
E�ective Testing and Debugging Methods and Its Supporting System with

Program Deltas

Makoto Matsushitay

matusita@ics.es.osaka-u.ac.jp

Masayoshi Teraguchiz

teraguti@jp.ibm.com

Katsuro Inouey�

inoue@ics.es.osaka-u.ac.jp

yDept. of Information and Computer Sciences

Faculty of Engineering Science

Osaka University

1-3 Machikaneyama, Toyonaka

Osaka 560 JAPAN

zTokyo Research Laboratory

IBM Japan, Ltd.

1623-14 Shimotsuruma, Yamato

Kanagawa, 242-8502 Japan

� Information Technology Center

Nara Institute of Science and Technology

8916-5 Takayama, Ikoma

Nara 630-01 JAPAN

Abstract

In the maintenance phase of software development, it
should be checked that all features are performed cor-
rectly after some changes are applied to existing soft-
ware. However, it is not easy to debug the software
when a defect is found to the features which is not
changed during the changes, although using a regres-
sion test. Existing approaches employs the program
deltas to specify defects; they have hard limitation of
enacting them, don't support an actual debugging ac-
tivities. Moreover, its system is hard to introduce an
actual environment.

In this paper, we propose a new debugging method
DMET to solve such problems. DMET supports de-
bugging activities when a defect is found by regression
tests through detection, indication, and reection pro-
cedures. We also implement a debugging supporting
system DSUS based on DMET. DSUS executes DMET
procedures automatically, and easy to con�gure for ex-
isting environment.

Through the experimentation of DMET and DSUS,
we con�rm that DMET/DSUS reduce debugging time
of software signi�cantly. As a result, DMET/DSUS
help evolving the software for the aspect of software
maintenance.

1 Introduction

In the maintenance phase of software development,
many changes are applied to existing software. How-

ever, Hetzel shows that it is 50 to 80 percent of prob-
ability of adding some defects when some changes are
applied to the software[4]; testing should be needed to
not only changed features of software but also the un-
changed features. Since recent software development
environment tends to be more complicated, software
maintenancability is important issue for maintaining
software e�ectively and future evolution of the soft-
ware.

Regression test[2, 8, 9, 13] is commonly used in order
to check that the features of software is implemented as
speci�cation. Actual software development and main-
tenance activity employ version control system that
recognizes, organizes, and manages software products
(source codes and accompanying documents), in order
to raise the maintainability of software. Under these
development environments, regression test checks the
latest version of software. If a defect is found during
the regression test, the error that causes a defect will be
speci�ed and it will be corrected. However, when the
defect that is not changed by the code changes causes
a defect, it is not easy to specify the error used as the
cause.

There is a research on debugging approach that uses
the deltas of code changes between the base version (a
version before the code changes are applied) and a lat-
est version[7, 14]. However, these approaches does not
detect the delta correctly, and require some environ-
mental setup manually to enact a test tool[5] which
requires the inputs of test data and the outputs of test
data which is compared with the outputs of program.
Since these approaches do not support a code modi�-

cation activity that will �x the error found by a test
tool, it is diÆcult to apply these approaches to actual
software maintenance activities.

In this paper, we propose a new debugging method
DMET (Debugging METhod) to solve these problems,
and a debugging supporting system DSUS (Debugging
SUpport System) based on DMET approach. DMET
supports debugging activities when a defect is found by
regression tests, and �nds the defects to the features
that are not changed during the code changes. DSUS
assumes the existence of a version management system
and a regression test tool, and provides auto con�gura-
tion/execution of test tools and auto detection a delta
of code that will contain the defects. Since DSUS also
performs as a wrapper of version management system,
engineers can concentrate on the error correction work.

We also evaluate our DMET/DSUS with a experi-
mentation. The experimentation shows that total de-
bugging time is reduced by DMET/DSUS when de-
fect detection is succeeded. We also found through
experiments that DSUS supports a series of software
debugging activities. As a result, DMET/DSUS help
maintaining and evolving existing software.

In section 2, we explain related researches about
software debugging with a delta of code. In section
3, we propose our DMET and show how to detect code
delta that may contain a defect. In section 4, DSUS
debugging supporting system are illustrated. We eval-
uate DMET/DSUS in section 5, and in section 6 we
present our conclusion and further research topics.

