
An Adaptive Version-Controlled File System

Makoto Matsushita
y

matusita@ics.es.osaka-u.ac.jp
Tetsuo Yamamoto

y

t-yamamt@ics.es.osaka-u.ac.jp

Katsuro Inoue
yz

inoue@ics.es.osaka-u.ac.jp

yGraduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

zGraduate School of Information Science,
Nara Institute of Science and Technology,

8916-5, Takayama, Ikoma, Nara 630-0101, Japan

ABSTRACT

There are many version management systems to iden-
tify, record, and track the changes of software prod-
ucts. However, most of these systems require engineers
to learn how to use these tools; if there are some miss-
operation, version management could be not established.
Some systems employ their proprietary versioning �le
systems, and engineers do not need to consider how to
record the changes. However, these changes are stored
in special formats, so portability of the systems cannot
be accomplished.

In this paper, we propose VCFS, a novel version man-
agement �le system, which automatically record changes
of �les. We have implemented VCFS as a stackable �le
system, which is easily ported to other systems. We
have also evaluated VCFS with �le reading, �le writ-
ing, compile operations, and �le size of repository. As
a result, VCFS provides almost the same performance
as usual �le systems, and also it provides the version
control facility.

Keywords

Software Development Environment, Con�guration Man-
agement, File System

Introduction

Researches on software con�guration management have
emerged to solve the diÆculties to identify, organize,
manage software products[2]. Managing products is re-
quired in each phase of software development. Elements
of software component should be clearly identi�ed and
de�ned in a design phase.

In a coding phase, products and documents are iden-
ti�ed, organized, and managed by software con�gura-
tion management system. There are various research
areas in software con�guration management, including
version control system that manages software products.
Generally, a software product needs some modi�cations

during coding phase. Each product created by a sin-
gle change operation is called a \version", and version
control systems treat sequences of the versions.

Many version control frameworks and systems have been
already proposed. Using these systems, reliable changes
of products are promised and cooperations with engi-
neers are achieved[1, 3]. However, many version man-
agement systems implemented as a set of tools require
engineers to specify when a new product is saved (check-
in) as a new version and what version should be taken
out (check-out). As a result, engineers should learn
how to use such version management systems, and a
miss-operation causes a repository collapse. Some ver-
sion management systems introduce automated check-
in/check-out facility; however, these systems also em-
ploy their own formats for data repository and their
original version control frameworks.

In this paper, we propose a new version management
system named VCFS to solve such problems. This pa-
per is organized as follows. In Section, we describe about
other version management systems which are already
proposed. In Section, we explain VCFS and its imple-
mentation. In Section, we show some evaluation results
of VCFS. Finally, we conclude this work and present
further works in Section.

Related Work

In this section, we discuss about related works about
version management systems and their problems.

RCS

RCS (Revision Control System) is a set of tools for ver-
sion management, and already used in many organizations[11].
RCS treats a product as a �le in a �le system, and does
management activity to �les with RCS tools.

In RCS, saving a new version is done by making a di�er-
ence between a new version and a previous version. The

version di�erence is shown as a result of UNIX di� com-
mand. Each version is identi�ed as a version number
(sequence of numerical value, i.e. \1.2.3"). Extracting
one version is also done by a RCS tool.

Since RCS is implemented as a set of tools, engineers
must learn how to use these RCS tools. In addition,
if an engineer misuses the tools, the registered versions
may be lost.

3D Filesystem

3D Filesystem is implemented as a modi�ed �le system
of UNIX System V release 3[7]. The �le system employs
the same version management model in RCS; a state
of products are de�ned as a �le itself, and a version
is de�ned as a sequence of numerical value. Merging
version management features to native �le system makes
a tool-free operation for extracting any version; however,
registering a new version requires some supporting tool
associated with the �le system.

3D Filesystem makes up for some problems of RCS;
however, the �le structure is their original one, so the
registered version information is only extracted via 3D
Filesystem. In addition, 3D Filesystem has only its own
version management model, engineers cannot use other
version management models.

