
An Efficient Information Flow Analysis of Recursive
Programs based on a Lattice Model of Security Classes

Shigeta Kuninobu�, Yoshiaki Takata�, Hiroyuki Seki�, and Katsuro Inoue�

� Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, 630-1010, Japan

�shige-ku, y-takata, seki�@is.aist-nara.ac.jp
� Graduate School of Engineering Science, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
inoue@ics.es.osaka-u.ac.jp

Abstract. We present an efficient method for analyzing information flow of a
recursive program. In our method, security levels of data can be formalized as
an arbitrary finite lattice. We prove the correctness of the proposed algorithm
and also show that the algorithm can be executed in cubic time in the size of a
program. Furthermore, the algorithm is extended so that operations which hide
information of their arguments can be appropriately modeled by using a congru-
ence relation. Experimental results by using a protypic system are also presented.

1 Introduction

In a system used by unspecified people, protecting information from undesirable leak-
ing is essential. One of the ways to protect information from undesirable leaking is an
access control technique called Mandatory Access Control (MAC). MAC requires that
data and users (or processes) be assigned certain security levels represented by a label
such as top-secret, confidential and unclassified. A label for a data � is called the secu-
rity class (SC) of �, denoted as �����. A label for a user � is called the clearance of �,
denoted as ����	���. In MAC, user � can read data � if and only if ����	��� � �����.
However, it is possible that a program with clearance higher than ����� reads data
�, creates some data �� from � and writes �� to a storage which a user with clearance
lower than ����� can read. Hence, an undesirable leaking may occur since data �� may
contain some information on data �.

One way to prevent these kinds of information leaks is to conduct a program anal-
ysis which statically infers the SC of each output of the program when the SC of each
input is given. Several program analyses based on a lattice model of SC have been pro-
posed (see related works below); however, some of the program analyses can analyze
only relatively simple programs which do not specifically contain a recursive procedure.
Also, in some cases, the soundness of the analyses have not been proved.

This paper proposes an algorithm which analyzes information flow of a program
containing recursive procedures. The algorithm constructs equations from statements
in the program. The equation constructed from a statement represents the information
flow caused by the execution of the statement. The algorithm computes the least fix-
point of these equations. We describe the algorithm as an abstract interpretation and

prove the soundness of the algorithm. For a given program Prog, the algorithm can be
executed in
����� time where � is the maximum number of arguments of procedures
in Prog, � is the number of procedures in Prog and � is the total size of Prog. Based on
the proposed method, a prototypic system has been implemented. Experimental results
by using the system are also presented.

In the algorithm proposed in this paper and most of all other existing methods, the
SC of the result of a built-in operation (e.g., addition) is assumed to be the least
upper bound of the SCs of all input arguments of . This means that information on
each argument may flow into the result of the operation. However, this assumption is
not appropriate for some operations such as an aggregate operation and an encryption
operation. For these operations, it is practically difficult to recover information on in-
put arguments from the result of the operation. Considering the above discussions, the
proposed method is extended so that these operations can be appropriately modeled by
using a congruence relation.

The rest of the paper is organized as follows. Section 2 defines the syntax and the
operational semantics of a program language which will be the target language of the
analysis. In section 3, we formally describe the program analysis algorithm, prove the
correctness of the algorithm and show the time complexity of the algorithm. A brief ex-
ample is also presented in section 3. The method is extended in section 4. Experimental
results are briefly presented in section 5.

Related Works [D76] and [DD77] are the pioneering works which proposed a sys-
tematic method of analyzing information flow based on a lattice model of security
classes. Subsequently, Denning’s analysis method has been formalized and extended
in a various way by Hoare-style axiomatization [BBM94], by abstract interpretation
[O95], and by type theory [VS97,HR98,LR98].

