
CCEvovis: A Clone Evolution Visualization System
for Software Maintenance

Hirotaka Honda∗, Shogo Tokui∗, Kazuki Yokoi∗, Eunjong Choi‡, Norihiro Yoshida†, and Katsuro Inoue∗
∗Osaka University, Japan, {h-honda, s-tokui, k-yokoi, inoue}@ist.osaka-u.ac.jp

‡Nara Institute of Science and Technology, Japan, choi@is.naist.jp
†Nagoya University, Japan, yoshida@ertl.jp

Abstract—Understanding the evolution of code clones is im-
portant in software maintenance. With the information about
how code clones evolve, both developers and researchers can
understand the impacts of code clones and build a more robust
code clone management system. So far, many studies have
investigated the evolution of code clones to better understand
the effects of code clones. However, only a few systems have
been presented to support managing code clones based on the
information about how code clone evolves. To mitigate this
problem, in this paper, we present CCEvovis, a system that
visualizes the evolved code clones across multiple versions of a
program. CCEvovis highlights and visualizes the clone change
to support software maintenance. CCEvovis is available at:
https://github.com/hirotaka0616/CCEvovis.

Index Terms—code clone, software maintenance, visualization

I. INTRODUCTION

Code clones, duplicated code, are created by copying and

pasting existing code with/without modifications. Most of the

software contains a significant amount of code clones. They

cause additional effort in comprehending and maintaining a

system.

Several recent systems for the management and visualiza-

tion of code clones do exist to support maintenance of code

clones [1]. By using these systems, developers can effectively

apply consistent modifications to a clone set (i.e., a set of

code clones that are identical or similar to each other) or find

candidates for clone refactoring (i.e, merging code clones into

a single unit) [2]. In the past, our research group developed

a code clone management system called Clone Notifier [3],

which reports creation and change of code clones between

two consecutive versions. We also confirmed that a developer

successfully identified ten candidates for clone refactoring by

using Clone Notifier. However, it has a limitation in that it

only provides change information of code clones between two

versions. Understanding the evolution of code clones are im-

portant for maintenance of code clones. With the information

about how code clones evolve, developers can understand the

impacts of code clones and manage them accordingly. How-

ever, because Clone Notifier provides change information of

code clones between two versions, developers might overlook

important information for managing code clones in the context

of clone evolution.

To mitigate this problem, in this paper, we present CCEvo-
vis, a system for visualizing the evolution of code clones

to support code clone maintenance. CCEvovis detects code

clones across multiple versions of a program and provides and

visualizes and highlights the evolution of code clones based

on their evolution patterns.

II. CCEVOVIS

CCEvovis is a system that visualizes the evolved code

clones across multiple versions of a program to support

maintenance of code clones. Fig. 1 shows the architecture

overview of CCEvovis for two versions of a program. As can

be seen in this figure, CCEvovis is comprised of the following

four steps: (1) Detect Clones, (2) Map Clones, (3) Categorize

Clone Sets, and (4) Visualize the Clone Evolution.

A. Detect Clones

At first, CCEvovis detects code clones Ci and Ci+i from

two given consecutive versions vi and vi+i of a program.

Note that each version can be also directly extracted from

Github repository. To detect code clones, CCEvovis allows a

user to choose a code clone detection tool among following

representative code clone detection tools.

• Vector-based clone detection tool [4]: a lightweight tool

for detecting function clones using information retrieval

techniques

• CCVolti [5]: a code clone detection tool that detects

block-level code clones

• CCFinderX1: a token-based code clone tool that detects

syntactically similar code clones

• SourcererCC [6]: a token-based code clone detection

tool for very large scale source code

B. Map Clones

To map detected code clones Ci and Ci+i between two

versions, CCEvovis uses the same method with the Clone
Notifier. That is, it maps code clones based on correspondence

of the start and end line of them in source code between

versions. It also uses the parent-child relationship to code

clones between two versions to map code clones. Let a

code clone ci ∈ Ci is detected in a version vi and a code

clone ci+1 ∈ Ci+1 is detected in a version vi+1 in the two

consecutive versions vi and vi+1. Moreover, three lines were

newly inserted to code clone ci+1 between two versions. In

1http://www.ccfinder.net/ccfinderx-j.html

122

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00026

Stacked Bar Graph Clone Set List Source Code

Detect
Clones

Detect
Clones

Map
Clones

Categorize
Clone SetsVi

Vi+1

Ci

Ci+1

Ci+1Ci
Mapped Clones

Visualize the Clone Evolution

Fig. 1: An architecture overview of CCEvovis

this case, ci and ci+1 are mapped by counting and inserted

lines in ci+1. Thus, the start line number of ci+1 is the same

as ci, and the end line number of ci+1 is increased by three

lines. In the the parent-child relationship, a child clone of ci
is ci+1 and a parent clone of ci+1 is ci.

C. Categorize Clone Sets

All clone sets are categorized based on change patterns of

them between two versions vi and vi+1 of a program. To

classify clone sets, CCEvovis also uses the same categories

that were used in the Clone Notifier.
• Stable clone set: Stable clone set contains code clone ci+1

that satisfies the following conditions: (1) parent clone of

ci+1 exists in vi and (2) ci+1 is unmodified until vi+1.

