
is the indicator of the scale of the development team. The
contributors refer to any developer who ever contributed to any
version of a package. A package in npm is usually maintained
and contributed by an individual developer or some developers
working as a team. While the numbers of dependencies and
dependents reveal that if reusing or being reused by other
packages have effects on popularity growth. The study on
the numbers of dependencies and dependents will suggest the
impact of relationships among packages on popularity growth.
At last, the study on the number of versions interprets the
impact of new features on popularity growth. Additionally,
the larger number of versions not only means frequent update
and more new feature but also suggests whether or not the
package is continuously maintained.

For these selected factors, we make use of statistic analysis
to examine whether or not there is a strong relationship
between them and the proposed growth models. Specifically,
we randomly pick 1,000 packages from each growth models
and run Kruskal-Wallis H test [9] on them to re-check whether
or not the selected factors are significantly different across
three proposed growth models. Kruskal-Wallis H test is an
effective and widely used method to test whether two or more
samples of equal or different sample sizes originate from

the same distribution [6]. Additionally, We investigate if the
functionalities of packages play roles in popularity growth
as well. For this purpose, we collect the keywords of every
package fitted by each growth models and draw the word-cloud
graph using these keywords. The keywords are extracted from
the meta-files of packages and we believe that they interpret
the functionalities of packages to some extent.

2) Findings: Table IV shows the summary of the statistic
analysis result on total downloads count, age and the number
of contributors, dependencies, dependents, versions for each
growth model.

Total download count: The result shows that the packages
with accelerated popularity growth are also the popular ones,
which also conforms to our general impression.

Age: The packages fitted by accelerated growth model are
definitely older than other two models, and the ones fitted
by steady growth model are also a bit older than decelerated
model. It suggests that the early packages in npm are much
more easily to get popularity in accelerated speed with the
time passing by while the new packages are not.

The number of contributors: The number of contributors
interprets the scale of development team. The result suggests
that there is no significant difference across packages fitted by
the proposed three growth models. It interprets that the scale
of development team have no definite impact on popularity
growth.

The number of the dependencies and dependents: In this
investigation we want to answer the question whether reusing
or being reused by other packages have effects on popularity
growth or not. The result suggests that the numbers of the
dependencies are similar across the three proposed growth
models while the numbers of the dependents are significantly
different. The packages fitted by accelerated growth model
attract a lot of dependents while steady growth model and
decelerated growth model attract few. It illustrates that being
reused by other packages plays a significant role in accelerat-
ing popularity growth while the number of dependencies does
not. This can be explained by the download mechanism of
npm — when a package is installed from npm, those packages
which are in the dependency chain of this package are also
installed.

Versions: The p-value tells that the numbers of versions
are significantly different across the three proposed growth
models. The result suggests that packages fitted by accelerated
growth model and decelerated growth model have a tendency
to maintain more releases and add new features. On the con-
trary, the releases of packages fitted by the decelerated growth
model are less. This illustrates that adding new features is a
double-edged sword to popularity growth: both of acceleration
and deceleration are possible due to adding new features. On
the contrary, less changes make popularity grow steadily.

Functionalities: Figure 3 shows the the word-cloud graphs
created with the keywords of every package fitted by three
proposed growth models. The result shows that the func-
tionalities have a large variation across the three proposed
growth models. The top 3 keywords of packages in accel-

TABLE IV
SUMMARY STATISTICS OF THE 101,088 FITTED PACKAGES.

Fitting Model Min. 1st Qu. µ = median 3rd Qu. Max. x̄ = mean p-value
accelerated growth model 1001.0 3091.0 8312.0 48718.0 800785605.0 2505140.14

Total downloads steady growth model 1001.0 1511.0 2430.0 4876.0 92901071.0 49305.13 1.22e-09
decelerated growth model 1001.0 1619.0 2820.0 6039.75 15443288.0 24208.82
accelerated growth model 366.0 759.0 1179.0 1507.0 17263.0 1169.85

Age (# days) steady growth model 366.0 585.0 781.0 1017.0 2300.0 817.89 1.12e-54
decelerated growth model 366.0 423.0 533.0 796.0 2291.0 640.79
accelerated growth model 0.0 1.0 1.0 1.0 134.0 1.53

