Call-Mark Slicing: An Efficient and Economical Way of
Reducing Slice

Akira Nishimatsu' Minoru Jihirat

T Graduate School of Engineering Science,

Osaka University
1-3 Machikaneyama, Toyonaka,
Osaka 560-8531, Japan
+81 6 6850 6571

{a-nisimt, kusumoto, inoue}@ics.es.osaka-u.ac.jp

ABSTRACT

When we debug and maintain large software, it is very
important to localize the scope of our concern to small
program portions. Program slicing is one of promising
techniques for identifying portions of interest. There are
many research results on the program slicing method. A
static slice, which is a collection of program statements
possibly affecting a particular variable’s value, limits the
scope, but the resulting collections are often still large.
A dynamic slice, which is a collection of executed pro-
gram statements affecting a particular variable’s value,
generally reduces the scope considerably, but its com-
putation is expensive since the execution trace of the
program must be recorded.

In this paper, we propose a new slicing technique named
call-mark slicing that combines static analysis of a
program’s structure with lightweight dynamic analysis.
The data dependences and control dependences among
the program statements are statically analyzed before-
hand, and procedure/function invocations (calls) are
recorded (marked) during execution. From this infor-
mation, the dynamic dependences of the variables are
explored.

This call-mark slicing mechanism has been imple-
mented, and the effectiveness of the method has been
investigated.

Keywords
Static Slicing, Dynamic Slice, Dependence Analysis, Ex-
ecution Overhead

1 INTRODUCTION
Debugging and maintaining large software is one of a

Shinji Kusumoto! Katsuro Inoue'

! Graduate School of Information Science,
Nara Institute of Science and Technology
8916-5, Takayama, Tkoma,

Nara 630-0101, Japan
+81 743 72 5236
minoru-jQitc.aist-nara.ac.jp

central theme of software engineering research and prac-
tice.

Various ways of analyzing large programs and extracting
abstracted information of the target software have been
studied[5, 11].

One approach to ease the difficulty of handling large
software is to localize a developer’s attention to specific
parts of the program that are directly and indirectly
related to the developer’s concerns.

Program slicing is one promising technique to realize
this program localization[8, 17].

We have investigated the effectiveness of program slicing
for program debugging and maintenance processes using
a controlled method[13]. The bug-finding time was mea-
sured and compared between two independent groups of
programmers, where one group of subjects used an ordi-
nary debugging tool and the other used the debugging
tool with static slicing features. Each subject was given
a fault-injected program and an associated test data set
that effectively detected the faults. The average bug-
finding times were 165 minutes without the slicing, and
122 minutes with the slicing. The effectiveness of the
slicing was confirmed statistically.

There are many research results on the program slic-
ing method[7, 8]. Static slicing was first proposed by
Weiser[17]. A static slice is a collection of program
statements possibly affecting a variable’s value at a par-
ticular program point. The variable of interest and the
program point of interest are called the slicing crite-
rion. Static slicing extracts portions from an original
program; however, the resulting portions are still large
in many cases. In extreme cases, there is no reduction
after taking a static slice. This is due to its analysis na-
ture such that it must consider all possible input data
and all possible control flows.

Dynamic slicing was proposed by Agrawal et. al.[l, 2,
9, 10]. A dynamic slice is a collection of executed pro-

gram statements actually affecting a variable’s value at
a particular program point. Since the dynamic slicing is
based on an execution instance for the source program
with a specific input data, non-executed parts of the
source program are automatically excluded, resulting in
a slice that is generally smaller than a static one. How-
ever, computing a dynamic slice is costly, requiring sig-
nificant memory and time resources because of dynamic
variable dependences that must be tracked during exe-
cution.

We have explored various slicing methods under the fol-
lowing policy.

e The static analysis information and lightweight dy-
namic information are combined.

e The reduction rate of slicing is greater than the
static slice, and is hopefully close to the dynamic
slice.

e The execution overhead is minimized as much as
possible.

In this paper, we propose a new slicing technique named
call-mark slicing. Data dependences and control depen-
dences among the program statements are statically an-
alyzed beforehand, and procedure/function invocations
(calls) are recorded (marked) during the program’s exe-
cution. From this information, the dynamic dependence
of the variables are explored.

This call-mark slice mechanism has been implemented
as part of our Osaka Slicing System. Using this system,
we have executed various sample programs for the eval-
uation. The result shows that the call-mark slice limits
the scope better than the static slice. Also, there is little
burden of run-time information collection.

