
Gemini: Maintenance Support Environment Based on Code Clone Analysis

Yasushi Ueda†, Toshihiro Kamiya‡, Shinji Kusumoto† and Katsuro Inoue†

†Graduate School of Engineering Science,
Osaka University,

Toyonaka, Osaka 560-8531, Japan
Phone:+81-6-6850-6571, Fax:+81-6-6850-6574
{y-ueda, kusumoto, inoue}@ics.es.osaka-u.ac.jp

‡PRESTO, Japan Science and Technology Corp.
Current Address:

Graduate School of Engineering Science,
Osaka University,

Toyonaka, Osaka 560-8531, Japan
Phone:+81-6-6850-6571, Fax:+81-6-6850-6574

kamiya@ics.es.osaka-u.ac.jp

Abstract

Maintaining software systems is getting more complex
and difficult task, as the scale becomes larger. It is generally
said that code clone is one of the factors that make software
maintenance difficult. A code clone is a code portion in
source files that is identical or similar to another. If some
faults are found in a code clone, it is necessary to correct
the faults in its all code clones. However, for large scale
software, it is very difficult to correct them completely. In
this paper, we develop a maintenance support environment,
called Gemini, which visualizes the code clone information
from code clone detection tool, CCFinder. Using Gemini,
we can specify a set of distinctive code clone through the
GUI (scatter plot and metrics graph about code clones),
and refer the fragments of source code corresponding to the
clone on the plot or graph.

Keywords: software maintenance, code clone, software
metrics

1 Introduction

Maintenance of software system is defined as modifica-
tion of a software product after delivery to correct faults,
to improve performance or other attributes, or to adapt the
products to a modified environment[14].

The maintenance phase is the most expensive in software
life cycle. Many research studies have reported that large
software companies spent a lot of cost to maintaining the
existing systems. For example, Yip and Lam reported that
66% of the cost in software life cycle is spent on mainte-
nance phase [15].

Code clone is one of the factors that make software main-
tenance more difficult. A code clone is a code portion in
source files that is identical or similar to another. Clones are
introduced because of various reasons such as reusing code

by ‘copy-and-paste’, mental macro, or intentionally repeat-
ing a code portion for performance enhancement, etc[4].

Modification and enhancement of legacy system would
introduce code clones. Code clones make the source files
very hard to modify consistently. For example, assume
that a software system has several clone subsystems cre-
ated by duplication with slight modification. When a fault
is found in one subsystem, the engineer has to carefully
modify all other subsystems. In order to detect the code
clones effectively, various clone detection methods have
been proposed[1][2][3][4][5][10][12].

We have proposed and developed a code clone detection
tool, CCFinder[11], that detects code clones from single
program or multiples. It has been developed to support
maintenance for large scale software and evaluation of the
programs in an educational environment. But, since the out-
put of CCFinder shows only the information of the location
of similar code fragment pairs, we cannot understand the
output intuitively, especially for large scale software. So,
in order to maintain large scale software by using the code
clone information efficiently, it is necessary to develop a
total maintenance support environment which includes the
mechanism to immediately grasp the correspondence be-
tween the code clones and the actual code fragment and
easily modify the code clones.

In this paper, we propose a maintenance support envi-
ronment, Gemini, which provides the user with the use-
ful functions to analyze the code clones and modify them.
In Gemini, CCFinder is one of the components of Gemini
and used to detect code clones. Gemini primarily provides
two diagrams: scatter plot and metrics graph. The scatter
plot graphically shows the locations of code clones among
source codes. The metrics graph shows metric value of
each clone and has a feature to identify the distinctive code
clones. So, using Gemini, we can specify the code clones
that should be taken notice in the maintenance phase. Fur-
thermore, Gemini can display source code corresponding to

1

y-ueda
Published in the Proceedings of Eighth IEEE Symposium on Software Metrics, 2002 in Ottawa, Canada.