2 Debugging with Code Deltas

When some modi�cations are applied to software,
the features that were implemented before may be bro-
ken. Although the reason is obvious (some errors are
incorporated with this modi�cation), it is diÆcult to
detect what is an error and �x it. In this section, we
consider about a method of debugging using a code
delta, a part for the di�erence between the base ver-
sion and the current version.

Generally, debugging activities is usually composed
of testing and error collection. In the debugging
method using code delta, it is assumed that there are
no errors in base version and current version has some
errors. In the testing phase, a code delta is detected
which contains which causes errors. The code delta is
used in the error collection phase.

In this section, we explain previous approaches
about debugging with code deltas about preconditions,
testing procedure, error collection procedure, and its
problems.

2.1 Regression Containment

Ness and Ngo at Gray Research have proposed the
method called Regression Containment[7]. In Regres-
sion Containment, it is mentioned that a software con-
�guration system (version controlling system)[1, 12],
tool-chain for testing are used. This method assumes
that the version that carries out normal operation and
the version that contains some errors do not appear
by turns. Under such premise conditions, Regression
Containment identi�es the causes of errors by testing
automatically.

In testing phase, base version of source code are ex-
tracted from version management system �rst, then
some deltas to the codes and compiled to executa-
bles. Next, compiled executables are performed with
test data and testing tools compares the results. If
it performs normally, another delta is applied repeat-
edly. The code modi�cation fragments (deltas) can be
detected if there is something wrong is found in the
results of test execution; it enables to specify the cause
of this defect without modifying existing source code.
In error collection phase, detected deltas are deleted
from (current version of) source code; it aims at not
delaying software development by this defects.

However, before testing, it is needed to setup some
environments for running testing tools manually; tools
input (source codes, test data, etc) and correct out-
puts to compare should be clearly speci�ed. Moreover,
this method requires applying all deltas to a base ver-
sion for each test execution, and does not analyze the
di�erence of results. This method simply removes the
deltas, which introduces some defects; actually error
correction is not performed.

2.2 Delta Debugging

In a particular situation, Regression Containment
performs e�ectively for debugging. However, when ap-
plying two or more deltas cause the defect, or executa-
bles cause core dump and no output are collected, it
does not operate well. Zeller has proposed the debug-
ging methods called Delta Debugging[14], which can
correspond also to these situations that these problems
provide. Although there is no requirement to use soft-
ware con�guration system, it assumes some the exis-
tence of test tools[5] that compares the test results.

In order not to take into consideration use of soft-
ware con�guration system, Delta Debugging employs a
function which acts like \di�" command in UNIX en-
vironment; the code delta between base version and a
version which has some defects are extracted by this
function. Obtained delta is examined and classi�ed

2

as a set of \code insertion" and \code deletion". Using
these styles of deltas, it can correspond also to the error
that cannot be �nding out by Regression Containment.

Delta Debugging uses the algorithm to �nd out the
smallest number of set of code composition that can
be applied in testing phase. In this phase, this method
considers yet another type of error output which cor-
responds to compilation error or program core dump.

Since an order of code deltas in actual software de-
velopment is not investigated, a set of program deltas
should be examined by combining each various changes
which is classi�ed before which can be applied to base
version. Therefore, if the number of changes classi�ed
�nely is n, the number of candidates which will be a
set of program deltas detected by this method is 2n;
combination explosion potentially exists. Since the ap-
plication order of these changes is not take into consid-
eration, error detection may fail in some cases. Manual
setup of testing tools is also required, and there is no
error correction procedure in this method; it is diÆcult
to apply this method to actual software maintenance
work.

3 DMET

In this section, we propose a new debugging method
named DMET[11] that solves the problem in previ-
ous approaches described in section 2. DMET uses
source code deltas to specify defects. In order to sup-
port series of debugging procedures, DMET reduces
the premise conditions in previous approaches in test-
ing phase, shows detected deltas with current source
code, and reects the modi�cation which �xes the de-
fects to other versions for further debugging.

DMET supports debugging activities, which detect-
ing and �xing defects in unchanged features of software
that works with base version of software. Limiting the
target software to some extent, DMET supports auto-
con�guration of testing tools that is normally by man-
ually. Moreover, not only source codes but also com-
piled objects are managed by existing version manage-
ment system, total testing time can be reduced. DMET
supports the debugging activities from testing to error
correction; it is applicable approach to actual software
maintenance activities.