In Section 2, we will overview the static and dynamic
slicing methods. ~We propose the call-mark slicing
method in Section 3. Section 4 describes the implemen-
tation of the call-mark slicing method as part of our
slicing system, and also shows the results of using our
method on sample programs. In Section 5, we discuss
our approach compared to other method. We conclude
with some remarks in Section 6.

2 STATIC AND DYNAMIC SLICING

Static Slicing

Consider statements s; and sp in a source program p.
When all of the following conditions are satisfied, a con-
trol dependence, CD, from statement s; to statement s,
exists:

e 51 is a conditional predicate, and

e the result of s; determines whether sy is executed
or not.

program Square_Cube (input,output) ;
var a,b,c,d : integer;
function Square(x : integer):integer;
begin
Square := x*x
end;
function Cube(x :
begin
Cube := x*x*x
end;
begin
writeln("Squared Value ?");
readln(a);
writeln("Cubed Value ?");
readln(b);
writeln("Select Feature! Square:0 Cube: 1");
readln(c);
if(c = 0) then
d := Square(a)
else
d := Cube(b);
if (d < 0) then
d := -1 % d;
24 writeln(d)
end.

integer) :integer;

0 N U WN -

NNNNDNR PP PR
WNPFP OOWOWNOOUPdWNHFH O

N
(9]

Figure 1: Pascal Source Program

This relation is written by s1---+ss.

When the following conditions are all satisfied, a data
dependence, DD, from statement s; to statement ss by
a variable v exists:

e s defines v, and
e sy refers v, and

e at least one execution path from s; to sy without
re-defining v exists.

This relation is denoted by sli»sz.

A Program Dependence Graph(PDG) is a directed
graph whose edges denote dependences between state-
ments, and whose nodes denote statements in a program
such as conditional predicates, assignment statements,
and so on. For a Pascal source program shown in Figure
1 (which computes an absolute value of the squared or
cubed value selected by an input), we have a PDG pre-
sented in Figure 2. To handle function/procedure calls,
we employed additional nodes as discussed in Section 5.

A Static Slice with respect to a variable v on a state-
ment s (this pair (v, s) is called the slice criterion) in a
program is a collection of statements corresponding to
the nodes which possibly reach v on s through the edges
in the PDG, using CD relations and DD relations in the
program. The static slice of variable d at line 24 as the
slice criterion for the program shown in Figure 1 is all
statements except for the message output statements
(lines 12, 14, 16) as shown in Figure 3.

| Dat Control
| > Dependence —— " Dependence

Figure 2: Program Dependence Graph (PDG)

Dynamic Slicing

Consider an execution trace e of a source program p for
an input data d. s; is a program statement appearing
in e and indicates a point during an execution of p with
d.

A dynamic slice p’ with respect to s;, d, and a variable
v is a syntactic correct subset of p, which computes
the same value of v for d at execution point s; that
corresponds to s;. A triple (d, s;, v) is also called a
slice criterion of a dynamic slice.

A dynamic slice is computed first by analyzing and stor-
ing the actual data/control dependences of variables in
association with the program execution. Using this de-
pendence chain, all statements in e, which affect the
value of v at s;, are extracted. Then p’, which gener-
ates the same execution trace as this extracted trace, is
reconstructed.

Figure 4 shows a dynamic slice of the program shown
in Figure 1. The slice criterion is input data (a = 2,b =
3,c=0), line 24 (of the last instance), and variable d.

Some Issues on Static and Dynamic Slicing

In static slicing, the analysis is performed without exe-
cuting the program. The control dependences are fairly
easily obtained by parsing the source program. The
data dependences are computed by solving the data
flow equations[3]. We devised an optimized algorithm
which analyzes dependences among the equations as
mentioned in Section 4. The time complexity of this al-
gorithm is generally square to the source program size,
where one of the factors grows very slowly to the pro-
gram size[15]. Actually, we have constructed a slicing
system that performs the static slicing in a very short

1 program Square_Cube(input,output);
2 var a,b,c,d : integer;

3 function Square(x : integer):integer;
4 begin

5 Square := x*x

6 end;

7 function Cube(x : integer):integer;
8 begin

9 Cube := x*x*x

10 end;

11 begin

12

13 readln(a);

14

15 readln(b);

16

17 readln(c);
18 if(c = 0) then

19 d := Square(a)
20 else

21 d := Cube(b);
22 if (d < 0) then
23 d := -1 % d;
24 writeln(d)

25 end.