#version: ccfinder 3.1
#langspec: JAVA
#option: -b 30,1
#option: -k +
#option: -r abcdfikmnprsv
#option: -c wfg
#begin{file description}
0.0 52 C:\Gemini.java
0.1 94 C:\GeneralManager.java
0.2 237 C:\MDI.java
1.0 7 C:\CCFEventListener.java
1.1 116 C:\CCFinderManager.java
1.2 695 C:\CCFinderOptionFrame.java

:
:

#end{file description}
#begin{clone}
0.1 53,9 63,13 1.10 542,9 553,13 35
0.1 53,9 63,13 1.10 624,9 633,13 35
0.2 124,9 152,31 0.2 154,9 216,51 42
0.2 124,9 152,31 1.10 194,9 225,30 42
0.2 126,9 152,31 1.10 185,9 204,34 37
0.2 153,14 211,9 1.10 207,9 242,5 31
0.2 153,14 216,51 1.10 193,9 225,30 44
0.2 172,9 216,51 1.10 185,9 204,34 37

:
:

#end{clone}

Figure 1. Example of output from CCFinder

the code fragments, so that refactoring of the codes can be
carried out with high maintainability. In this study, we ap-
ply Gemini to an actual program development to show the
usefulness of it.

In Section 2, we briefly introduce a code clone detec-
tion tool, CCFinder. Section 3 explains approach, features,
design and implementation of Gemini. Section 4 applies
Gemini to programming exercise in university and then an-
alyzes the results. Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 Definitions on code clone

A clone relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on code
portions. A clone relation holds between two code portions
if (and only if) they are the same sequences. (Sequences are
sometimes original character strings, strings without white
spaces, sequences of token type, and transformed token se-
quences.) For a given clone relation, a pair of code portions
is called clone pair if the clone relation holds between the
portions. An equivalence class of clone relation is called
clone class. That is, a clone class is a maximal set of code
portions in which a clone relation holds between any pair of
code portions. A code portion in a clone class of a program
is called a code clone or simply a clone.

2.2 CCFinder

CCFinder detects code clones from programs and out-
puts the locations of the clone pairs on the programs.

Clone detection of CCFinder is a process in which the in-
put is source files and the output is clone pairs. The process
consists of four steps:

Step1 Lexical analysis: Each line of source files is divided
into tokens corresponding to a lexical rule of the pro-
gramming language. The tokens of all source files are
concatenated into a single token sequence, so that find-
ing clones in multiple files is performed in the same
way as single file analysis.

Step2 Transformation: The token sequence is transformed,
i.e., tokens are added, removed, or changed based
on the transformation rules that aims at regularization
of identifiers and identification of structures. Then,
each identifier related to types, variables, and constants
is replaced with a special token. This replacement
makes code portions with different variable names
clone pairs.

Step3 Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are de-
tected as clone pairs.

Step4 Formatting: Each location of clone pair is converted
into line numbers on the original source files.

Details of CCFinder have been shown in [11].

2.3 Problem to be solved for maintenance

CCFinder has no GUI but it only generates character-
based output. Figure 1 shows an example of the output
results from CCFinder. In Figure 1, main information for
code clones are described between #begin{clone} and
#end{clone}. Here, for example, the code from the 53rd
line to the 63rd line in the file (0.1) and the code from the
542nd line to the 553rd line in the (1.10) are detected as a
code pair1. It is quite difficult for the person who analyzes
the source code to investigate a code clone only from this
information and source code, and to perform analysis of the
source code and reconstruction of it.

3 Source code analysis environment: Gemini

3.1 Design policy

Various clone detection tools have been implemented.
Among them, DUPLOC [6] has useful GUI mechanism.
DUPLOC extracts clone pairs from source files which are
implemented in various programming languages, and also
offers a visual support for code clone analysis. The user can
click the scatter plot(See Section 3.2.2) to edit code sections
of the clone.

We also adopt the scatter plot as one of the interface
mechanism in Gemini. It is very effective mechanism to
analyze code clones since the state of distribution of code

1(x.y) is used to specify the each of the input source files.