Contributors steady growth model 0.0 1.0 1.0 1.0 64.0 1.27 0.63
decelerated growth model 0.0 1.0 1.0 1.0 55.0 1.29
accelerated growth model 0.0 1.0 2.0 4.0 106.0 3.79

dependencies steady growth model 0.0 1.0 3.0 5.0 114.0 4.24 0.24
decelerated growth model 0.0 2.0 3.0 6.0 122.0 4.81
accelerated growth model 0.0 1.0 3.0 10.0 32130.0 38.13

dependents steady growth model 0.0 1.0 1.0 2.0 3456.0 3.31 9.38e-49
decelerated growth model 0.0 1.0 1.0 2.0 61.0 2.29
accelerated growth model 0.0 3.0 6.0 13.0 4204.0 12.95

versions steady growth model 0.0 2.0 3.0 7.0 742.0 6.55 0.005
decelerated growth model 0.0 4.0 7.0 14.0 1813.0 12.58

(a) accelerated growth model (b) steady growth model (c) decelerated growth model

Fig. 3. The word-cloud graph using the keywords of every package fitted by each growth models.

erated growth model are gruntplugin, gulpplugin and react-
component, which are all related with one particular popu-
lar package. Among them, grunt4 package is a JavaScript
task runner, which can free developer from repetitive tasks
like minification, compilation, unit testing, linting, etc. gulp5

package is a toolkit that helps developer automate painful
or time-consuming tasks in the development workflow. react6

package is a JavaScript package for building user interfaces,
a traditional client-side application on web development. It
illustrates that grunt, gulp, and react are probably most widely
used packages in npm, so the packages related to them can
easily gain popularity in accelerated speed. Additionally, the
packages fitted by decelerated model also get two significant
hot keywords — plugin and api. This might suggest that
some packages of this kind suffer from higher risk of losing
popularity as time passes by.

Hence, we answer RQ2:

4https://gruntjs.com/
5http://gulpjs.com/
6https://github.com/facebook/react

Some main factors including age, dependents, new fea-
tures, and functionalities have effects on popularity growth.
Among them age and dependents have a positive impact on
popularity growth while the new features have possibility
of both acceleration and deceleration. We also reveal some
possible effects of functionalities on popularity growth.

IV. DISCUSSION

In this section, we aim to give some suggestions to prac-
titioners in npm community to help them on developing and
evolving their packages.

• npm community is health and well maintained. There-
fore, practitioners in such community could possibly get
chances to publish successful packages gaining a lot of
acceptance.

• The popularity also complies with the Matthew Effect -
the popular and rapid growing packages gain more and
more acceptance easily. It’s not wise for developers to
have their packages compete with these packages.

• The early packages have strong advantage. The packages
tested by time are proved to be of good quality and
much more easily to be accepted. To compete with these
early packages, developers should aim to introduce their
packages with the distinctive features and good reliability
to persuade other packages to make a change.

• Being widely reused by other packages will make a pack-
age popular. Easy-to-use features and well-maintained
documents will help on that. Especially, being merged
into the dependency chain of a popular and rapid growing
package is a convenient way to accelerate the popularity
growth of a package. So developers can find some popular
and rapid growing packages which could possibly reuse
their packages and provide more reliable and effective
functionalities to them.

• Adding new features is a double-edged sword. On one
hand, frequent changes of versions usually refer to the
package is well maintained. On the other hand, the new
features will also possibly result in dependency chain
breakages and confuse the re-users. Developers should
pay attention to the balance between them.

• Packages related to some popular packages also easily
become popular in npm. Developing packages related to
popular packages may be a good choice for practitioners
in npm community.

V. CHALLENGES AND FUTURE WORK

In this paper, we model the popularity growth of packages
as curves and fit it against the three proposed growth models
to understand the common characteristics of the popularity
growth of packages in npm. We found that 51.56% of the
studied packages depict the steady growth model, followed by
accelerated growth model (40.02%) and decelerated growth
model (7.20%). The result suggests that the reuse of packages
in npm is still active, with more and more packages being
installed from the npm. Also, we select and examine some
main software ecosystem factors to understand their impacts
on popularity growth. Our study shows that age, dependents,
new features, and functionalities play significant roles in
popularity growth. Based on these findings, we give some
suggestions to practitioners in npm community. We hope
our results provide valuable insights to help practitioners
in developing and evolving packages in a competitive OSS
ecosystem.