These clone sets contain clones that involved in vi and

vi+1 respectively.

• New clone set: New clone set contains code clones ci+1

whose parent clones do not exist in vi. These clone sets

involved in only vi+1.

• Deleted clone set: Deleted clone set contains clones ci
whose child clones do not exist in vi+1. These clone sets

involved in only vi.
• Changed clone set: Changed clone set contain a code

clone that satisfies one of the following conditions: (1)

parent clone of ci+1 exists in vi and ci+1 is unmodified

until vi+1, (2) code clones ci+1 whose parent clones do

not exist in vi, and (3) clones ci whose child clones

do not exist in vi+1 These clone sets contain changed,

deleted and newly added clones that involved in vi and

vi+1 respectively.

D. Visualize the Clone Evolution

Visualization of the clone evolution may be an effective aid

to clone management. To support the maintenance of code

clones, CCEvovis provides and visualizes different informa-

tion of the clone evolution with three pages: 1) Stacked Bar

Graph page, 2) Clone Set List page, and 3) Source Code

page. Fig.2 depicts the visualization of the clone evolution

of PostgreSQL2 from these three pages.

Stacked Bar Graph page: The goal of the Stacked Bar

Graph page is to visualize the evolution of the clone sets

in different categories, explained in Section II-C. There are

two advantages of using the Stacked Bar Graph in CCEvovis.

2https://www.postgresql.org/

First, a user can intuitively grasp the size, ratio, and tendency

of each clone set. Second, he/she is able to easily compare

each clone set across multiple versions.

An example of the Stacked Bar Graph page is shown in

Fig.2 (a). As can be seen from this figure, the horizontal axis

of the Stacked Bar Graph shows each date of the version. The

vertical axis of the Stacked Bar Graph presents the number

of each clone sets in the different categories. That is, New

clone set is shown with a red bar, Changed clone set is shown

with a green bar, and Deleted clone sets is shown with a dark

blue bar. The height of the Stacked Bar Graph corresponds to

the sum of the number of New, Changed, and Deleted clone

sets. Meanwhile, CCEvovis does not provide the information

on Stable clone sets in the Stacked Bar Graph page. There

are two reasons for this: first, the need for providing the

information of the Stable clone set is low. Generally, the Stable

clone sets are not considered as a target for the management.

The second, it avoids unnecessary effort for distinguishing the

important information to manage code clones in a short-term

analysis. We assume that most of the users adopt CCEvovis to

analysis the evolution of code clones within a relatively short

time period such as a day or week. In this case, most code

clones are not changed [7]. Therefore, most of the clone sets

might be classified as Stable clone sets. If Stacked Bar Graph

page provides information on Stable clone sets, it is difficult

for a user to acquire important information for managing

code clones such as New, Changed, and Deleted clone sets.

By clicking a Stacked Bar Graph, a user can move to the

corresponding Clone Set List page.

Clone Set List page: The goal of the Clone Set List page is

to present a list of clone sets in different categories (i.e., New,

Changed, Deleted, and Stable clone sets) between two selected

versions. Note that this page provides a list of Stable clone

sets because a user might want to confirm the list of Stable

clone sets for his/her task. These clone sets are displayed with

the following order: New, Changed, Deleted, and Stable clone

sets. In this page, new clone sets are displayed first, because we

assume that these clone sets should be preferentially managed.

An example of the Clone Set List page is shown in Fig.2 (b).

As can be seen in this figure, the Clone Set List page displays

each clone set with a list of code clones that are belonging to

this clone set. This page also shows the assigned ID, evolution

pattern, the name file where the code clone is located, and the

position of the code clone in the file are displayed for each

123

(a) An example of Stacked Bar Graph page

(b) An example of Clone Set List page

(c) An example of Source Code page

Fig. 2: Web UI for visualizing the clone evolution

code clone. A user can move the Source Code page by clicking

the source code icon.

Source Code page: The goal of the Source code page is

to present source code of the code clones that are involved in

the selected clone set. An example of the Source Code page is

Fig. 3: An overview of the Stacked Bar Graph page

shown in Fig.2 (c). In this page, the source code of each code

clone is highlighted with the yellow background color. ”+”

indicates an added line in the new version, and ”-” indicates

a deleted line in the new version.

III. ILLUSTRATIVE USAGE SCENARIO

In this section, we demonstrate the usage of CCEvovis for

visualizing the evolution of code clones to support the main-

tenance of code clones. In particular, we provide illustrative

of a usage scenario with respect to the following code clone

maintenance tasks:

1) Identify targets for clone refactoring: One scenario for

the use of CCEvovis is that a user can identify targets

for clone refactoring. Generally, it is difficult to identify

targets for clone refactoring among detected code clones.

2) Confirm refactored code: Another group of tasks is that

confirming the refactored code clones. It is important for

developers to confirm the refactored code clones because

inconsistent changes to code clones introduce software

defects.

To accomplish these tasks, the developer uses CCEvo-
vis with the ten versions of the Apache Tomcat3, an open

source implementation of the Java Servlet, JavaServer Pages,

Java Expression Language, and Java WebSocket technologies.