3.1 Premise conditions

There is some premise conditions that are needed for
software, software maintenance activity, and software
engineers to apply DMET to debugging activity.

� Version controlling system is used.
We use version controlling system to record the

Src1

V1

V2

V3

V4

Exe

V1

V2

V3

Src2

V1

V2

V5

V4 V3

Figure 1. Relationship between source codes
and objects

changes of not only source code but also program
executables, to reduce the testing time. In case
of registering an executable to version controlling
system, the relationship between source code and
compiled object are also recorded. Figure 1 shows
an example of this relationship. Src1 and Src2 are
source codes, and Exe is an executable that comes
from Src1 and Src2. Vi (i = 1,2,..,5) expresses
each version. When registering Exe version V4,
the related information that Exe V4 contains of
V5 of Src1 and V3 of Src2. These relationships
are used later.

� Base version is existed.
In a typical software life cycle, in order to check or-
dinal operations of the functions required in spec-
i�cations, various test cases are taken into consid-
eration. These test cases are used to check in the
testing phase, and if the software correctly passes
to all the test case, the software is released and
it will shift to the software maintenance phase.
Therefore it is thought that the base version that
is maybe the �rst release of the software exists. It
is guaranteed that there is two versions that the
deltas between versions which contains defects.

� Test results using each version cannot be pre-
dicted.
It cannot predict beforehand how the version
which works correctly, and the version which has
some defects. Therefore, it is also considered that
a correct version and a defect version appear by
turns in the sequence of versions. Moreover, the
test output result of versions which produce de-
fects always are not the same result of the latest
version.

3

Under these premise condition, DMET is consisted
of three phases, named \detection", \indication", and
\reection".

3.2 Detection

In detection phase, auto-detection of source code
deltas is established using auto-execution test tools.
This phase consists of regression test and localization
test. After adding some modi�cation to the base ver-
sion of software, regression test with test data are per-
formed. If something wrong with regression test, local-
ization test are also performed with a test case that is
picked up by regression test. Localization test detects
the versions, which causes error in this regression test.

In this section, we use following notations: Vj shows
the software which version is j, and VB/VL shows the
base version and latest version of software respectively.
Regression test has N test, and each test is shown as
Ti(1 � i � N). Ii is input data of test Ti, and Oj;i is
an output of version j. Each regression test is shown
as RegT (i; N) where Ti is used in regression test. If
OL;i is a wrong output, each localization test to Vj is
shown as LclT (i; j; k) where output Ok;i (j � k) is
also wrong.

3.2.1 Regression test

The regression test is automatically done whenever cer-
tain changes are applied to software. In T (i)(1 � i �
N), OB;i is used as correct output. If something wrong
with Ti, localization test LctT (i; L�1; L) is performed.
Figure 2 shows an algorithm of RegT (1; N).

3.2.2 Localization test

Localization test checks whether there is a version
which output is the same of OB;i. This checking starts
from VL to VB by linear search, then �nds out two ver-
sions. DMET assumes there is a base version which
output OB;i is correct, this checking should be stopped
at least all versions are checked. That is, there is at
least one version, which produces correct output be-
tween VL and VB. Figure 3 shows an algorithm of
localization test.

Under localization tests LctT (i; j; k), Oj;i are pro-
duced and examined, then the results are categorized
as four types.

1. Same wrong result of Ok;i (�)
We assume that same wrong output comes from
the same defects. Therefore, changes between Vj
and Vk does not a�ects the defects. In Figure 4

LclT(i , L - 1 , L)

Regression test: RegT(i , N)

Ti : test

Ii : input for test OB, i : correct
 output

OL, i : wrong
 output

no defects are found

i > N
Yes

Yes OL, i = OB, i

finish

start

VL : version to test

VL : =>Ii OL, i

RegT(i + 1, N)

No

No do the next test

do localization test

Figure 2. Regression test

(a), there is no errors a�ected the latest version's
output between V6/V9 and V9/V10.

2. Same correct result of OB;i ()
If the output of Vj is correct, the localization test
is �nished and speci�es the code deltas between
Vj and Vk has a defect. In Figure 4 (a), deltas
between V5 and V6 has the defects which causes
an error at V10.

