
Prediction of Fault-proneness at Early Phase in Object-Oriented Development

Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue

Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

E-mail: kamiya@ics.es.osaka-u.ac.jp

Abstract

To analyze the complexity of object-oriented software,
several metrics have been proposed. Among them, Chi-
damber and Kemerer’s metrics are well-known ones as
object-oriented metrics. Also, the effectiveness has been
empirically evaluated from the viewpoints of estimating
the fault-proneness of object-oriented software. In the
evaluations, their metrics were applied to not design
specification but the source code because some of them
measure an inner complexity of a class, and such infor-
mation can not be obtained until the algorithm and struc-
ture of the class are determined at the end of design phase.
However, the estimation of the fault-proneness should be
done in the early phase to effectively allocate effort for
fixing the faults. This paper proposes a new method to
estimate the fault-proneness of the class in the early phase,
using several complexity metrics for object-oriented soft-
ware. In the proposed method, we introduce four check-
points into the analysis / design / implementation phase,
and estimate the fault-prone classes using the applicable
metrics at each checkpoint.

1. Introduction
In attempt to reduce the number of delivered faults, it

was reported that most companies spend between 50-80%
of their software development effort on testing[7]. There-
fore, reducing the effort of testing is a key to high produc-
tivity in software development. Software review is one of
the most effective techniques to reduce the testing effort.
In order to effectively review and test the software prod-
ucts, it is needed to identify the fault-prone modules so
that review and testing effort can be concentrated on the
modules[1]. Several complexity metrics have already been
proposed to localize such the fault-prone modules. Then,

Chidamber and Kemerer proposed six complexity metrics
for OO software [5]. However, the metrics suite was ap-
plied to the source code because some of their metrics
measure an inner complexity of a class, and such informa-
tion cannot be obtained until the algorithm and structure
of the class are determined at the end of design phase. The
estimation of the fault-proneness should be done in the
early phase to effectively allocate the effort for fixing the
faults.

This paper proposes a new method to estimate the
fault-proneness of the class in the early design phase,
using several complexity metrics for OO software. In the
proposed method, we introduce four checkpoints into the
development process based on OMT[14]. According to the
data obtained from the products (design specification and
source code) at each checkpoint, we use only the applica-
ble metrics among the complexity metrics and estimate the
fault-proneness by using the multivariate logistic regres-
sion analysis[18]. Then, we have applied the proposed
method to an experimental project held at a computer
company. The analysis result of the experiment shows the
validity and usefulness of the proposed method in the
estimation of the fault-proneness.

2. Preliminary

2.1. Object-Oriented Design Method

There exist several object-oriented design methods
[2][6][14][15]. Among them, OMT[14] is a broad meth-
odology that addresses most aspects of the OO analysis
and design technology and incorporates the lessons learn-
ed from real projects as well as from other methodologies.

OMT consists of three phases: Analysis, System Design
and Object Design. Analysis is concerned with under-

standing and modeling the application and the domain
within which it operates. System Design determines the
overall architecture of the system. The system is organized
into subsystems. Concurrency is organized by grouping
objects into concurrent tasks. Object Design elaborates,
refines and then optimizes the analysis models to produce
a practical design. Algorithms and data structures used in
the classes are determined.

From the viewpoint of the structure of the class, elabo-
ration is carried out as the following six steps:
1. Identify classes in the target system.
2. Identify the reference-relationships between the classes.
3. Identify the attributes of the classes.
4. Determine the derivation-relationships between the

classes.
5. Define the operations based on the functional models.
6. Design the algorithms to implement the operations.

2.2. Complexity Metrics for Object-Oriented
Software

Software metrics are quantitative measures of software
products and process[8]. Especially, the complexity metric
for a program code is the most well-known metric, and is
usually used in the implementation phase and test phase,
since it is a good indicator of whether the product is well-
designed, understandable, and easy to modify. For exam-
ple, Software Science by Halstead[9] and Cyclomatic
Number by McCabe have been used in many software
development organizations. Then, Chidamber and Ke-
merer[5] have defined a suite of metrics for OO design.
The metrics suite includes six metrics and mainly evaluate
the relationship between the classes on the design specifi-
cation. Each metric evaluates the complexity of the target
class and the definitions of the metrics are as follows[5]:

WMC(weighted methods per class):
 Consider the target class C1, with methods M1, ..., Mn,
that are related in the class. Let c1, ..., cn be the com-
plexity of the methods. Then WMC = Σ ci. You ought to
choose an adequate interval scale metric f that gives ci =
f(Mi).
 In both [1] and [5], they made an assumption that all
method complexities are considered to be unity, then
WMC is the number of methods. We also use this as-
sumption, so we plainly employ a term NIM(Number of
Instance Methods)[12] as WMC.