The code clones were analyzed within the time-frame from

September 8, 2018, to November 10, 2018, with a one-

week interval. To detect code clones from these versions, the

developer selects SourcererCC as a code clone detection tool.

Fig.3 depicts the Stacked Bar Graph page of the Apache

Tomcat. From this figure, the developer can confirm the

following:

(A) A New clone set (shown in a red bar) appeared on

October 13, 2018

(B) A Deleted clone set (shown in a dark blue bar) appeared

on November 10, 2018

With this information, the developer can identify a target

for clone refactoring. In order to refactor this clone set, the

3http://tomcat.apache.org/

124

java/org/apache/catalina/tribes/membership/cloud/CertificateStreamProvider.java

13 Oct. 2018 10 Nov. 2018

java/org/apache/catalina/tribes/membership/cloud/TokenStreamProvider.java

java/org/apache/catalina/tribes/membership/cloud/AbstractStreamProvider.java

100 private static TrustManager[] configureCaCert(String caCertFile) throws Exception {
101 if (caCertFile != null) {

�

�

�

120 } else {
121 log.warn(sm.getString("certificateStream.CACertUndefined"));
122 return InsecureStreamProvider.INSECURE_TRUST_MANAGERS;
123 }
124 }

84 private TrustManager[] configureCaCert(String caCertFile) throws Exception {
85 if (caCertFile != null) {

�

�

�

112 } else {
113 log.warn(sm.getString("tokenStream.CACertUndefined"));
114 return InsecureStreamProvider.INSECURE_TRUST_MANAGERS;
115 }
116 }

113 protected static TrustManager[] configureCaCert(String caCertFile) throws Exception {
114 if (caCertFile != null) {

�

�

�

136 } else {
137 log.warn(sm.getString("abstractStream.CACertUndefined"));
138 return InsecureStreamProvider.INSECURE_TRUST_MANAGERS;
139 }
140 }

Clone 1

Clone 2

NEW clone set

Refactoring

Fig. 4: An example of the NEW code set

developer can determine whether or not refactor this clone set

by clicking the New clone set appeared on October 13, 2018,

and then confirming details of each code clone contained in

this clone set and its source code in the Clone Set List and

Source Code pages.

Moreover, the developer can confirm refactored code by

clicking the Deleted clone set that appeared on November 10,

2018. He/she can check the details of each clone contained in

the Deleted clone set and its source code in the Clone Set List

and Source Code pages. This means that the developer is able

to confirm that the refactored clone sets with CCEvovis.

To better understand this phenomenon, we analyze the

details of these clone sets and confirm that the New clone set

appeared on October 13, 2018, was refactored on November

10, 2018. As a result, the New clone set appeared as the

Deleted clone set on November 10, 2018. Fig.4 depicts the

detailed of information of these clone sets. In this figure,

cloned methods named configureCaCert in the Certificat-
eStreamProvider class and TokenStreamProvider class were

newly appeared in October 13, 2019 and then refactored in

November 10, 2018.

CCEvovis can provide information on the New clone set

to be refactored. In addition, the developer can confirm the

completion of refactoring of the New clone set with informa-

tion on the Deleted clone set. These suggest that CCEvovis is

able to support identifying a target for clone refactoring and

confirming the refactored clone.

IV. CONCLUSION AND FUTURE WORK

This paper presents CCEvovis, a system for visualizing the

evolution of code clones to support code clone maintenance.

CCEvovis detects code clones across multiple versions of

a program and provides and visualizes and highlights the

evolution of code clones based on their evolution patterns with

three main pages. CCEvovis supports the maintenance of code

clones. In particular, CCEvovis is able to support identifying

a target for clone refactoring and confirming the refactored

clone.

As a part of future work, we plan to extend CCEvovis to

be integrated into the IDE for helping developers maintain

code clones in time. We are also interested in improving the

visualization of clone evolution by allowing developers to

hide/filter out certain clone categories of clone sets.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers JP25220003, JP18H04094 and JP16K16034.

REFERENCES

[1] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software
clone management: Past, present, and future (keynote paper),” in Proc.
of CSMR-WCRE, 2014, pp. 18–33.

[2] M. Fowler, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[3] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying
clone change notification system into an industrial development process,”
in Prof. ICPC, May 2013, pp. 199–206.

[4] Y. Yamanaka, E. Choi, N. Yoshida, and K. Inoue, “A high speed function
clone detection based on information retrieval technique,” IPSJ Journal,
vol. 55, no. 10, pp. 2245–2255, 2014, in Japanese.

[5] K. Yokoi, E. Choi, N. Yoshida, and K. Inoue, “Fine-grained block
clone detection based on information retrieval techniques,” JSSST journal
Computer Software, vol. 35, no. 4, pp. 16–36, 2018, in Japanese.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
erCC: Scaling code clone detection to big–code,” in Proc. of ICSE, 2016,
pp. 1157–1168.

[7] J. Krinke, “Is Cloned Code more Stable than Non-cloned Code?” in Proc.
SCAM, 2008, pp. 57–66.

125