Figure 3: Static Slicing Result by d at Line 24

amount of time[14] (this system has been extended to
our Osaka Slicing System discussed in Section 4).

The result of static slicing is a subset of the original
program. By supplying appropriate declarations, the
obtained result is an executable program and it com-
putes the value of the slice criterion correctly as the
original program does.

From the perspective of reducing the scope of concern
for the programmer, the static slicing method may not
be a helpful approach. This is because the slice result is
often a fairly large part of the original source program
in many cases. This is generally due to large control
and data dependences in a PDG, which cover all possi-
ble program execution paths (and infeasible paths also).
This is a limitation of static analysis.

On the other hand, the dynamic slice is generally
smaller than the static one, since the dynamic slice is
computed based on an execution trace for a specific in-
put data. Unrelated statements for that execution are
deleted from the slice result.

Also, computing a dynamic slice seems to be a well-
suited process for debugging, since the source of many
faults could be more easily found by executing programs
with suitable test data and examining the faulty pro-
gram outputs. These executions may be directly used
as the traces for dynamic slicing where the names of
the variables with faulty output are used as the slice
criteria.

program Square_Cube (input,output);
var a,b,c,d : integer;
function Square(x : integer):integer;
begin

Square := x*x
end;

00 ~NO O WN -

©

10

11 begin

12

13 readln(a);

14

15

16

17 readln(c);

18 if(c = 0) then
19 d := Square(a)
20

21

22

23

24 writeln(d)

25 end.

Figure 4: Dynamic Slicing Result by d at Line 24 with
input (a =2,b=3,c=0)

For computing dynamic slice, pre-execution analysis is
not needed. However, during the execution, we have to
keep the dependences of data and control in the mem-
ory space or other area. This is a very large overhead
in memory space and computation time. Also, since the
stored dependences are typically numerous, the collec-
tion and reconstruction of the slice after the execution
typically takes a long time.

3 CALL-MARK SLICING

The weakness of the static and dynamic slices discussed
above is resolved by combining static and dynamic in-
formation. We propose here a new method named call-
mark slicing.

The overhead of the dynamic slice is due to the following
two reasons.

e Recording the execution trace and constructing the
dynamic dependences of the statements

e Traversing the dynamic dependences and collecting
the slice result

For the first issue, we abandon collecting a precise ex-
ecution trace, instead gathering partial execution infor-
mation. In call-mark slicing, we only record whether or
not each function/procedure call statement in the pro-
gram is executed.

The second issue is based on the fact that the lengths of
execution traces are generally far longer than the source

program lengths. The data dependences and control
dependences in the execution trace may easily become
long chains. These long chains tend to contain repeated
dependence structures that are caused by iterations in
the program. Thus, the traversal of dependences from
a slice criteria can take a fairly long time! . To resolve
this, we use static dependences, instead of the dynamic
ones, for computing a slice; this has the advantage that
the static dependences are typically less numerous than
the dynamics dependences.

Execution Dependence and CED
Here, we introduce ezecution dependence of two state-
ments s; and ss.

Consider a case where s; cannot be executed if s, is not
executed. We say that s; is executionally dependent on
Sa2.

Finding all of the execution dependences in a program
would require dynamic information of the program be-
havior which is known to be very expensive to compute.
Thus, we choose a practical and safe approximation;
namely, we use a subset obtained by static analysis of
the program(with assumption of program termination).

If both s; and s, are contained in the same basic block
of the control flow graph[3], i.e., there is no outgoing
or incoming path on the control flow between the two
statements, s; is executionally dependent on s5 and vice
versa. Also, if s5 is contained in a dominant basic block
of s1’s block, s; is executionally dependent on s,. The
control flow associated with the basic block structure
and the domination relation of the basic blocks are eas-
ily obtained by static analysis[3].

Now we define a set of caller statements with execution
dependence, CED(s), as follow.
CED(s) = {t| tis a function/procedure call
statement and s is executionally
dependent on t}
The execution of s is dominated by the call statements
in CED(s). If we know that any call statement in

CED(s) is not performed during an execution, we can
conclude that s is never executed.