2

������� � �	��
�� ������ ���

��� �����
���� ��� � � ����� �	�

����������������� ��� ���

!"�	� �#� ����$����	
�%

��� �������� ���&��� � �'����� ���

(*),+�-/.1032�4'57682�-/2�9�.:5
; (=<?>A@

(1)&+�-/.1032�4'57682�-/2�9�.:5
; (B<?>A@

C3+�D�5�E�.FEG+ H�.16I2J-?2:9K.�5
; C/(=>L@

C3+�D�5�EG.MEG+ H�.16I2�-32�9�.�5
; C3(B>L@

(*),+�-/.FE�)&2�N�NO682�-32:9K.J5
; (1(B>L@

(*),+�-/.FE�)&2�N�NO682�-32:9K.J5
; (1(B>L@

(1+ H�.FE�)&+�-3.MH 2�P�2JQ32RN�.
; (BSUTV@ ��� ����K����� ���	� � ��

� ��W ��#XY�	� � ��

��� ������&��� ����� � ��
� ��W'��#XY��� � ��

Z N�.J57[�-�P�.�5�\�2GE�.�N

]_^�`ba(*+�H .FE�)&+�-3.MH�.JP�.�E�P�+R5
; (1(BSU@

(*+�H .FEG)�+�-3.MH�.JP�.GEJP�+R5
; (1(BSU@

c/d/e a:f�`Ff d g `VhKi?h�j'k?^ml�^B`Ri/n/l	a d ipo8`Gi?q

C?+RDK5�E�.r\�4�),.�N

Figure 2. Architecture

clone can be grasped at a glance. Also, it can be applied to
provide the user with the interactive operations for the code
clones and the source files where the clones exist.

However, as for large scale software in which there are
many code clones, it is very difficult to decide which plot
(that is code clone) in the huge scatter plot should be kept
our eye on. Since we are interested in applying Gemini to
large scale software, we have to devise the way how to de-
crease the difficulty in searching code clones which should
be taken notice. Our devised approach to operate the scatter
plot will be shown in Section 3.2.2.

Also, it is important to extract the distinctive code clones
from the target programs. For the purpose, we use several
metrics for code clone(See Section 3.2.3). To easily select
the distinctive code clone, we adopt the parallel coordinate
plot [16] as one of the interface mechanism in Gemini. The
details of the graph will be shown in Section 3.2.3.

3.2 Architecture

Gemini invokes CCFinder internally and analyzes the
outputs from CCFfinder. The architecture of Gemini is
shown in Figure 2.

Gemini mainly consists of five components: (1) Code
clone detector, (2) Clone pair manager, (3) Clone class man-
ager, (4) Source code manager and (5)User Interface. First,

when a user specifies target source files, Gemini executes
the Code clone detector (CCD), which includes CCFinder,
with setting the several options. Then, the results (code
clone information) of CCD are accumulated into the Code
clone database(CDB). Based on the data in CDB, the user
analyzes the code clones through several graphical user in-
terfaces controlled by Clone pair manager(CPM), Clone
class manager(CCM), and Source code manager (SCM).

The details of the each component in Figure 2 are ex-
plained in the following subsections.

3.2.1 Code clone detector (CCD)

CCD manages the operations for CCFinder. The program-
ming language (C/C++, Java, COBOL, Plain Text) of target
files, the minimum length of code clone which CCFinder
detects and other options are specified by the user through
the User Interface.

3.2.2 Clone pair manager (CPM)

Complying with a request from the user, CPM gets the re-
quired code clone data from Code clone database (CDB)
and shows it through the scatter plot viewer and clone pairs
list viewer. Through the viewers, the user can specify a
set of clone pairs to make them in selected state. Figure 3

3

���������	�
����������������������
�
�
�
�
�
�
�
�
�
�
�
�

!
"
�
�
�

#$

#%

#&

#'

#(

#)

*,+ *.- *./ *10 *32 *.4

57698.:<;3=?>A@CB?DFEHG :<G DJI

KML?NOKQPSRSTURJKQV 5OW<G XY>
8 R7Z?R[T\RJ] 5,:^D] >3I

(a) Without sorting

a`�	_a`�bc`�b�`�d�b�egfih	j
k�l�m
n
o
n
n
o
p
o
p
o
q
p
r
s
t
u
v
w
x

yz

y{

y|

y}

y~

y�

�,� �3� �.� �H� �.� �.�

�

(b) Sorting based on RSA and RST

Figure 4. A simple example of scatter plot

Figure 3. GUI Snap shot of scatter plot viewer
(right side) and clone pairs list viewer (left
side)

shows examples of scatter plot. If the user selects the area of
the set of clone pairs, the area is surrounded by the quadri-
lateral shown in Figure 3. Then, the corresponding code
fragments on the actual source code are also emphasized
through source code viewer.

Here, we explain the details of scatter plot viewer.
Scatter plot

Figure 4(a) shows simple examples of simple scatter

plot. Both the vertical and horizontal axes represent lines
of source files. The files are sorted in alphabetical order of
the file paths, so that files in the same directory are also lo-
cated near on the axis. A clone pair is shown as a diagonal
line segment.