In a type theoretic approach, a type system is defined so that if a given program is
well-typed then the program has noninterference property such that it does not cause
undesirable information flow. [VS97] provides a type system for statically analyzing in-
formation flow of a simple procedural program and proves its correctness. The method
in [VS97] assumes a program without a recursive procedure while our method can
analyze a program which may contain recursive procedures. [HR98] defines a type sys-
tem for a functional language called Slam calculus to analyze noninterference property.
[SV98] showed that their type system in [VS97] is no longer correct in a distributed
environment and presented a new type system for a multi-threaded language. How to
extend our method to fit a distributed environment is a future study.

A structure of security classes modeled as a finite lattice is usually a simple one
such as �top-secret, confidential, unclassified�. [ML98] proposes a finer grained model
of security classes called decentralized labels. Based on this model, [M99] proposes a
programming language called JFLOW, for which a static type system for information
flow analysis as well as a simple but flexible mechanism for dynamically controlling
the privileges is provided. However, their type system has not been formally verified.

Recently, control flow analysis of a program which performs dynamic access con-
trol such as stack inspection in Java Development kit 1.2 is studied. For example,

[JMT99,NTS01] propose methods of deciding for a given program � and a global se-
curity property � whether every reachable state of � satisfies �.

2 Definitions

2.1 Syntax of Program

In this section, we define the syntax and semantics of a programming language which
will be the input language to the proposed algorithm. This language is a simple proce-
dural language similar to C.

A program is a finite set of function definitions. A function definition has the fol-
lowing form:

����� � � � � ��� ����� ��� � � � � �� ����

where � is a function name，��� � � � � �� are formal arguments of � , ��� � � � � �� are
local variables and �� is a function body．The syntax of �� is given below where � is
a constant，� is a local variable or a formal argument, � is a function name defined in
the program and is a built-in operator such as addition and multiplication. Any object
generated by ���� can be �� .

���� ��� ��� � ����	 ����

��� ���
� ��� ��� ���� ���� ���� � � ������ ���

����� ��� ���� � ����	 �����
���� ��� � �� ��� �
� ��� ��� ����� ���� ����� � � �
�� ��� �� ����� ��

��� ��� � � � � ������ � � � � ���� � ����� � � � � ����

Objects derived from ���, ��� or ����, ���� or ����� are called an expression, a
command, a sequence of commands, respectively. An execution of a program 	
�� is
the evaluation of the function named ���, which should be defined in 	
��. Inputs
for 	
�� are actual arguments of ��� and the output of 	
�� for these inputs is the
return value of ���.

2.2 Semantics of Program

We assume the following types to define the operational semantics of a program. Let �
denote the cartesian product and � denote the disjoint union.

type ��� (values) We assume for each �-ary built-in operator , �-ary operation � �
���� � � �� ��� � ��� is defined. Every value manipulated or created in a program
has the same type �� .

type ���	� There exist two functions
������ � ���	�� ��	� ���

������ � ���	�� ��	 � ���� ���	�

which satisfies:
������������������ ��� �� � if � � � then � else ��������� ��.

For readability, we use the following abbreviations:

���� � ��������� ��, ��� �� �� � ��������� �� ��.
Let 	����� denote the store such that 	�������� is undefined for every �.

We define a mapping which provides the semantics of a program. This mapping takes a
store and one of an expression, a command and a sequence of commands as arguments
and returns a store or a value.

��� ����	�� ���� ���� � ����	�� ���� ����	�� �����
� ����	�� ���� � ����	� � �����

– 「� �� �
 �」means that a store � evaluates an expression � to the value �,
that is, if � is evaluated by using � then � is obtained.

– 「� �� �
 ��」means that a store � becomes �� if a command � is executed.
–「� �� �
 �」means that if a command� is executed when the store is � then the

value � is returned. This mapping is defined only when � has the form of ‘return
� ’ for some expression � .

– Similar for a sequence of commands.

Below we provide axioms and inference rules which define the semantic mapping,
where the following meta-variables are used.