DIT(depth of inheritance tree):
 Depth of inheritance of the target class is the DIT metric
for the class.

NOC(number of children):
 NOC means the number of immediate subclass subordi-
nated to the target class in the class hierarchy.

CBO(coupling between object classes):
 CBO for the target class is a count of the number of other
classes to which it is coupled. A class is coupled to
another if it uses is methods or instance variables of an-
other.

RFC(response for a class):
 RFC = | RS | where RS is the response set for the class. RS

= M ∪ (∪all i Ri) where Ri = set of methods called by
method i and M = set of all methods in the class.

LCOM(lack of cohesion in methods):
 Consider the target class C1 with n methods M1, ..., Mn.
Let I i = set of instance variables used by methods Mi.
There are n such sets I1, ..., In. Let P = { (I i, I j) | I i ∩ l j =
φ } and Q = { (I i, I j) | I i ∩ I j ≠ φ } . If all n sets I1, ..., In are φ
then let P = φ. LCOM = max(| P | - | Q |, 0).

Besides the above metrics, NIV (Number of Instance Vari-
ables) is frequently used as a design metric of object-
oriented software[12].

NIV(number of instance variables):
 NIV is a number of instance variables of the target class.

2.3. Evaluation of Complexity Metrics

Chidamber and Kemerer have presented empirical data
on their metrics from actual commercial systems. They
have adopted the Weyuker’s properties to evaluate their
metrics (Weyuker has developed a list of desiderata for
software metrics and has evaluated a number of existing
software metrics using these properties[16]), and conclud-
ed that the metrics are generally satisfied the Weyuker’s
properties. Basili et al. empirically evaluated that Chi-
damber and Kemerer’s OO metrics show to be better pre-
dictors than the best set of traditional code metrics[1].

In both [1] and [5], they collected the metrics values
from source codes. But the design specification is con-
structed in the earlier development phase. Thus, by ap-
plying the metrics to the design specification, it is possible
to estimate the fault proneness more effectively. It would
produce efficient fault detection to do the resource-
allocation and coordinate the scheduling based on the
result of fault-estimation. However, it is very difficult to
apply the metrics to the design specification. For example,
with respect to calculating the RFC and LCOM, we need
the detail information about the algorithms in the method
and call-relationship between the methods. These infor-
mations are usually described on the design specification
at the later design phase (just before the implementation
phase).

3. Proposed Method

3.1. Key Idea

We regard the analysis / design / implementation phase
as a series process in which the information about software
product gradually increases as the process progresses. As
described in Section 2, some of the metrics can be applied
to the design specification at the earlier design phase, and
some of them can be applied at the later design phase.
Based on the fact, as design phase progress, we estimate
the fault-proneness only using the applicable metrics to
the design specification.

At first, we introduce four checkpoints in the develop-
ment process and identify which information has been
added to the design specification at each checkpoint. Then,
we define the subset of the conventional metrics applicable
to the design specification developed at each checkpoint.
Finally, at each checkpoint, we estimate the fault-

proneness of the class using the multivariate logistic re-
gression analysis with the applicable metrics.

3.2. Checkpoints and Applicable Metrics

In Section 2, we divided the development process of
OMT into the following six steps. Based on the division,
we introduce the four checkpoints in the analysis / design /
implementation phase of OMT.

(CP1) Entity and relation
CP1 is the checkpoint where Steps 1, 2 and 3 have been

completed. That is, reference-relationship between classes
(coupling) and attributes (instance variable) of the classes
have been determined. NIV can be calculated from the
attribute information. The derivation-relationships have
not been described. CBO can be calculated from the refer-
ence-relationship between classes, but reference to the
reused class is not clearly described so that the value of
CBO is not correct.