For the future work, although our approach of modeling
the popularity growth of packages is proved to be effective
because of the low percentage of packages not fitted by any
growth models, we still don’t know why these packages could
not be fitted. By observing several packages, we find that the
popularity of some packages not fitted is changing dramati-
cally in a short time. It will be very interesting to find out
why it happens. Secondly, although we have found the com-
mon characteristics of popularity growth and some software
ecosystem factors having an impact on the growth, the detailed
mechanism of how these factors impact popularity growth is
still not very clear. Additionally, we presume that there are

other factors that can have an impact on the popularity growth
of packages since our selected factors are only a portion of
all the factors of a software ecosystem. We consider these
as future work. Our future work also includes extending the
research to different ecosystems such as RubyGems or CRAN
R ecosystem. Also, it would be interesting to do predictions
on popularity growth based on the factors we observed.

VI. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 18H04094.

REFERENCES

[1] M. Ahmed, S. Spagna, F. Huici, and S. Niccolini. A peek into the future:
Predicting the evolution of popularity in user generated content. In
Proceedings of the Sixth ACM International Conference on Web Search
and Data Mining, WSDM ’13, pages 607–616, New York, NY, USA,
2013. ACM.

[2] V. Almering, M. van Genuchten, G. Cloudt, and P. Sonnemans. Us-
ing software reliability growth models in practice. Software, IEEE,
24(6):82–88, Nov 2007.

[3] G. Annadurai, S. Rajesh Babu, and V. R. Srinivasamoorthy. Develop-
ment of mathematical models (logistic, gompertz and richards models)
describing the growth pattern of pseudomonas putida (nicm 2174).
Bioprocess Engineering, 23(6):607–612, 2000.

[4] B. W. Boehm. Improving software productivity. Computer, 20(9):43–57,
Sept. 1987.

[5] H. Borges, A. C. Hora, and M. T. Valente. Understanding the factors
that impact the popularity of github repositories. CoRR, abs/1606.04984,
2016.

[6] W. Daniel. Applied nonparametric statistics. Houghton Mifflin, 1978.
[7] S. M. David, I. N. William, and A. F. Michael. The Basic Practice of

Statistics, page 138. W. H. Freeman, 2013.
[8] K. J. Grimm, R. Nilam, and H. Fumiaki. Nonlinear growth curves in

developmental research. Child Dev., 82:1357–1371, Sep 2011.
[9] W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance

analysis. Journal of the American Statistical Association, 47(260):583–
621, 1952.

[10] R. G. Kula, D. M. German, T. Ishio, A. Ouni, and K. Inoue. An
exploratory study on library aging by monitoring client usage in a
software ecosystem. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 407–
411, Feb 2017.

[11] R. Langone, R. Mall, C. Alzate, and J. A. K. Suykens. Kernel Spectral
Clustering and Applications, pages 135–161. Springer International
Publishing, Cham, 2016.

[12] J. Lehmann, B. Gonçalves, J. J. Ramasco, and C. Cattuto. Dynamical
classes of collective attention in twitter. In Proceedings of the 21st
International Conference on World Wide Web, WWW ’12, pages 251–
260, New York, NY, USA, 2012. ACM.

[13] M. Lungu, M. Lanza, T. Grba, and R. Robbes. The small project
observatory: Visualizing software ecosystems. Science of Computer
Programming, 75(4):264 – 275, 2010. Experimental Software and
Toolkits (EST 3): A special issue of the Workshop on Academic
Software Development Tools and Techniques (WASDeTT 2008).

[14] L. Magee. R 2 measures based on wald and likelihood ratio joint
significance tests. The American Statistician, 44(3):250–253, 1990.

[15] M. D. McIlroy, J. Buxton, P. Naur, and B. Randell. Mass-produced
software components. In Proceedings of the 1st International Conference
on Software Engineering (ICSE1968), pages 88–98, 1968.

[16] T. A. Standish. An essay on software reuse. IEEE Transactions on
Software Engineering, SE-10(5):494–497, Sept 1984.

[17] E. Wittern, P. Suter, and S. Rajagopalan. A look at the dynamics of the
javascript package ecosystem. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pages 351–361,
New York, NY, USA, 2016. ACM.

[18] S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability growth modeling
for software error detection. Reliability, IEEE Trans., R-32(5):475–484,
Dec 1983.