In Figure 4(a) in order to simplify the plot, each file in-
cludes only three tokens and each token is located on each
separate line. For example, the file f1 includes three to-
kens (a, b and a) and f2 includes three tokens (f, g and
h). A black dot means that the corresponding tokens on the
horizontal and the vertical axis are the same. Naturally, a
diagonal line from the upper left to the lower right is drawn
since such dot means comparison of token with itself. The
dots are symmetrical with a diagonal line.

Gemini provides the user with the following functions to
operate the scatter plot:

• Browsing the part of source code which correspond to
the user selected clone pairs,

• Zooming the user specified area,

• Sorting the order of files on the coordinate axis, and

• Hiding the files in which no code clones are included.

Sorting is the most distinctive function of Gemini for de-
creasing the difficulty in the analysis of code clones in a

4

large scale software. If the files are located on the axis of co-
ordinate in naive order, such as alphabetical order with file
name, the distribution of code clones is occasionally spread
widely without conspicuous deviation as shown in Figure
4(a). Then, it is difficult to judge which portion should be
paid attention to and much cost is needed for the analysis.
So, sorting aims to decrease the cost by causing code clones
not to distribute all over a scatter plot as much as possi-
ble. The more code clones exist among two source files, the
nearer the files are to be located in each axis.

In the sorting, we take a policy to concentrate a distribu-
tion of code clones in upper left corner as much as possible.
The sorting is executed as follows:

Step1: Select a head file which are located on the upper
left on the plot, from the target files. Make H the head
file.

Step2: For the remaining files, select the most similar file
to H and put it next to H .

Step3: Repeat step2 successively while any file remains,
treating H as the most similar file in previous step2.

Here, we use the following two criterions to sort the files
on scatter plot. For n files, RSA(i) denotes the ratio of
similarity of file i to all other n − 1 files and RST (i, j)
denotes the ratio of similarity between two files i and j.

RSA is used to select the head file. RSA(f) is the ratio
of covered code range of file f by clones of all files except
f and defined as the following expression:

RSA(f) = 1

LOC(f)

∑

c∈CF (f)

LOC(c)

(LOC(C) : the number of lines of code C)

Here, CF (f) is a set of code fragments which are in-
cluded in file f and have clone relation with some code
fragments in other files, and c is a element of CF (f). In
this summation, overlapped code portions are counted only
once.

RST (f1, f2) is the ratio of covered code range of file f1

by clones of file f2, and defined as the following expression:

RST (f1, f2) = 1

LOC(f1)

∑

c∈CF (f1,f2)

LOC(c)

CF (f1, f2) is a set of code fragments which are included
in file f1 and have clone relation with some code fragments
in file f2, and c is a element of CF (f1, f2). Again in
this summation, overlapped code portions are counted only
once.

For example, in Figure 4(b), let the position of file f1 be
the head of axis since f1 has the highest RSA value Then,
f6 is arranged next to f1, because RST (f1, f6) has the
highest values and so f6 is most similar to f1 among the
five files (f2, f3, f4, f5, f6) whose position are not yet

Figure 5. GUI Snap shot of metrics graph
(right side) and clone class list viewer (left
side)

decided. Next, in the same way, f3 will be arranged next
to f6 as the most similar file to f6 among the remaining
files(f2, f3, f4, f5). If these processes are repeated for
the remaining files, files which are similar to each other will
be located close together as shown in Figure 4(b).

3.2.3 Clone class manager(CCM)

Clone class manager is aimed to perform an analysis from
several points of view. CCM classifies the code frag-
ments which are extracted by code clone detector into clone
classes, and several metrics are calculated. CCM shows the
clone class information through metrics graph viewer and
clone class list viewer.

Here, we use the following metrics for clone class[11].

RAD(C) (Radius of clone class):
For a given clone class C , let F be a set of files which
include each code fragment of C . Define RAD(C) as
the maximum length of path from each file F to the
lowest common ancestor directory of all files in F . If
a value of RAD(C) is high, since code clones in C

scatter widely over the file system, it is more difficult
to modify the faults which is contained in C .

LEN(C) (Length):
LEN(C) for clone class C is the maximum length of
token sequence for each one in C .

POP(C) (Population of clone class):
POP (C) is the number of elements (code fragments)
of a given clone class C . A clone class with a high
value of POP (C) means that similar code fragment
appear in many places.