(CP2) Structure and inheritance
CP2 is the checkpoint where Steps 4 and 5 have been

completed. That is, derivation between classes and the
methods in the classes have been determined and class
hierarchy tree is clearly described. Thus, DIT can be cal-
culated. NIM can be calculated from the information of
the methods. The reused classes are determined so that
CBO can be calculated correctly.

(CP3) Algorithm
CP3 is the checkpoint where Step 6 has been completed.

That is, algorithms in each method and call-relationship
between the methods are determined. Based on the infor-
mation, LCOM and RFC can be calculated.

Table 1. Checkpoint and available metrics.
Checkpoint Added Information Available Metrics

(CP1)
Entity and Relation

Reference-relationship among classes and
attributes of classes

NIV, CBON

(CP2)
Structure and inheritance

Class hierarchy, methods and reused library NIV, CBON, CBOR, CBO, NIM, DIT,
NOC

(CP3)
Algorithm

Algorithm of the methods NIV, CBON, CBOR, CBO, NIM, DIT,
NOC, RFC, LCOM

(CP4)
Implementation

Source code NIV, CBON, CBOR, CBO, NIM, DIT,
NOC, RFC, LCOM, SLOC

(CP4) Implementation
CP4 is the checkpoint where source code has been im-

plemented. For each class, SLOC (source lines of code)
can be calculated.

CBO at CP1 (hereafter: CBON, CBO newly developed)
differs from original definition. However, our previous
research result showed that CBON have highly correlated
with the fault-proneness[10]. We also introduce
CBOR(CBO reused) that is defined as CBOR = CBO –
CBON. Table 1 summarizes the checkpoints and the met-
rics which can be calculated at each checkpoint.

3.3. Multivariate Logistic Regression Analysis

Recently, the multivariate logistic regression analysis,
whose inputs are several metrics, has been frequently used
to evaluate the fault-proneness of the program[1][3].

A multivariate logistic regression model is based on
following relationship equation:

P(X1, ..., Xn) = 1 / { 1 + exp(-(C0 + C1 X1 + ... + Cn Xn))}

where P is the probability that errors is found in a class,
and Xis are metrics of the class. If given metrics values
make P greater than 0.5, the class is predicted to have
faults (fault prone).

To obtain particular prediction equation P(X1, ..., Xn),
we need to determine the coefficients C0, ..., Cn by step-

wise variable selection process[18], using observed met-
rics and fault data.

4. Empirical Evaluation

4.1. Outline of the experiment

The experimental project was performed at a computer
company for five days in August 1997. The main charac-
teristics of the project can be summarized as follows:
(1) The Developers were new employees of the computer

company and had just graduated from college in March
1997. All the developers studied object-oriented design
and programming in C++ Language.

(2) There are sixteen developer teams of four or five de-
velopers. Each team built a mail deliver system of an
identical requirement. The predetermined system re-
quirements, the division to subsystems and subsystem's
interface designs were handed over to each team.

(3) After a team declared that its program was finished,
the instructors executed an acceptance test.

4.2. Empirical Data

We collected complexity metrics and fault data from
each developer. Unfortunately, we could not collect the
design specification based on OMT in this experiment. We
assume that all the information of the design specification

Table 2. Descriptive statistics of the 141 C++
classes.
Metrics Min. Max. Me-

dian
Mean Std. Dev.

NIV 0 14 3 4.00 2.67
CBO 0 5 1 1.39 1.59
CBON 0 3 0 0.53 0.99
CBOR 0 4 1 0.86 0.99
NIM 0 22 3 5.73 4.86
DIT 0 6 4 3.44 1.41
NOC 0 0 0 0.00 0.00
RFC 0 27 7 8.23 6.81
LCOM 0 190 3 22.42 36.84
SLOC 0 420 71 96.43 81.01
Ec 0 17 0 0.57 1.93
Et(min.) 0 599 0 12.68 58.94

Ec is the number of faults detected in the class.
Et is the time spent for fixing the faults.