VMS

The �le system in VMS operation system records �le
changes automatically. VMS saves all of the contents of
newly saved �le, and these saved contents are identi�ed
by a special suÆx of �lename. The VMS �le system
provides a version management facility; however, other
information such as �le owner names is not saved.

VCFS

In this section, we will show our new version manage-
ment system VCFS.

Design Policy

At �rst, we specify required features of VCFS to estab-
lish better version management mechanisms as follows:

� Easy operation: engineers are not requested to learn
how to use VCFS at �rst; typical operations should
be automatically achieved by VCFS.

� Open structure: VCFS should not have proprietary
structure of data repository.

� Plug-and-play system: VCFS should be independent
from actual version management framework itself; the
system can be easily con�gured also when a new ver-
sion management framework is emerged.

As a result, VCFS is designed as a stackable �le system
[5]. A stackable �le system does not change the internal
structure of raw �le system (UFS (Unix File System),
MSDOSFS (MS-DOS File System), etc), or does not
save the �le contents directly to hard disk drive; it saves

DISK

UNIX File System
 (UFS)

VFS

Kernel User

VCD

RCS VCS

Control Commands

 show
a delta

retrive
previous
versions

User
User
Process

Version Management
 Sub-System

VCFS

Figure 1: System overview of VCFS

as a plain �le of a lower �le system. Operations to the
target �les are automatically recorded via the lower �le
system. VCFS allows to use external version manage-
ment system; two or more version management systems
can be exists simultaneously. Detailed design is shown
in Section.

Overview

In VCFS, operations to a �le (read and write) are au-
tomatically mapped into activities of version manage-
ment; engineers do not consider what should be done to
manage the product versions. There are no di�erence
between the operations to usual �le system and VCFS
�le system from a viewpoint of users' processes.

VCFS manages the versions of regular �les (symbolic
link, special �le, socket, and named-pipe are out of our
scope). A new version is created i� a �le is created or an
existing �le is changed. Checking out the latest version
is done with simply reading the �le. VCFS also supports
a �le locking mechanism. Before checkin is completed,
other process can only checking out the �le.

VCFS employs \checkin/checkout model"[4] which was
proposed by RCS, and VCFS itself does not have its
own version management mechanism (sub-system); en-
gineers can import a favorite version management sub-
system which is adaptable to the model, i.e., VCFS can
use RCS commands.

System Design

VCFS is composed of �le system (VFS), version control
daemon (VCD), version management sub-system, and
VFS control commands. Fig. 1 shows the structure of
the VFS components.

The advantage of the separation of version management
facility from the kernel is that switching check-in/check-
out operations can be easily done. In addition, installing
VCFS to a software development organization can be
easily performed if RCS is already employed at the or-
ganization. VCFS also allows to work with yet another
check-in/check-out style version management system.

foo

foo,a

proj

versiondb

/

foo is foo,a

foo,v

User

Latest

Figure 2: Mapping �les between VCFS and actual
�le system

File System Since VCFS is implemented as a stackable
�le system, all �les handled by VCFS are stored to a raw
�le system. Each �le via VCFS is consists of two actual
�les; one for the latest version, and another for version
repository (Fig. 2).

Usually VCFS shows the latest version of the �le via
�le system. For example, we assume that /versiondb is
mounted to /proj by VCFS and create a �le /proj/foo.
VCFS creates \/versiondb/foo,a" for the latest version
of �le foo (/proj/foo itself) and \/versiondb/foo,v", for
the version repository. Note that /versiondb/foo,v is
invisible via VCFS; it is only for version management
and not for the ordinal operation.