Consider a small portion of a program such that,

sl: callA ;

s2: if a=1 then begin
s3: b:=c ;
s4: callB ;

I However, the result of the dynamic slice would be smaller
than the static one in general, since the repeated structures are
mapped to single statements in the result.

In this program, sl is executionally dependent on s2,
and vice versa, and also s3 and s4 are executionally
dependent on each other. In addition, s3 and s4 are
executionally dependent on sl and also on s2. Thus
CED(s2) = {s1} and CED(s3) = {s1, s4}.

Computation of Call-Mark Slice

A call-mark slice is defined as a subset of a static slice
of the original program with respect to an execution e
of the program and a slice criterion (s., v) where s, is a
statement and v is a variable. Each statement s in the
call-mark slice is such that all of the call statements in
CED(s) are executed at least once in the execution e.
This means that statements appearing in the static slice
but not in the call-mark slice are not executed in e. The
execution of each statement is determined by the record
of activation of each call statement in the program.

In the following, a process of computing the call-mark
slice is described.

Step 1 Pre-execution Analysis

Similar to the computing a static slice, we construct
the PDG (Program Dependence Graph) by analyz-
ing the data dependences and control dependences
among the statements. Also, the execution depen-
dences and CED(s) for each statement s are com-
puted at the same time.

Step 2 Execution-time Marking

The target program is executed with an input
data set. Each time a call statement of a func-
tion/procedure is executed, that statement name
(i.e., a pointer to the node in PDG) is marked as
“executed”. We refer to the set of marked call
statements as C'M.

Step 3 Post-execution Collection

By performing the algorithm shown in Figure 5, the
call-mark slice is collected.

For the program shown in Figure 1, we have a static slice
for the slicing criterion of (line 24, d) as shown in Figure
3. Consider an execution of this program with input
data (a = 2,b = 3,¢ = 0). In this case, CM = {19}.
For line 19 of this program, CED(19) = {19}; thus
CED(19) C CM and line 19 is not deleted. For line
21, CED(21) = {21}; therefore CED(21) € CM and
line 21 (and associated line 20) is deleted. Since line
21 is deleted, the statement defining b at line 15 is also
deleted. The resulting call-mark slice for that execution
and the same criterion, (line 24, d) is as shown in Figure
6.

Inputs

PDG: Program Dependence Graph

CM: Set of nodes which are executed call
statements

(sc, v): Slice criterion where s. is a node (a
statement) and v is a variable name

Temporary

M, N: Sets of nodes

m,n: nodes
Output
M: Set of nodes of call-mark slice

Algorithm Body

1. M + s,
2. N« {n|n-Yss.} U{m|m-—»s.}

3. While N # ¢ then execute the following
steps

a) choose a node n € N
) N~ N-—-n
) if CED(n) € CM then goto (a)
(d) M+ MUn
)

{m|m¢gMAm-LenVm-—>n)}
where w is any variable name.

Figure 5: Algorithm of Post-Execution Collection for
Call-Mark Slicing

4 IMPLEMENTATION OF CALL-MARK
SLICING

Overview of Slice System

In order to validate the call-mark slicing approach, we

have implemented the algorithm within our Osaka Slic-

ing System[14].

The target language is a subset of Pascal, which is
used in an undergraduate course of our department. It
contains essential control structures and recursive func-
tion/procedure invocations, allowing most introductory
programming.

Figure 7 shows the architecture. It contains static and
dynamic slicers, as well as an executor and debugger.
The source program in Pascal is parsed into an ab-
stracted source program that is stored in the system.
The user can view and modify the source program in-
teractively using a visual editor.

program Square_Cube (input,output);
var a,b,c,d : integer;
function Square(x : integer):integer;
begin

Square := x*x
end;

00 ~NO O WN -

©

10

11 begin

12

13 readln(a);

14

15

16

17 readln(c);

18 if(c = 0) then

19 d := Square(a)
20

21

22 if (d < 0) then
23 d := -1 % d;
24 writeln(d)

25 end.

Figure 6: Call-Mark Slicing Result by d at Line 24 with
input (a =2,b=3,c=0)

Figure 8 shows the user interface of the system. The
left window displays the target source program. The
statement of the slice criteria is shaded darkly, and the
statements in the slice result are shaded lightly. We
can also edit the source program on this window. The
right upper window gives system status such as loaded
file name, program size, slice size and so on. The right
lower window works for the standard input and output
during the execution of the target program.