5

DFL(C) (Deflation by clone class):
DFL(C) indicates an estimation of how many tokens
would be removed from source files when the code
fragments in a clone class C are reconstructed. This
reconstruction is considered as the simplest case that
all code fragments of C are replaced with caller state-
ments of a new identical routine (function, method,
template function, or so). After the reconstruction,
LEN(C) × POP (C) tokens are occupied in the
source files. In the newly reconstructed source files,
they occupy k×POP (C) tokens (let k be the number
of tokens for one caller statement) for caller statements
and LEN(C) tokens for callee routine. So, we define
DFL(C) as the following equation:

DFL(C) = (Old number of tokens related to C)
−(New number of tokens related to C)

= (LEN (C) × POP (C))
−(LEN(C) + k × POP (C))

= (LEN (C) − k) × (POP (C) − 1) − k

Metrics graph
In this graph, four kinds of metrics, RAD(C),

LEN(C), POP (C) and DFL(C), are displayed for each
clone class C . In order to efficiently show the values of
metrics and to consider the extensibility to easily add an-
other metrics to Gemini, we adopt the parallel coordinate
plot[16]. Since a focus on the plot can be changed by op-
eration of a user, it is suitable for interactive analysis. It
is generally said that the plot is effective to extract valu-
able information from a lot of data. Gemini draws one one
polygonal line per each clone class.

Gemini provides the user with the following functions to
operate the metrics graph:

• Browsing the part of source code which corresponds to
the user selected clone classes,

• Filtering clone classes based on the value of each met-
ric,

• Changing color of polygonal line according to the
value of each metric

By using the filtering, the user can set the warning range
about each metric. The clone classes whose metric values
are in the warning ranges are highlighted in the graph, and
are put in selected state.

For example, the number of clone classes existing in
Figure 5 is about 6000 in total. Then, if the user sets
the warning range (in this case, the range of the value of
RAD, LEN , POP and DFL were set as low, all, high
and high, respectively), the range is surrounded by the poly-
gon shown in Figure 5 and only the polygonal lines for two
clone classes become emphasized. Also the corresponding
code fragments on the actual source code are emphasized
through source code viewer.

Figure 6. GUI Snap shot of source code viewer

3.2.4 Source code manager (SCM)

Source file manager gives information of location of the
code clones in selected state, that is, specified by the user
through CPM and CCM, and displays the selected code
fragments through the source code viewer. Especially a
code clone is highlighted and a clone pair is displayed by
the pair as shown in Figure 6.

3.3 Implementation

Gemini has been implemented in Java (about 10,000
lines) and runs on the environment where JDK 1.3 VM can
be executed. A example of GUI is shown in Figures 3, 5
and 6.

4 Application to the programming exercise

4.1 Overview

We have applied Gemini to source files of programs de-
veloped in a certain programming exercise of Osaka Univer-
sity. As for plagiarism of program, the paper[13] presents
a detailed discussion and experiments. In our experiment,
comparison of two or more versions of a developer’s pro-
gram is also discussed.

In the exercise, each student writes a compiler in C lan-
guage, which translates a program written in the subset of
Pascal language into the CASL(assembly language). In-
struction documents are given to each student and the spec-
ification of a compiler is defined in the documents. At an-
other lecture, they learn design and implementation of a
compiler with a textbook, which contains sample source
code of a simple compiler.

The exercise consists of three steps (sub-exercises):

Step1(Ex.1): Making a syntax checker(Parser).

6

����� � ��� �	�
�������� �
���

�� ��� �

� ���
�� �

� ��

(a) Extended with low reuse (M1)

����� � ��"!	#� �$�%� �� &'��!
() *+, *

- .,/
0, *

1 (-

(b) Extented with high reuse (M2)

2�3�4 5 6�4 798�6�:�;�6�4 <
2�7

=> ?@A ?

B CAD
EA ?

F =B

(c) Extended with not only high reuse but also
high value of DFL (M3)

Figure 7. Reuse of programs

Step2(Ex.2): Making a semantic checker(Checker).

Step3(Ex.3): Making a compiler(SPC).

In addition, it was required that Checker and SPC are
developed by reusing the code of the previous programs.
That is, Checker is developed by reusing Parser and
SPC is developed by reusing Checker.

We collected source files of the programs (Parser,
Checker and SPC) from 69 students (M1..M69). Totally,
the size of all the programs is about 360,000 lines. The
minimum length of code clone was set to 30 tokens.

4.2 Analysis

In this experiment, by using Gemini, we analyzed the
following issues:

(1)Reuse among three programs: In order to confirm
whether each student meets the requirements of the
exercise, we checked the values of RST (Parser,
Checker) and RST (Checker, SPC) for each stu-
dent. Then, using Gemini, we validate the results of
RST to examines the actual code clones.