VCFS always keeps the latest version of every �le (/ver-
siondb/foo,a in the previous example) for fast �le read/write
to the latest version which is modi�ed in the most cases
of software development. When a UNIX process opens
a �le in read-only mode, VCFS behaves as the same
as NULL �le system[10]. When a process opens a �le
in write-only or read-write mode, VCFS hooks close()
system call and performs a check-in operation to a �le.
The check-in operation runs by the version control dae-
mon and the daemon calls the version management sub-
system which is outside of the kernel.

Version Control Daemon VCD is a daemon process
which acts as a bridge between the kernel and the ver-
sion management sub-system. VCD dispatches the re-
quest from the kernel to the version management sub-
system.

Version Management Sub-System The version manage-
ment sub-system is the actual version management part
of VCFS. In general, version management sub-system
consists of a set of tools. VCFS employs external ver-
sion management systems as the sub-systems, and we

header

version header 1

version 1

version header 2

version 2

version header 3

version 3

Latest
Version
Offset

Previous
Version
Offset

Previous
Version
Offset

Figure 3: De�nition of VCS �le structure

Table 1: De�nition of VCS header
Name Size Content

version number 4byte latest version number
latest o�set 16byte o�set of a latest version

can change the sub-systems to use. Current prototype
of VCFS has two kinds of version management sub-
systems, RCS and VCS.

RCS keeps only a delta of each version and the latest
version. RCS allows version derivation (a tree structure
of version sequence), and a derived version is called as
a branch. RCS sub-system uses RCS tools to record
versions.

VCS is a simple version management system as the
one of VMS �le system. VCS saves all versions as-is,
and does not calculate the delta between versions. No
version derivation is allowed, however, registering a new
version is faster than the RCS sub-system.

Fig. 3, Table 1, and 2 show a �le structure, header def-
inition, and version header de�nition respectively. The
VCS check-in tool appends the version header and ver-
sion itself to a version management �le (and recalcu-
late the version number and o�set of the latest version).
A previous versions can be retrieved by tracing header
o�sets. VCS also saves �le attributes (ownership, �le
modes); checking-out a version restores not only �le con-
tents but also �le attributes.

VFS Control Commands VFS control commands help
to control VFS behavior. Following commands are al-

Table 2: De�nition of VCS version header
Name Size Content

attribute size of vattr
structure

vattr structure of a
�le.

previous o�set 16byte o�set of a previous
version.

ready available.

� Retrieve previous versions
Users can retrieve any one previous version (not the
latest version) by specifying a version number and/or
its created date.

� Make a branch
Branching is done with control commands if the ver-
sion management sub-system has branching feature.

� Show a delta between versions
Users can check the di�erence between versions.

Prototype of VCFS

Current prototype of VCFS runs on FreeBSD 3.0-RELEASE
[6], a BSD UNIX[8, 9] variants. VCFS is written in C
and about 5000 lines total; VFS in kernel for 4500 lines,
VCD for 340 lines, and 300 lines for others.

Evaluation

This section discusses the prototype of VCFS from view-
points of the system performance and storage size. We
take up UFS (actually FFS (Fast File System), a usual
UNIX File System) and NULLFS (loopback �le sys-
tem, implemented as a stackable �le system) to com-
pare with our VCFS. Note that all tests are made at
166MHz Pentium PC having 48MB RAM and FreeBSD
3.0-RELEASE.

Performance Evaluation

Read Files At �rst, we measured an elapsed time for a
UNIX process to read distinct new �les of 1M bytes size
repeatedly. \An elapsed time" means time between pro-
cess initiation and process termination; be aware that
an elapsed time includes an overhead of typical UNIX
processes (process initialization, etc).

Fig. 4 shows the results of the reading test of VCFS,
UFS, and NULLFS. \VCFS(RCS)" means VCFS using
RCS as the version management sub-system. The verti-
cal axis shows an elapsed time, and the horizontal axis
shows the number of �le reading.

The time for VCFS(RCS) is almost the same as one of
NULLFS. With regard to �le reading, it is understood
that it takes almost no extra time as for the version
control functions in the �le system. VCFS(RCS) and
NULLFS are slower than UFS, since there is an imple-
mentation overhead of a stackable �le system.