The source program is analyzed and transformed into a
PDG by a user request. A static slice may be computed
from the PDG by specifying a slice criterion.

Both the whole source program and a computed static
slice can be executed by the executor. The debugger as-
sociated with the executor contains features of ordinary
runtime debuggers such as tracing, setting breakpoints,
viewing and modifying variable values, and so on. The
dynamic variable dependences are recorded during ex-
ecution; a dynamic slice can be computed using this
information.

The total size of the system is about 19,000 lines of C
code including the call-mark slicing part.

The implementation of the call-mark slicing is based
on the method presented in previous section. For Step
2, we need only one bit of information for each func-
tion/procedure call statement in the program. This
bit is not necessarily marked at the caller context, but
rather at the callee context. At the entry of each func-

tion/procedure, the pointer to the return context is col-
lected as CM. By doing so, we do not need to find
out all function/procedure calls in the program, but we
simply modify the entry part of each function/procedure
slightly.

To handle inter-procedural dependences including re-
cursive functions/procedures, we have introduced aux-
iliary types of nodes in a PDG. Table 1 shows these
nodes, which do not directly correspond to source pro-
gram statements as other nodes. Using these nodes,
the data dependences are examined inter-procedurally.
In the case of self/mutual recursive structures of func-
tion/procedure calls, the dependences become cyclic.
This cyclic dependence is efficiently solved by analyz-
ing the structure of the dependences, and a suitable
solution is found[15].

O O
Cal I Mark
Fl ags

*
Execut or/
Debugger -m -m

Dynani ¢
Pr ogr ammer * ¥ Slicer
Abst'r «;ét:_ed
¢ & Puce | €
Pr ogr.am Cal | - Mar k
;) Slicer
Interactive)
Viewer/Editor ¥ fStatic
Slicer

stati ¢ [T

Dependence
Analyzer ¥ *

Program
Depéndence
Laapht-
\ CED~

Figure 7: Architecture of Osaka Slicing System

Execution of Sample Programs

Using this experimental system, we have executed vari-
ous programs and obtained several metrics values. Ta-
ble 2 shows the statistics of three sample programs.
These values can vary with different slice criteria and
input data. In these cases, we have chosen the crite-
ria and inputs for a typical debugging situation. (The
criteria are mostly program output variables, and the
output statements are placed at the end part of pro-
gram execution.)

Program P1 is a calender calculation program and the
size is 88 lines. P2 is an inventory management program
for a whole seller, and it is 387 lines long. P3 is also an
extended version of the inventory management program

Eils frealyjem E.Evml [rmctn Bremars tiom fE==
frrort, o . s
5 {dond tila Ereordi pan
Cord. Husbher OF Comta e) ietari mro dyss progras
proceghrs HolThonds Lrese O fn, s = nbeger] § LR X ST CHENTS 5
war 1§ ¢ Inbagori {araluze F brdshed
g 411 winkn Flla bestT
P Lo - 500 | irfarpral akird
1immin; lirderpret compleis
wrille [o e (s Ing [1] =13 oo tcmlculating wlics
megin fALICE 207
=Ll FETHTEMENTS 221
whila OukDodvla el f]elultCortalmeta[1] da jrajela
Limj;
Husd ot s ord s lneed 1
L
(Ot Omlodeerplirde-Tabls)
procecrs s dseryledseTsh s p-ebeger 1)
v Jul & dkegeri |
g i [2
sl ol B
duil; a
| TN R R Bk P .
whills Quter s li]=0 o Worfainer ity Mot
oeg Ln :1:1'.1.1.- 10 L]
HoHCark b [], JH30 i | o a
wrLiabnd "ol LEL Ot gk T | }00a n i
wriLtm b sl | iveryrder Teh e ")z | 3000 i 1]
WL taEind ", il Wire P , Coavin e § 130006 i i
wrLialndSepestia[p], ' '.I:-\.-:-l.u-a-'-_:-5.'.‘;| | 30008 b] a
wieLiabnd “Coeka = Dot Ly Hard. " | 110007] £
while (00N Lag [=1 mred [Lo j#50 o | ¥onna b] q
in | 3000 i a
| 3002 10 i}
T1:=0; R EE T | o cefTPUT € coig
Le=i+] (il i iverylircsr-ishle
] o, i Il e Fis ;Lo e
13 ot b
sl Conialeer Gerilfy Hak
wrlteln FE]]
o | Dol bssrulroerTabde | il H%ﬁ A
Poagw U | P Do | Top | Sobbos | Godo Linef |
R S [~ ———iiiRiRRRRRRRE,

Figure 8: Snapshot of Osaka Slicing System

of P2, and is 941 lines long. These programs include no
pointer variables.