3. No outputs (4)
There is nothing special that the test execution
cannot be done because of the segmentation faults
of the program. Under these circumstances, it is
diÆcult to check the output of test results. There-
fore, DMET ignores this version to detect a defect.
However, in the special case, if this is found in the
regression test (Figure 4 (b)), localization test is
also performed with this test data. In this case, de-
tected delta should be between version Vc (where
B < c < L) and VL

4. Other outputs (|)
It is assumes that there is yet another defect is
found. However, it is also ignored if the defect is
not what to be detected in this localization test. In
Figure 4, V7 of (a) and V9 of (b) are not considered
in localization test.

4

Localization test: LclT(i , j , k)

Ti : test

Ii : input of test

OB, i : correct output

Oj, i : output of test

Vk : defected version

Vj : version to test

 : wrong outputOk, i OL, i(=)

j = B
Yes

No

Vj : =>Ii Oj, i

Oj, i = Ok, i
Yes

Yes

Yes

No

Oj, i = OB, i

core output?

No

LclT(i , j-1 , k)

LclT(i , j-1 , k)

finish

LclT(i , j-1 , j)

start

No

Defects are between Vb and Vk

Defects are between Vj and Vk

finish

Figure 3. Localization test

3.3 Indication

In indication phase, code deltas that are speci�ed
in detection phase are mapped to the latest version of
codes. At �rst, using the relationship between source
codes and executable, source code versions associated
with executable version are detected. For example in
Figure 5, Exe version VC (decided as in previous
phase) consists of version V2 of Src1 and Src2, and
Exe version VE (decided as � in previous phase) con-
sists of Src1 version V4 and Src2 version V2. In this
example, code delta between V2 and V4 of Src1 should
be mapped to V5 (the latest version of Src1).

In general, there are some modi�cation between VE
and the latest version VL, the delta cannot be applied
to easily. In the indication phase, modi�cations in the
delta are classi�ed as \code insertion" and \code dele-
tion", and then some correction is performed to each
modi�cation.

Inserted codes by detected delta may be included
in the latest version, so indication phase analyzes the
further code modi�cation and speci�es which line in a
delta is the line in the latest version. However, deleted
codes are not shown in the latest version; the phase

(1) same wrong output (3) no output

(2) correct output (4) another wrong output

Ti

Defects are found between V7 and V10

skip
(b)

skip

(3)
(4)

(2)

1V 2V 3V 4V 5V 6V 7V 8V 9V 10V

base version latest version

base version

Ti

latest version

(2) (1)

Defects are found between V5 and V6

skip
(a)

skip

1V 2V 3V 4V 5V 6V 7V 8V 9V 10V

(3)
(4)
(1)

Figure 4. Sample results of localization test

Src1

V1

V2

V3

V4

Exe

V1

V2

V3

Src2

V1

V2

V5

V4 V3

VC

VE

VL

Figure 5. Example of indication

checks the deleted point of source code, tracks the fur-
ther modi�cation, and speci�es the line in the latest
version if the deleted code existed.

3.4 Reection

In reection phase, the modi�cation that should �x
the detected defects is applied to the every former ver-
sion until the version that is not a�ected with the de-
fect.

This phase should be needed for further cycle of de-
bugging. It is assumed that there are two or more
defects in the target software; if you �x one defect in
the latest version, other defects existed from all ver-
sions. Further detection phase does work e�ectively
when removing the detected defects to all versions.

This phase consists of two procedures, apply a �x

5

ExeSrc1 Src2

CL1

V1

V2

V3

V4

V1

V2

V3

V4

V1

V2

V3

(1) (1) (1)

(1) apply a fix
(2) compile

V5

V1

V’2

V’4

V1

V’2

V’4

V1

V’2

V’3

V’5

CL2

CL1CL1 CL2

(2) (2)

Figure 6. Example of reection phase

and compile again. If either of this procedure fails
(does not apply a �x, or cannot compile the code),
such version is ignored in the further phases.

Figure 6 shows the example of reection phase. In
this example, there is a defect between V1 and V2. At
�rst, DMET applies a �x to V2, V3, and V4 of Src1 and
V2 of Src2. Unfortunately, V3 is failed to apply, so this
version is ignored. Then, compilation is done to all
versions. However, V 0

3
cannot be produced. Therefore,

version V1, V 0

2 , and V 0

4 are used in next localization test

4 DSUS

In this section, we propose debug supporting proto-
type system DSUS based on DMET proposed in section
3.