Number of Reading

T
im

e(
Se

c.
)

VCFS(RCS)
NULLFS
UFS

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Figure 4: Read 1M bytes �les

VCFS(RCS+)
VCFS(VCS+)
VCFS(RCS)
VCFS(VCS)
NULLFS
UFS

Number of Writing

T
im

e(
Se

c.
)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

Figure 5: Write 1M bytes �les

Write Files We also measured an elapsed time to write
�les, similar to �le reading test described before. Fig. 5
shows the results of writing test. \VCFS(VCS)" means
VCFS using VCS as a version management sub-system.
\VCFS(VCS+)" and \VCFS(RCS+)" includes a time
of synchronization between VCD and sub-system. In
general, VCD should not wait the termination of sub-
system as usual; however we measured these for com-
parison purpose.

NULLFS is about 10% slower than UFS, and it is the
same result of reading test. Writing a �le in VCFS re-
quires a new version registration which is not required
by the reading, so VCFS consumes 30% or more time
compared with UFS. Actual time for a new version reg-
istration is twice as of UFS, comparing VCFS(RCS+)
/ VCFS(VCS+) with UFS. Actually, VCD and sub-
system work asynchronously so VCFS is only 30% slower
than UFS, and we assume that it is reasonable.

Fig. 6 shows the same writing test, using a 32K bytes
�le instead of a 1M bytes �le. The same tendency is
shown even if a �le size is smaller than the previous
test.

VCFS(RCS+)
VCFS(VCS+)
VCFS(RCS)
VCFS(VCS)
NULLFS
UFS

Number of Writing

T
im

e(
Se

c.
)

1 2 3 4 5 6 7 8 9 10

0

1

2

3

Figure 6: Write 32K bytes bytes �les

VCFS(RCS+)
VCFS(VCS+)
VCFS(RCS)
VCFS(VCS)
NULLFS
UFS

Number of Update

T
im

e(
Se

c.
)

0 1 2 3 4

0

2

4

6

8

10

Figure 7: Update 1M bytes �les

Update Files This test mixes read/write operations to
a single �le of 1M bytes size. When a process write to
a �le, the updated �le contents are completely di�erent
of the old one (no same lines), to assure this test is the
worst case for RCS. Fig. 7 shows the result of this test.
Note that \0th update" means the �rst attempt to write
a �le (create a �le).

Total time of updating a �le is the same of creating a
�le, except the case of VCFS(RCS); there is a slight
di�erence between 0th update and 1st or later update.
Since VCFS(VCS) does not calculate a delta between
versions, it takes a �xed time (even if the delta is huge
or not) to update a �le if the �le size is the same. In
contrast to VCFS(VCS), the more �le is updated, the
more time is needed in VCFS(RCS).

Compile an Application Finally, we measured a typical
software development procedure, by compiling an appli-
cation. We pick up two applications, \tar" and \dump"
bundled with FreeBSD. Table 3 shows the result of an
elapsed time for executing \make" programs of those
applications.

Table 3: Compile an Application (Sec.)
dump tar

VCFS(VCS) 10.96 28.63
VCFS(RCS) 12.79 33.46
NULLFS 11.3 32.01
UFS 10.9 28.27

Table 4: A sample data
All
LOC

Files Versions Compile
times

data1 9339 45 311 222
data2 4067 20 147 92
data3 2543 18 247 110

The procedure of compiling an application does read
source codes and write object codes repeatedly. As a
results, VCFS is about 20% slower than UFS; we think
that this overhead is not serious problems for practical
software development environments.

File Size Evaluation

We applied a sample data taken from a programming
seminar of Osaka University (Table 4), and measures
the total �le size saved into a �lesystem. The test cre-
ates/updates �les, and then compile them. Table 3
shows the result.