Table 3 shows the time needed for the analysis before
the execution. In the case of static slicing, the value is
the time to construct a PDG. The time for computing
both the PDG and the CED is counted for in the call-
mark slicing. In the case of dynamic slicing, the analysis
is not necessary.

In Table 4, the execution time is shown. In the case of
static slicing, the original program is executed; thus this
value means the execution time of the original program.
The execution for the dynamic slicing is performed in as-
sociation with the construction of dynamic dependences
of variables. Therefore, the execution time contains the
time for this construction. In the case of call-mark slic-
ing, the execution time to mark callers is included.

Table 5 shows the time needed for collecting statements
to be included in the resulting slices. In the case of
static slicing, this would be done before execution. For
dynamic slicing, the time for traversing the dynamic
dependences is counted. For call-mark slicing, this is
the time for Step 3.

We discuss these tables in detail in the next section.

Table 2: Size of Various Slicing Results (lines of code)

program static | dynamic | call-mark
P1 (88 lines) 27 14 22
P2 (387 lines) 175 139 156
P3 (941 lines) 324 50 166

5 DISCUSSION

Interpretation of Program Execution Data

e Slice Size

As shown in Table 2, the result of the call-mark
slice is between the static and dynamic slices. It is
always smaller and better than the static slice and
bigger and worse than the dynamic slice.

e Pre-Execution Analysis:

As shown in Table 3, call-mark slicing needs a little
extra time compared to the static slicing. This is
natural since we have to construct a PDG as in

Table 1: Auxiliary nodes

Auxiliary Nodes Notation
exit-node node to propagate the influence through the return value of a function, every f-exit
procedure has its own exit node.
in-node node to propagate the influence of global variables from the outside of a proce- fg—in
dure to the inside of it, every procedure has in-nodes of each global variables.
out-node node to propagate the influence of global variables from the inside of a proce- fqout
dure to the outside of it, every procedure has out-nodes of each global variables.
parameter-node node to propagate the influence through the parameters of a procedure, every fp—par

procedure has its own parameter-nodes corresponding to its parameters.

Table 3: Pre-Execution Analysis Time (ms by Pentium-
IT 300MHz with 256MB Memory)

program | static | dynamic | call-mark
P1 22 N/A 23
P2 1,275 N/A 1,362
P3 5,652 N/A 8,670

Table 4: 4 Execution Time (ms by Pentium-II 300MHz
with 256 MB Memory)

program | static | dynamic | call-mark
P1 38 87 47
P2 48 903 53
P3 4,046 31,635 4,104

static slicing, and additionally we have to analyze
the execution dependences.

e Execution Time

The execution time shown in Table 4 indicates that
the overhead of the dynamic slicing is very big. For
P3, it is almost 32 seconds where about 200,000
lines of code are executed with maximum 90 M
bytes memory use. If the program execution be-
comes longer by say, repeated execution of loops,
this overhead would cause serious decline of perfor-
mance so that the programmer can hardly use this

Table 5: Slice Collection Time (ms by Pentium-II
300MHz with 256MB Memory)

program | static | dynamic | call-mark
P1 1 199 1
P2 5 2,863 8
P3 93 1,182 80

facility. On the other hand, the call-mark slicing
can be executed with very little overhead increase
compared to the execution of the static slicing (i.e.,
the execution of the original source program). It
shows that the marking of the caller names dur-
ing execution is a lightweight task, requiring little
execution time.

e Slice Collection Time

As shown in Table 5, dynamic slicing requires a
long time to collect the slice result. The time for
collecting a call-mark slice is almost the same as
the time to collect a static slice. Furthermore, in
P3, it is better than the static one. This is because
call-mark slicing removes parts of the PDG so that
the searching space within the PDG is smaller than
that for static slicing.

Relation to Other Methods

As discussed above, the call-mark slicing is a very
promising approach to provide efficient and practical
tools to localize a programmer’s attention.

The pre-execution analysis, execution, and slice collec-
tion times are almost the same as those for static slic-
ing, and the effect of the slicing is much better than the
static one. It seems that this approach provides a good
compromise between effectiveness and overhead.