4.1 Features

Before designing DSUS, we specify DSUS features
to support software maintenance activities as follows:

� Independent from programming language
It is possible that more detailed support can be
done with language dependent system. However,
there are many languages used in actual software
development environment, so the system should be
language independent to support lots of software
development environment.

� Supports both testing and error correction
The debugging system supports not only test exe-
cution, but also �xing defects. It should be enough
to use DSUS while debugging for engineers.

RCS DejaGnu

storages

Version
information

Test data
Test results

DSUSmain

GUI

DSUS

project

file1.c
file2.c

exe

1.1
1.2

file1.c

1.1
1.2

file edit build test window tool

file2.cfile1.c

int main() {
 scanf("%d", a);
 if (a == 1) {
 printf("data is OK\n");
 } else {
 printf("data is No\n");
 }

Thu Feb 17 2000

Regression Test
Test No[1]
correct output
Test No[2]
new bug

Localization Test
With Version[1.3]
same bug

Figure 7. DSUS structure

� Executes tools automatically
Routing work such as doing a regression test is
tired for engineers. All activities in DMET should
be automatically done by DSUS.

4.2 System overview

DSUS system consists of DSUSmain, RCS[12],
DejaGnu[10], and graphical interface (Figure 7).

DSUS employs two external systems, RCS and De-
jaGnu. RCS is a version controlling system based on
check-in/check-out model[3]. DSUS wraps these dan-
gerous operations with GUI; miss-operation of RCS
tools can be eliminated, and periodical check-in can
be performed by DSUS; code delta should be kept to
small. DejaGnu is a testing framework and DSUS uses
this as regression testing tool. DejaGnu setup is auto-
matically done with con�guration templates by DSUS.

DSUSmain is the main engine for DSUS. GUI man-
agement, RCS operation, DejaGnu environment setup
and test management are performed by this compo-
nent. GUI component (Figure 8) is composed of editor
window and status window. User can edit arbitrarily
version of code, and command DSUS to execute the
procedures de�ned in DMET.

Most of system is implemented in C, and GTK+[15]
is used in GUI component. Con�guration templates
are written in Tcl to adapt the DejaGnu requirements.
System scale is about 20000+ LOCs.

6

Figure 8. GUI component

5 Evaluation

In this section, we evaluate DMET through the ex-
perimentation of DSUS. The object of this evaluation
is to con�rm DMET is e�ective for debugging activities
that �x defects in unchanged features.

5.1 Experiments

There are 10 testees (undergraduate and graduate
students in a university, have some skill of C pro-
gramming), and it divides into two group G1 and G2.
Group G1 uses whole DSUS features including auto-
mated DMET procedures, and group G2 uses restricted
DSUS system which does only regression test, edit-
ing code, and check-in/check-out arbitrarily version of
source code.

In this experiment, we should prepare software
which contains only one defects that comes from the
inventory control program of wine shop[6]. To collect
them, we have done a preliminary experimentation. At
�rst, we prepare a speci�cation and a program which
comes from the speci�cation. Next, we add one feature
(checking empty wine container) to the speci�cation.
All testees do develop a software based on the one we
provide, with a new speci�cation. We have gathered
software, and check if a defect exists in the features
which is in the original speci�cation. Note that the pro-
gram we have prepared with original speci�cation has
no defect; after the modi�cation by testee, the defect
is appeared because testee forget to reect the changes
of the speci�cation to the existing part of software.

Table 1 shows the summary of software we have col-

Table 1. Software used in the experiments
versions tests detected?

A 28 25

B 91 10

C 72 70 �

Table 2. Debugging time of G1 (with DMET)
A&B C

testee1 75 25
testee2 62 60
testee3 65 57
testee4 79 34
testee5 54 21

average 67.0 39.4

lected. There are three software (A, B, and C), and
software A has 28 versions (including base version),
and DMET does 25 times of localization test, and the
detected delta contains the defects. Note that the delta
of software C is large (70 tests executed although there
is 72 versions), and detected delta does not contain the
defects.

Both G1 and G2 members do debugging with these
software, and records the total time of testing and error
correction of each testee. We assume that the elapsed
time of G1 is shorter than G1.