Table 3. Coefficients at Each Checkpoint.
CoefficientsMetrics

CP1 CP2 CP3 CP4

C0 -3.37 -1.23 -1.31 -2.69
NIV 0.420 EL EL EL
CBON EL EL EL EL
CBOR - 0.934 0.890 EL
CBO - EL EL EL
NIM - 0.336 EL EL
DIT - -1.16 -1.28 -0.663
NOC - - EL EL
RFC - - 0.284 EL
LCOM - - - EL
SLOC - - - 0.0302

The ‘EL’ means that the metric was eliminated form
the prediction equation by a backward variable elimi-
nation process. The ‘ -’s are not applicable at the
checkpoint.

were included in the source code since it was implemented
based on the design specification. So, we collected the
metrics values, which can be calculated at each checkpoint,
from source code by using a metrics tool that extracts nine
metrics from C++ source code[11].

We prepared a documentation tool to collect fault data.
We have eliminated the data of developers who did not
report data or irresponsible data. As a result, seventeen
members’ data (141 classes and 80 faults) are available.
Table 2 shows common descriptive statistics of the metrics
distributions.

4.3. Analysis

Table 3 shows the prediction model’s coefficients cal-
culated by multivariate logistic regression analysis. DIT
appeared as a negative factor to complexity. This can be
explained by the fact that there were a lot of ‘dialog’
classes developed and the functionalities were very simple
but the their DIT values were relatively large. LCOM is
eliminated from a equation at CP4, and this result agrees
with the results in [1].

Tables 4, 5, 6 and 7 show the obtained prediction model
by the multivariate logistic regression with the data col-
lected at each checkpoint. For example, in Table 4, 112

classes are predicted to be no-faulty and actually no-faulty.
Eighteen classes are predicted to be no-faulty but actually
faulty (include 43 faults).

Here, we introduce the following three criterions to
evaluate the result of the prediction:

Correctness = CPF AF / (CPF AF + CPF AN)
Completeness = CPF AF / (CPF AF + CPN AF)
Completenesserror based = EPF AF / (EPF AF + EPN AF)

where CPF AF is the number of predicted faulty and actu-
ally faulty classes, CPF AN is number of predicted faulty but
actually no-faulty classes, CPN AF is number of predicted
no-faulty but actually faulty classes, Ex is number of faults
found in corresponding Cx classes.

Table 8 shows the estimation accuracy of the fault
proneness at each checkpoint. According to the progress of
the checkpoints, the estimation accuracy is improved.
CP4 is the last phase of the development process and the
estimation accuracy at CP4 is the upper limit in this ex-
periment.

Completeness at CP1 is relatively low (33%). On the
other hand, correctness is high (82%). Thus, the estimati-
on can be used to seed the fault-prone classes. The seeded
classes become the candidates that should be reviewed and
tested selectively. Also, the location of the seeded classes
might be the criterion of the judgment for review. For
example, if the seeded classes are concentrated on the
important section of the design specification and the sec-
tion is difficult to test, we should redesign it.

Though the metrics for algorithms of the method can-
not be used at CP2, completeness at CP2 is excellent with
respect to the upper limit at CP4. It suggests that it would
be possible to estimate the fault-proneness from the design
specification in the design phase where the algorithms are
not determined, without source code.

The result of estimation at CP3 fell short of our expec-
tations. We consider that the accuracy would be improved
by using ‘ fine-grained’ C++ design metrics[3] together at
CP3. The accuracy would be improved by cyclomatic
number as WMC.

Table 4. Fault Prediction at CP1.
Prediction No fault Fault

No fault 112 2Actual
Fault 18(43) 9(37)

The figures before parentheses are the number of
classes. The figures within parentheses are the num-
ber of faults in those classes.

Table 5. Fault Prediction at CP2.
Prediction No fault Fault

No fault 109 5Actual
Fault 11(20) 16(60)

Table 6. Fault Prediction at CP3.
Prediction No fault Fault

No fault 111 3Actual
Fault 9(18) 18(62)

Table 7. Fault Prediction at CP4.
Prediction No fault Fault

No fault 111 3Actual
Fault 8(14) 19(66)

Table 8. Fault Predict Precision at Checkpoint.
Checkpoint CP1 CP2 CP3 CP4

Correctness(%) 82 76 85 86
Completeness(%) 33 59 63 70
Error-based Com-
pleteness (%)

46 75 71 83

5. Conclusion and Future Work

In this paper, we proposed a new method to estimate the
fault-proneness of the class in the early design phase,
using several complexity metrics for OO software. We
have introduced four checkpoints into the analysis/design/
implementation phase, in which particular subsets of
metrics are applicable. We have applied the proposed
method to an experimental project. The analysis result
shows the validity and usefulness of the proposed method.
Future research includes the following:

(1) Extension of proposed method:
We are going to extend the proposed method to deal

with other OO design specifications and other complexity
metrics[4].