Others have worked on combining static and dynamic
information for slicing[4, 6].

Hybrid slicing[6] targets a very similar goal as ours. It
reduces the static slice by using two types of dynamic
information: breakpoint information and call history
information. The former is supplied by the program-
mer and that information is used to infer the executed
control flow. The latter is used to compute portions
of dynamic slices for the periods between every func-
tion/procedure call and return. The result is closer to
the dynamic slice than our approach since it gathers
more dynamic information. The weakness of the hybrid
slicing would be that we have to specify appropriate

breakpoints to get a better slice. On the other hand,
our approach performs everything automatically except
for giving the input data and slice criterion. Also, the
hybrid slicing requires a fairly large amount of mem-
ory space for recording the call history. The space re-
quired is roughly proportional to the program execution
length. Our approach, however, needs only the mem-
ory for the call marks, which is of a pre-determined
size and is roughly proportional to the program text
size. The difference is significant if the program execu-
tion becomes long. In [6], the idea of the hybrid slicing
was proposed, although no implementation nor execu-
tion data was presented.

In [4], a method to extract various slice algorithms from
semantic specifications is presented. They propose a
constrained slice, which is a generalization of static and
dynamic slices, and which takes a subset of the inputs
of the program as symbolic program execution. Using
this input constraint, the program is rewritten and de-
pendences are computed. Their approach contains very
important notions of generalization of static and dy-
namic slicing, and also it covers the partial evaluation
and program simplification methods. However, it is not
known whether such a generalized approach may be im-
plemented efficiently and whether it is useful practically.

In terms of building analysis systems, several interesting
approaches have been proposed[12, 16]. A generalized
environment for developing analysis algorithm is pro-
posed in [16]. Tt uses denotational frameworks to spec-
ify analysis algorithms; however, practicability of the
generated algorithms for analysis tools is not known.
In [12], a more practical environment for understand-
ing Cobol programs is presented, where various slicing
and program localization features are unified. Our aim
is to construct an efficient and effective environment
for structured languages with functions and procedures
calls.

Application Domain and Limitation of Call-
Mark Slice

Our main target of this slicing method is a debugging
environment as discussed in previous sections. Dynamic
information is considered to be essential for efficient
fault detection. A call-mark slice can be directly as-
sociated with a specific test data which exposes faults
in the source program, although static slice would gen-
erally include various portions which do not relate to
the execution with the test data.

Programs which consist of independent function/pro-
cedure components may also be efficiently debugged
with our approach. In such cases, there would be
many function/procedure invocation statements, and
also many function/procedure definitions. Activation
of selected functions/procedures using a specific input

data will clearly reduce the slice size.

On the other hand, if the target programs contain a
small number of function/procedure invocation state-
ments or the function/procedures are tightly inter-
leaved, the effect of our approach is limited.

Relation to Program Profile Information

Our approach, call-mark slicing, uses information of
whether or not each function/procedure call statement
in the program is executed.

The precision of our slices can be improved if we take
such information of all statements in the program. This
approach can be implemented using a similar method to
computing profiling and program coverage information.
For each statement, we employ one bit flag of whether
it is executed or not. The mechanism would be simple;
however, it requires more run-time overhead and sig-
nificant modification of the executable program. The
call-mark slicing information can be obtained by minor
modification of the function/procedure entry routine to
collect caller statements.

We could also take a simpler approach than the call-
mark slice. We could only gather information about
whether or not each function/procedure is activated
without recording which call statement actually acti-
vated it. This approach reduces run-time overhead for
collecting caller statements; however it would increase
the result slice size.

6 CONCLUSIONS

Localizing a programmer’s attention to a small portion
of software is very important for improving the efficiency
of program debugging and maintenance. Traditional
program slicing methods do not provide adequate trade-
offs of effectiveness and efficiency.

We have proposed an efficient and effective slicing
method, call-mark slicing. This method uses lightweight
run-time execution, and has a similar overhead with re-
spect to static analysis as static slicing. The resulting
slices are smaller than corresponding static ones, but
larger than corresponding dynamic ones.

We have implemented this slice algorithm. Also we
have executed sample programs, and confirmed our ap-
proach.

We are planning to extend our approach to reduce static
analysis overhead, using call-mark information. The
pre-execution analysis for the call-mark slicing may be
done after the execution and before the slice collection.
Using the call-mark information, unnecessary depen-
dence analysis would be deleted, and total analysis time
could be improved.