(2)Similarity among all programs: In the exercise, illegal
reuse sometimes happens. That is, some students copy
others’ programs and modify them to meet the dead-
line and so on. So, we use the values of RSA and
examine the actual code which has high RSA.

(3)Usefulness of metrics graph: We evaluate the useful-
ness of the metrics graph whether it can identify the
distinctive code clones that should be arranged into
some modules.

Table 1. Values of RST

Parser G Checker Checker G SPC ave.

M1 0.117 0.086 0.102
M2 0.535 0.563 0.549
M3 0.674 0.729 0.701
M4 0.156 0.449 0.303
M5 0.118 0.363 0.241
M6 0.119 0.426 0.272
M7 0.273 0.282 0.278
M8 0.039 0.538 0.288
M9 0.236 0.211 0.224
M10 0.071 0.709 0.390

≈ · · · ≈
M69 0.112 0.598 0.355

ave. 0.185 0.461 0.320
max. 0.674 0.747 0.701
min. 0.037 0.086 0.102

4.2.1 Reuse of programs

The values of RST (Parser, Checker) and
RST (Checker, SPC) are shown in Table 1.

The averages of RST (Parser, Checker) and
RST (Checker, SPC) are 0.185 and 0.461, respec-
tively. For RST (Parser, Checker), the values seem to be
low.

For some distinctive programs, we checked the details of
them. Figure 7 shows the scatter plot of them. In the plots,
Parser, Checker and SPC are arranged on their axes in
the order of exercise number.

For M1, the average value of RST was lowest (0.102)
and the data is shown in Figure 7(a). It means that M1 did
not reuse Parser or Checker so much. We examined the

7

actual code of M1 by using source code viewer of Gemini
and then found the small code clones which could not found
on the number of minimum length of code clone, 30 tokens.
So, we recalculated the values by changing the minimum
length of code clone to 15 for all the students. Then, the
values of RST (Parser, Checker) and RST (Checker,
SPC) become 0.515 and 0.266, respectively. (The averages
of RST (Parser, Checker) and RST (Checker, SPC)
become 0.441 and 0.651, respectively.) The value 30 of
minimum length of code clone was decided based on the
results of experiment in [11], when we applied CCFinder
to a huge size of programs. In this experiment, each size
of the program is about 1000-2000 LOC. The results show
that it should be careful to set the value of minimum length
of code clone according to the characteristics of the target
program.

On the other hand, for M2 and M3, the average value
of RST were relatively high (M2: 0.549, M3: 0.701) and
the data are shown in Figure 7(b) and (c). It means that
M2 and M3 did highly reuse in the exercise. However, the
two scatter plots have quite different appearances. The dif-
ference can be explained by the value of DFL shown in
Table 3. For M2, DFL(Parser) 2, DFL(Checker) and
DFL(SPC) are 137, 157 and 157, respectively. These val-
ues are relatively low compared to the average values. On
the other hand, for M3, DFL(Parser), DFL(Checker)
and DFL(SPC) are 473, 239 and 419, respectively. These
values are relatively high to the average values. That is,
for M3, there remains some possibility to improve the pro-
grams by collecting the code clones and arranging them into
some modules(See Section 4.2.3).

Table 2. Values of RSA

Parser Checker SPC ave.

M1 0.015 0.000 0.000 0.005
M2 0.000 0.000 0.000 0.000
M3 0.007 0.000 0.000 0.002
M4 0.029 0.244 0.159 0.144
M5 0.162 0.271 0.148 0.194
M6 0.326 0.211 0.137 0.224
M7 0.297 0.244 0.160 0.234
M8 0.348 0.151 0.142 0.214
M9 0.028 0.009 0.011 0.016
M10 0.000 0.000 0.000 0.000

≈ · · · ≈
M69 0.032 0.004 0.003 0.013

ave. 0.089 0.032 0.019 0.046
max. 0.407 0.271 0.160 0.234
min. 0.000 0.000 0.000 0.000

2The maximum value of DFL(C) in program P is abbreviated to
DFL(P).

��

��

Figure 8. Sorted scatter plot of all students’
SPC

4.2.2 Similarity among programs

The values of RSA are shown in Table 2. The average value
of RSA for Parser, Checker and SPC are 0.089, 0.032
and 0.019, respectively. So, as the exercise is in progress,
the similarity between students becomes lower. It was just
as we had expected since the later exercise requires the orig-
inality of the student.