5.2 Results and investigations

Table 2 and 3 show the elapsed time results of G1

and G2.
A, B, and C show the software described before, and

each line shows the result of each testee. These tables
summarize the time of A and B; the detected delta

Table 3. Debugging time of G2 (without
DMET)

A&B C

testee6 237 20
testee7 107 5
testee8 237 15
testee9 69 5
testee10 165 8

average 163.0 10.6

7

contains the defect of software.
According to the Welch's test (using 5% di�erences),

there is a signi�cant di�erence of the total time of A
and B between both groups. However, the time of
software C and the total time of A, B, and C does
not introduce signi�cant di�erence between groups.
Therefore, DMET/DSUS provide e�ective features for
debugging if the detection is successfully established.
Moreover through this experience, we con�rm that
DMET/DSUS support whole procedures of software
debugging.

6 Conclusion

In this paper, we propose DMET debugging method
to detect where is a defect in source code. DMET con-
sists of three phases,including detecting a delta through
versions, indicating the delta to the latest version, and
reecting the changes that �x the defect. We also im-
plement prototype system DSUS based on DMET. Us-
ing DSUS, we evaluate DMET method. As a result,
we �nd out that DMET/DSUS support whole debug-
ging activity, and help maintaining and evolving the
software.

As further works, improvements of DMET detection
phase to reduce the number of localization tests and to
detect correct code delta are required. Moreover, we
are going to expand DMET method to apply not only
debugging for unchanged features in the maintenance
phase, but also for newly created features in the devel-
oping phase.

References

[1] Babich, W. A., \Software Con�guration Manage-
ment," Addison-Wesley, Reading, Massachusetts,
1986.

[2] Dogsa, T. and Rozman, I., \CAMOTE - Com-
puter Aided Module Testing and Design Envi-
ronment," In Proceedings of the Conference on
Software Maintenance - 88, pp.404-408, Phoenix,
Ariz., 1988.

[3] Feiler P. H., \Con�guration Management Mod-
els in Commercial Environments," Technical Re-
port CMU/SEI-91-TR-7, Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213, March 1991.

[4] Hetzel, W., \The Complete Guide to Software
Testing," QED Informaion Sciences, Wellsley,
Mass., 1984.

[5] IEEE., \Test Methods for Mesureing Confor-
mance to POSIX," ANSI/IEEE Standard 1003.3-
1991, ISO/IEC Standard 13210-1994.

[6] Kudo, H., Sugiyama, Y., Fujii, M. and Torii, K.,
\Quantifying a design process based on experi-
ments". In Proceedings of the 21th International
Conference on System Sciences, Hawaii, pages
285{292, 1988.

[7] Ness, B. and Ngo, V., \Regression containment
through source code isolation," In Proceedings of
the 21st Annual Internatial Computer & Appli-
cations Conference (COMPSAC '97), IEEE Com-
puter Society Press, pp.616-621, 1997.

[8] Ostrand, T. and Weyuker, E., \Using Data Flow
Analysis for Regression Testing," 6th Annual
Paci�c Northwest Software Quality Conference,
pp.1-4, Portland, Oreg., 1988.

[9] Raither, B. and Osterweil, I., \TRICS : a Test-
ing Tool for C," In Proceedings of the First Eu-
ropean Software Engineering Conference, pp.254-
262, Strasbourg, France, 1987.

[10] Savoye, R., \Test DejaGnu Testing Framework for
DejaGnu Version 1.3," Free Software Foundation.
Inc., January, 1996.

[11] Teraguchi, M., Matsushita, M., and Inoue, K., \A
Proposal of Debugging Method with Changes be-
tween Versions," Technical Report of IEICE, SS-
99-52, pp.17-24, Naha, Japan, 2000.

[12] Tichy, W. F., \RCS - A System for Version Con-
trol," Software-Practice and Experience, Vol.15,
No.7, pp.637-654, 1985.

[13] Yau, S. and Kishimoto, Z., \A Method for
Revalidating Modi�ed Programs in the Mainte-
nance Phase," In Proceedings of the 11th An-
nual Internatial Computer & Applications Confer-
ence (COMPSAC '87), pp.272-277, Tokyo, Japan,
1987.

[14] Zeller, A., \Yesterday, my program worked. To-
day, it does not. Why?," Proceedings of the
7th European Software Engineering Conference
and 7th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineer-
ing (ESEC/FSE '99), Toulouse, France, Septem-
ber 1999.

[15] GTK+ : http://www.gtk.org/

8