Also, empirical evaluation of the call-mark slicing will
be made. We have performed an experiment to evalu-

ated the effectiveness of static slicing. We plan to simi-
larly explore the effectiveness of call-mark slicing using
controlled experiments.

ACKNOWLEDGEMENTS
The authors are very grateful to the reviewers for many
helpful comments.

This work is partly supported by Ministry of Educa-
tion, Science, Sports, and Culture, grant-in-aid for pri-
ority areas “Principles for Constructing Evolutionary
Software”, #10139223.

REFERENCES

[1] Agrawal, H., and Horgan, J.: “Dynamic Program
Slicing”, SIGPLAN Notices, Vol.25, No.6, pp. 246—
256 (1990).

[2] Agrawal, H., Demillo, R. A., and Spafford, E. H. :
“Debugging with Dynamic Slicing and Backtrack-
ing”, Software Practice and FEzperience, Vol. 23,
No. 6, pp. 589616 (1993).

[3] Aho, A. V., Sethi, R., and Ullman, J. D.: “Com-
pilers: Principles, Techniques, and Tools”, Addison
Wesley, Massachusetts, 1986.

[4] Field, J., and Ramalingam, G.: “Parametric Pro-
gram Slicing”, Proc. of 22nd ACM Symposium on
Principles of Programming Languages, pp. 379-
392, San Francisco, USA, January (1995).

[5] Atkinson, D. C. and Griswold, W. G. : “The
Design of Whole-Program Analysis Tools”, Pro-
ceedings of the 18th International Conference on
Software Engineering, pp. 16-27, Berlin, Germany,
March (1996).

[6] Guputa,R., and Soffa, M. L. : “Hybrid Slicing: An
Approach for Refining Static Slices Using Dynamic
Information”, Proceedings of the 3rd International

Symposium on the Foundation of Software Engi-
neering, pp. 29-40, October (1995).

[7] Harrold, M. J., and Ci, N. : “Reuse-Driven Inter-
procedural Slicing”, Proceedings of the 20th Inter-
national Conference on Software Engineering, pp.
74-83, Kyoto, Japan, April (1998).

[8] Horwitz, S. and Reps, T.:“The Use of Program De-
pendence Graphs in Software Engineering”, Pro-
ceedings of the 14th International Conference on
Software Engineering, pp. 392-411(1992).

[9] Korel, B., and Laski, J. : “Dynamic Program
Slicing”, Information Processing Letters, Vol.29,
No,10, pp. 155-163 (1988).

[10] Korel, B., and Laski, J. : “Dynamic Slicing of
Computer Programs”, Journal of Systems Soft-
ware, Vol.13, pp. 187-195 (1990).

[11] Murphy, G. C., and Notkin, D.: “Lightweight Lex-
ical Source Model Extraction”, ACM Transactions

on Software Engineering and Methodology, Vol. 5,
No. 3, pp. 262-292, July (1996).

[12] Ning, J. Q., Engberts, A., Kozaczynski, W. V. :
“Automated Support for Legacy Code Understand-
ing”, Communications of the ACM, Vol. 37, No. 5,
pp-50-57, May (1994).

[13] Nishimatsu, A., Kusumoto, S., Inoue, K. : “An Ex-
perimental Evaluation of Program Slicing on Fault
Localization Process”, Technical Report of IEICE
Japan, SS98-3, pp. 17-24, (1998)(in Japanese).

[14] Sato, S., lida, H., and Inoue, K. : “Software Debug
Supporting Tool Based on Program Dependence
Analysis”, Transaction on IPSJ, Vol. 37, No. 4, pp.
536-545 (1996) (in Japanese).

[15] Ueda, R., Inoue, K., and Tida, H. : “A Practical
Slice Algorithm for Recursive Programs”, Proceed-
ings of the International Symposium on Software
Engineering for the Next Generation, pp. 96-106,
Nagoya, Japan, February (1996).

[16] Vengatesh, G. A., and Fischer, C. N. : “SPARE:
A Development Environment for Program Analysis
Algorithms”, IEEE Trans. on Software Engineer-
ing, Vol. 18, No. 4, pp.304-315, April (1992).

[17] Weiser, M.: “Program Slicing”, Proceedings of the
Fifth International Conference on Software Engi-
neering, pp. 439-449 (1981).