(2) Metrics for dynamic complexity:
Chidamber and Kemerer’s metrics evaluate the static

complexity of the OO software. Several OO design specifi-
cations includes dynamic information. It is necessary to
evaluate such dynamic complexity.

(3) Metrics tool for design specification:
Currently, UML (Unified Modeling Language) has

been proposed as the standard description language for the
OO design specification[17]. We are going to develop the
measurement tool for design specification described in
UML.

Acknowledgements

We would like to thank the support of Mr. Yukio Mohri
and Mr. Yousuke Takahashi of Nihon Unisys corporation
for the experimental projects in Section 4. We also thank
Mr. Shuji Takabayashi of Nara Institute of Science and
Technology for his assistance in building a metrics tool.

References
[1] V. R. Basili, L. C. Briand, W. L. Mélo: A validation

of object-oriented design metrics as quality indicators,
IEEE Trans. on Software Eng., Vol. 20, No. 22, pp.
751-761 (1996).

[2] G. Booch: Object Oriented Analysis and Design with
Applications, The Benjamin / Cummings (1994).

[3] L. C. Briand, P. Devanbu, and W. Mélo: An Investi-

gation into Coupling Measures for C++, Proc. of
the19th Int’l Conference on Software Eng., Boston,
USA, pp.412-421 (1997).

[4] L. C. Briand, J. Daly, V. Porter and J. W
�

st: Pre-
dicting Fault-Prone Classes with Design Measures in
Object-Oriented Systems, Proc. of the 9th Int’l Sym-
posium on Software Reliability Eng., Paderborn,
Germany, pp.334-343 (1998).

[5] S. R. Chidamber and C. F. Kemerer: A metrics suite
for object-oriented design, IEEE Trans. on Software
Eng., Vol. 20, No.6, pp.476-493 (1994).

[6] P. Coad and E. Yourdon: Object Oriented Analysis,
2nd ed., Yourdon Press (1991).

[7] J. S. Collofello and S. N. Woodfield: Evaluating the
effectiveness of reliability-assurance techniques,
Journal of Systems & Software, Vol.9, No.3, pp.191-
195 (1989).

[8] N. E. Fenton, and S. L. Pfleeger, Software Metrics, A
Rigorous & Practical Approach. 2nd ed., Thomson,
London (1996).

[9] M. H. Halstead: Element of software science, New
York, Elsevier North-Holland (1977).

[10] T. Kamiya, S. Kusumoto, K. Inoue and Y. Mohri:
Empirical evaluation of reuse sensitiveness of com-
plexity metrics, Information and Software Technol-
ogy (to appear).

[11] T. Kamiya, S. Takayabashi, S. Kusumoto and K.
Inoue: Measurement tool for complexity of C++ pro-
gram, Objecto-Oriented ’98 Symposium, Tokyo, Ja-
pan (1998) (in Japanese).

[12] M. Lorenz and J. Kidd: Object-Oriented software
metrics, New Jersey, Prentice Hall (1994).

[13] T. J. McCabe: A complexity measure, IEEE Trans.
on Software Eng., Vol. SE-2, No.4, pp.308-320
(1976).

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and
W. Lorensen: Object Oriented Modeling and Design,
Prentice Hall (1991).

[15] S. Schlaer and S. Mellor: Object Oriented System
Analysis, Prentice Hall (1988).

[16] E. J. Weyuker: Evaluating software complexity
measures, IEEE Trans. on Software Eng., Vol.14,
No.9, pp.1357-1365 (1988).

[17] UML Modeling Language, Standard Software Nota-
tion. Available at <http://www.rational.com/>.

[18] SPSS Base 8.0 Applications Guide/Professional
Statistics, SPSS (1998).