�� ��� � � � � ��� � � � � ��	 ����� � � � � ��� � � ��� or ����
����� �� � ���� or ����� �� ��� ��� � ���	�

(CONST) � �� �� ��
(VAR) � �� �� ����

(PRIM)
� �� �� � �� �� � � � ��

� �� ����	

 	��� � �����	

 	 ���

(CALL)
� �� �� � �� �� � � � �� �� �� �� � �

� �� � ���	

 	��� � ��
����	

 	 ��� local �	

 	 � ����
�� � �����	��� �� ��� � � � ��� �� ���

�

(ASSIGN)
� �� � � �

� �� � �� � � ��� �� ��

(IF1)
� �� � � true � �� �� � �� ����
 ��

� �� if � then �� else �� fi � �� ����
 ��

(IF2)
� �� � � false � �� �� � �� ����
 ��

� �� if � then �� else �� fi � �� ����
 ��

(WHILE1)
� �� � � true � �� � � �� �� �� while � do � od � ���

� �� while � do � od � ���

(WHILE2)
� �� � � false

� �� while � do � od � �

(RETURN)
� �� � � �

� �� return � � �

(CONCAT)
� �� � � �� �� �� � � ��� ����
 ��

� �� ��� � ��� ����
 ��

3 The Analysis Algorithm

A security class (abbreviated as SC) represents the security level of a value in a program.
Let ����� be a finite set of security classes. Also assume that a partial order� is defined
on ����� and (����� , �) forms a lattice; let 	 denote the minimum element of �����
and let ����� denote the least upper bound of �� and �� for ��� �� ����� . Intuitively,
�� � �� means that �� is more secure than ��; it is legal that a user with clearance ��
can access a value with SC ��. A simple example of ����� is:

����� � ���� � ������ ��� � �����

The purpose of the analysis is to infer (an upper bound of) the SC of the output value
when an SC of each input is given. Precisely, the analysis problem for a given program
	
�� is to infer an SC of the output value of 	
�� which satisfies the soundness property
defined in section 3.3.

We first describe the analysis algorithm in section 3.1. The soundness of the pro-
posed algorithm is proved in section 3.3.

3.1 The Algorithm

To describe the algorithm, we use the following types.

type �� (security class) .
type ���	� (SC of store)

������ � ���	�� ��	 � ��� ���	�

������ � ���	�� ��	 � ��

For ���	� type, we use the same abbreviations as for ���	� type. If � is an element
of type ���	�, then ���� is the SC of variable � inferred by the algorithm. By
extending the partial order � defined on �� to type ���	� as shown below, we can
provide a lattice structure to ���	�:

For � and �� of type ���	�, � � �� � �� ��	� ���� � �����.
The minimum element of ���	� is � satisfying �� ��	� ���� � 	. We write this
minimum element as 	�����.

type ��� (SC of function) Similarly to type ���	�, the following functions are defined.

������ � ��� � ������ ���� � � � � ��� ���

������ � ��� � ������ ���� � � � � ��� ���� ���

We use the following abbreviations for ��� , � ����� and � � �� � � � � �
��� ��.

 �� � � ������� � ��

 �� �� �� � ������� � �� ��

For �-ary function � and SCs ��� � � � � ��, �� ����� � � � � ��� is the SC of the returned
value of � inferred by the algorithm when the SC of !-th argument is specified as
�	 �� � ! � ��. Similarly to type ���	�, we can provide a lattice structure to type
��� . The minimum element of ��� is denoted as 	��� .

type cv-��� (covariant fun) This type consists of every of type ��� which satisfies
the next condition:

If �	 � � �	 for � � ! � � then �� ����� � � � � ��� � �� ��� ��� � � � � �
�
��.