However, some students have high RSA values even for
SPC . We checked their data using scatter plot. Figure 8 is
the scatter plot of all the 69 students’ SPC programs. The
grillage in the figure shows a separator of individuals. Pre-
dictably, the distribution of code clones was spread widely
all over the scatter plot in the beginning. So, we rearranged
them using sorting function of Gemini. Then, the distri-
bution concentrated into the upper left corner as Figure 8.
Crowded code clones marked A in the Figure 8 are located
in the area where the code clones between SPC programs
of M4 and M5 (let M4 and M5 be called Group A) are
shown. Crowded ones marked B are located in the area
where the code clones among SPC programs of M6, M7

and M8 (let M6, M7 and M8 be called Group B) (they are
arranged side-by-side on the axes) are shown.

Investigating the values of RSA for M4, M5, M6,
M7 and M8, their rank was top five of RSA(SPC) and
RSA(Checker). The rank of each member of Group B

was also included in top 10 of RSA(Parser). Through the
source code viewer, we examined the corresponding code

8

���������	�
���������� ����

�� ��� �

� ��� �� �

� ��

��

��
��

(a) M9

 �!�"�#�$�"&%�'$)(*$�" + ,%
-. /01 /2 314 51 /

6 -2 7

(b) M10

Figure 9. Scatter plots with high DFL

fragments in the source code. As for Group A, the most of
similar code fragments among them are described in sample
compiler in the textbook. However, as for Group B, some
code fragments were similar even about name of variables
or commentation. So, the possibility that some reference to
others’ programs were performed among Group B is high.

4.2.3 Usefulness of metrics graph

In this experiment, since the programs developed by each
student are not so large and are located in each student’s
single directory, we did not use RAD. Also, since LEN

and POP are in proportion to DFL according to the defi-
nition, we deal with the DFL here.

As for definition of DFL, the number of tokens for one
caller statement was set as 5 tokens (a caller statement con-
sists of “Name of SubRoutine”, “(”, “Argument”, “)”,
“;”). Then, in this experiment, DFL is defined as follows:

DFL(C) = (LEN (C) − 5) × (POP (C) − 1) − 5

The maximum values of DFL in each program are
shown in Table 3.

The average of DFL(Parser), DFL(Checker) and
DFL(SPC) are 196, 183 and 311, respectively. If we as-
sume that one line has five tokens in average, 30-60 lines
will be reduced by reconstruction.

Here, we examined the distinctive programs: Parser by
M9 (DFL=3528) and SPC by M10 (DFL=3439). These
values are prominent.

Firstly 8 Figure 9(a) shows M9’s scatter plot. In this scat-
ter plot, Parser, Checker and SPC are arranged on their
axes in the order of exercise number.

For M9, DFL(Parser), DFL(Checker) and
DFL(SPC) are 3538, 163 and 189, respectively.
Although the Parser has a very high DFL value, the
DFL values of Checker and SPC are almost the same
with the average. It indicates that in making Checker,
the reconstruction of each clone classes in Parser to one
routine in Checker was conducted. Through metrics graph
and source code viewer, we examined the code fragments
that correspond to the clone class having very high DFL.

All the code fragments which are in a set of crowded
code clones marked C in Figure 9(a) are included in the
clone class having very high DFL. In turn, in the area
marked C in which self-comparison of Parser are per-
formed, similar code fragments appeared once and again
and sequentially. However, in the area marked D where the
comparison of Parser and Checker are performed, code
clones like the clones marked C don’t exist, and instead of
them, sharp line marked E exists. That is, the sharp line
indicates that M9 reconstructed the code fragments marked
C in his Parser into one routine in his Checker.

Next, Figure 9(b) shows M10’s scatter plot. For
M4, DFL(Parser), DFL(Checker) and DFL(SPC) are
100, 211 and 3439, respectively. Crowded code clones
marked F in Figure 9(b) look like ones marked C . So, we
confirmed whether the clone classes included in F can be

9

Table 3. The maximum values of DFL in each
program

Parser Checker SPC

M1 0 99 113
M2 137 157 157
M3 473 239 419
M4 79 131 131
M5 145 199 199
M6 75 97 199
M7 75 75 391
M8 75 119 233
M9 3538 163 189
M10 100 211 3439

≈ · · · ≈
M69 223 211 258

max. 3538 603 3439
min. 0 47 51
ave. 196 183 311

arranged into some modules as M9’s Parser, through met-
rics graph and source code viewer. Then, we found that the
difference is only the name of constant. That is, it is easy
to arrange the fragment into one module by using some pa-
rameters.