The result of UFS shows the size of �nal product ver-
sion. The result of VCFS shows that more �le size is
required to save the whole data, VCFS(RCS) requires
several times as much as UFS, and VCFS(VCS) requires
ten times as much as UFS. The �le size may vary; it de-
pends on what sub-system is used with VCFS.

Discussion

Totally, VCFS is about 20% slower than UFS; however,
we consider there is acceptable for practical use. Using
VCFS with RCS sub-system, disk usage is reasonably
small.

Following is the summary of VCFS and other version
management system.

� RCS and VCFS(RCS)

Table 5: Total �le size (K bytes)
UFS VCFS(RCS) VCFS(VCS)

data1 225 1388 3149
data2 117 546 1377
data3 73 604 1501

RCS consists of a set of tools, and VCFS(RCS) is a
�le system wrapper for RCS. In general, both systems
have almost the same functionality; however, VCFS
does not force to engineers to learn how to use RCS
tools.

� 3D Filesystem and VCFS(RCS)
Both systems are implemented as a �le system and
provide a version management facility. VCFS(RCS)
employs existing UFS �le system and existing RCS
data structure; however, 3D Filesystem is their own
data structure, and requires check-in procedure ex-
plicitly.

Conclusion

In this paper, we show the problems of existing version
management system. We also propose a new version
management system VCFS; VCFS acts like a �le system
wrapper for existing version management system. We
also evaluate VCFS in performance and �le-size point of
view. VCFS provides easy operation of version manage-
ment, open system structure, and plug-and-play capa-
bility of selecting external version management system.

As a further work, version management of directory or
special �les are planned. Also, supporting distributed
software development environment and more usability
evaluation are required to VCFS. We are now working
on Web-based VCFS tools which overrides VFS con-
trol commands, to support graphical and understand-
able representation of version history.

REFERENCES

1. Babich, W. A.: Software Con�guration Manage-

ment , Addison-Wesley, Reading, Massachusetts
(1986).

2. Conradi, R. and Westfechtel, B.: Version Mod-
els for Software Con�guration Management, ACM
Computing Surveys, Vol. 30, No. 2, pp. 232{280
(1998).

3. Estublier, J. and Casallas, R.: The Adele Con-
�guration Manager, Con�guration Management

(Tichy, W.(ed.)), John Wiley and Sons, Ltd.,
BaÆns Lane, Chichester, West Sussex PO19 1UD,
England, pp. 99{133 (1994).

4. Feiler, P. H.: Con�guration Management Mod-
els in Commercial Environments, Technical Re-
port CMU/SEI-91-TR-7, Software Engineering In-
stitute, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213 (1991).

5. Heidemann, J. and Popek, G.: File-System Devel-
opment with Stackable Layers, ACM Transactions

on Computer Systems, Vol. 12, No. 1, pp. 58{89
(1994).

6. Hubbard, J. K.: RELEASE NOTES FreeBSD
Release 3.0-RELEASE. This document is avail-

able on the World-Wide Web at the URL
\http://www.freebsd.org/releases/3.0R/notes.html".

7. Korn, D. G. and Krell, E.: A New Dimension for
the Unix File System, Software{Practice and Expe-
rience, Vol. 20, No. S1, pp. 19{34 (1990).

8. Le�er, S., McKusick, M., karels, M. and Quarter-
man, J.: The Design and Implementation of the

4.3BSD UNIX Operating System, Addison-Wesley
(1989).

9. McKusick, M., Bostic, K., karels, M. and Quarter-
man, J.: The Design and Implementation of the

4.4BSD UNIX Operating System, Addison-Wesley
(1996).

10. Pendry, J.-S. and McKusick, M.: Union Mounts
in 4.4BSD-Lite, Proceedings of the USENIX 1995

Technical Conference, New Orleans, LA, USA, pp.
25{33 (1995).

11. Tichy, W. F.: RCS { A System for Version Control,
Software{Practice and Experience, Vol. 15, No. 7,
pp. 637{654 (1985).