We use the following meta-variables as well as the meta-variables introduced in section
2.2.
�� ��� ��� � ���	� � �� � � ���

Below we define a function ������ which analyzes the information flow. Before defining
the analysis function, we explain implicit flow [D76]. Consider the following command.

if � � � then � �� � else � �� � fi
In this command, the variable � occurs neither in � �� � nor in � �� �. However, after
executing this command, we can know whether � is 0 or not by checking whether � is 0
or 1. Therefore, we can consider information on the value stored in the variable � flows
into the variable �. In general, information may flow from the conditional clause of a
“if” command into “then” and “else” clauses and also it may flow from the conditional
clause of a “while” command into “do” clause. Such information flow is called implicit
flow. The function������ infers that the SC of implicit flow caused by a command � or a
sequence � of commands is the least upper bound of the SCs of the conditional clauses
of all the “if” and “while” commands which contain � or � in their scopes. ������ takes
the SC of implicit flow as its fourth argument.
� � ���� � ��� � ���	�� ��� � ����� ��� � ���	�� ��� ���	��

� ����� � ��� � ���	�� ��� ���	��

– 「���� ��� � �� � �」means that, for SCs of functions and an SC � of a store,
the SC of an expression � is analyzed as � .

– 「������� � �� "� � ��」 means that, for SCs of functions, an SC � of a store
and an SC " of implicit flow, the SC of the store after executing a command � is
analyzed as ��.

– Similar for a sequence of commands.

The definition of � is as follows:

(CONST) ��������	 �� � �
(VAR) ��������	 �� � ����
(PRIM) �������	

 	�������	 �� �

�
�����

���������	 ��

(CALL) �������	

 	�������	 �� � � �� �����������	 ��	

 	���������	 ���
(ASSIGN) ���� �� � ����	 �	 �� � ��� �� ��������	 �� 	 ��
(IF) ���if � then �� else �� fi����	 �	 �� � ���������	 �	 � 	 � � 	���������	 �	 � 	 � �

where � � ��������	 ��
(WHILE) ���while � do � od����	 �	 �� � ���� ����	 �	 � 	 ���� ����	 ��� 	 �

(RETURN) Let ��� be a fresh variable which contains a return value of a function.
���return � ����	 �	 �� � ����� �� ��������	 �� 	 ��

(CONCAT) ������ ����	 �	 �� � ���� ����	��������	 �	 ��	 ��

Define the function ������ � �	�#	�� � ��� � ��� , which performs ‘one-step’
analysis of information flow for each function � defined in a given program as follows:

For 	
�� � ������ � � � � ��� local ��� � � � � �� ����� � � ��,

���	
����� � �

 �� �� $�� � � � ��������� ��� �	�������� �� ��� � � � ��� �� ����	��	����

� �
� �� �-��� �����
�� ������
� 	
��� (1)

For a lattice ����� and a function � � � � �, we write the least fix-point of � as
�!����. For a program 	
��, the function ����	
���� which analyzes information flow
of 	
�� is defined as the least fix-point of���	
����, that is,

����	
���� � �!��$ ����	
����� ���

As will be shown in lemma 1, ���	
���� is a monotonic function on the finite lattice
cv-���. Therefore,

����	
���� �
�
	��

���	
����	�	���� (2)

holds [M96] where ����� � �, � 	����� � ��� 	����. Hence, ����	
���� can be calcu-
lated by starting with 	��� and repeatedly applying ���	
���� to the SCs of functions
until the SCs of the functions remains unchanged.

3.2 An Example

In this subsection, we show how our analysis algorithm works. The program which we
are going to analyze is written below. In this example, we assume ����� � ���%� &!#&�,
��% � &!#&.

������ � ���� �
while � ' � do if � ' �

� �� � � �	 � �� � � � then return � � ��� � ��
od; else return 0
return ���� fi

� �

In order to analyze this program, we continue updating using the following relation
until does not change any more.

 � ���� �� $����������� ��� �	������� �� � ��	��	�����
�� �� $�������� ��� �	������� �� � ��	��	�����

The table below shows how changes. The SCs of the !-th column are calculated by
using the SCs of the �!� ��th column.

0 1 2 3
 ����� $��	 $��	 $��� $���

 �� � $��	 $��� $��� $���

From this table, we can know that����	
������������ � � , that is, the SC of the return
value of the main function is ��% when the SC of the actual argument is ��% and the
SC of the return value of the main function could be &!#& when the SC of the actual
argument is &!#&.