Although the above programs are typical examples that
can be refined by merging code fragments of clone, there
are some code clones that are not appropriate for merging.
For example, the rank of DFL values of M3’s Parser and
SPC belong to top 20 in Table 3. We examined whether
some code fragments of M3’s can be arranged to one mod-
ule. Then, we found that the differences are the name of
subroutine and constant. However, since the semantics of
the fragments are quite different, these fragments are not
appropriate to arrange into one module. It means that we
should pay attention to the meanings of the code clones in
arranging into one module.

5 Conclusions

In this paper, we have developed a maintenance support
environment, Gemini, which supports the maintenance ac-
tivity by using code clone analysis result. Using Gemini, we
can specify a set of distinctive code clone through the GUI
(scatter plot and metrics graph about code clones), and refer
the fragments of source code corresponding to the clone on
the plot or graph. Then, in order to evaluate the usefulness
of Gemini, we have applied it to the programs developed in
an exercise in Osaka University. We could evaluate whether
the students developed the program as to meet the require-
ments of the exercise or illegal reuse was happened by us-

ing Gemini. Also, we could examine the several distinctive
code clones through the user interface of Gemini.

We are going to evaluate the applicability of Gemini to
large scale software in actual software maintenance as fu-
ture research work.

References

[1] B. S. Baker, “A Program for Identifying Duplicated Code”, Proceed-
ings of the 24th Symposium on the Interface: Computer Science and
Statistics, ACM Press, pp.18-21, 1992.

[2] B. S. Baker, “On Finding Duplication and Near-Duplication in Large
Software Systems”, Proceedings of IEEE Working Conf. on Reverse
Engineering, pp.86-95, July 1995.

[3] B. S. Baker, “Parameterized Duplication in Strings: Algorithms and
an Application to Software Maintenance”, SIAM Journal on Comput-
ing, vol.26, no.5, pp.1343-1362, 1997.

[4] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees”, Proceedings of ICSM’98
(International Conference on Software Maintenance), pp.368-377,
Bethesda, Maryland, Nov. 1998.

[5] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code”, Proceedings of ICSM’99
(International Conference on Software Maintenance), pp.109-118,
Aug. 1999. Proceedings of the IEEE International Conference on Soft-
ware Maintenance

[6] Duploc, http://www.iam.unibe.ch/˜rieger/duploc/,
1999.

[7] M. Fowler, Refactoring: improving the design of existing code, Addi-
son Wesley, 1999.

[8] D. Gusfield, Algorithms on Strings, Trees, And Sequences, Cambridge
University Press, 1997.

[9] J. Helfman, “Dotplot Patterns: a Literal Look at Pattern Languages”,
Theory and Practice of Object Systems, vol.2, no.1, pp.31-41, 1996.

[10] J. H. Johnson, “Identifying Redundancy in Source Code using Fin-
gerprints”, Proceedings of CASCON’93, pp.171-183, Toronto, On-
tario, 1993.

[11] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multi-
linguistic token-based code clone detection system for large scale
source code”, IEEE Transactions on Software Engineering, (to ap-
pear).

[12] J. Mayland, C. Leblanc, and E. M. Merlo “Experiment on the Auto-
matic Detection of Function Clones in a Software System Using Met-
rics”, Proceedings of ICSM’96 (International Conference on Software
Maintenance), pp. 244-253, Monterey, California, Nov. 1996.

[13] L. Prechelt, G. Malpohl, M. Philippsen, “Finding plagia-
risms among a set of programs with JPlag”, submitted to
Journal of Universal Computer Science, Nov. 2001, taken from
http://wwwipd.ira.uka.de/˜prechelt/Biblio/

[14] Pigoski T. M., “Maintenance”, Encyclopedia of Software Engineer-
ing, 1, John Wiley & Sons, 1994.

[15] S. W. L. Yip and T. Lam, “A software maintenance survey”, Pro-
ceedings of APSEC’94, pp. 70-79, 1994.

[16] E. J. Wegman and Q. Luo, “High Dimensional Clustering Using
Parallel Coordinates and the Grand Tour”, Proceedings of 28th Sym-
posium Interface of Computing Science and Statistics, 1996.

10