3.3 Soundness of the Algorithm

As mentioned in section 3.1, the analysis algorithm is a function of the following type:

������� � �	�#	��� ������ ���� � � � � ��� ����

����	
������ ����� � � � � ��� � � means that for an �-ary function � defined in 	
�� and
for SCs ��� � � � � �� of arguments of � , ������� infers that the SC of � is � .

Definition 1. An analysis algorithm ������� is sound if the following condition is
satisfied.

Assume 	
�� is a program and ��� is the main function of 	
��. If

����	
������������� � � � � ��� � ��

	����� �� ������� � � � � ���
 �� 	����� �� �������� � � � � �
�
��
 ���

�! �� � ! � �� � �	 � �� �	 � ��	

then � � �� holds. ��

By the above definition, an analysis algorithm is sound if and only if the following con-
dition is satisfied: assume that the analysis algorithm answers “the SC of the returned
value of the main function is � if the SC of the !-th argument is �	.” If every actual
argument with SC equal to or less than � remain the same then returned values of the
main function also remains the same even if an actual argument with SC higher than
or incomparable with � changes. Intuitively, this means that if the analysis algorithm
answers “the SC of the main function is � ,” then information contained in each actual
argument with SC higher than or incomparable with � does not flow into the return
value of the main function.

The following lemma guarantees the validity of the equation (2).

Lemma 1. (a) If is of type cv-��� then ���	
����� � is also of type cv-���.
(b) (monotonicity) Assume � and � are of type cv-��� . If � � � then

���	
����� �� � ���	
����� ��. ��

The next two lemmas are used to show that the algorithm presented in section 3.1 is
sound in the sense of definition 1.

Lemma 2. (property of implicit flow)

(a) If ���� ��� � �� "� � ��, � �� �
 �� and " �� ����� then ���� � ������
(b) If ���� ��� � �� "� � ��, � �� while � do � od
 �� and " �� ����� then ���� �

������ ��

Lemma 3. (noninterference property) Let � ����	
����.

(a) If ���� ��� � �� � � , �� ���
 ��, �� �� �
 �� and �� � ���� � �� ����� �
�����, then �� � ���

(b) If���� ��� � �� "� � ��, �� �� �
 ���, �� �� �
 ���, ����� � � and �� � ���� �
�� ����� � �����, then ������ � �������

(c) If ���� ��� � �� "� � ��, �� �� �
 ��, �� �� �
 �� and �� � ���� �
���	���� ����� � �����, then �� � ���

(Proof Sketch) By using Lemmas 1 and 2, the lemma is proved by induction on the
application number of inference rules for ������. ��

Theorem 1. The algorithm ������� is sound.

(Proof) By lemma 3(c). ��

3.4 Time Complexity

In this subsection, the time complexity of the algorithm ������� presented in section 3.1
is examined. Let Prog be an input program and let �, � and � be the maximum number
of arguments of each function in Prog, the number of functions in Prog and the total
size of Prog, respectively. Since the only operations which appear in the algorithm are
	 and �, for each �-ary function � in Prog,���	
����� ��� � can be written as

���	
����� ��� ����� � � � � ��� � �	� � � � � � �	�

where �	 (� � ! � �) is an arbitrary SC and �!�� � � � � !�� � ��� � � � � ��. The worst case
is that for each execution of ���	
����� �, only one �
 is added to
���	
����� ��������� � � � � ��� for only one function �� and ���	
����� ��� ����� � � � � ���
remains unchanged for every function � other than ��. For example,
���	
����� ��������� ��� ��� � �� becomes ���	
��������	
����� ���������� ��� ��� �
����� while���	
��������	
����� ���� ����� � � � � ��� � ���	
����� ��� ����� � � � � ��� for
every function � other than ��. Thus, the maximum number of iterations of���	
���� is
��. On the other hand, it is not difficult to see that one iteration of���	
���� takes
���
time. Hence, we obtain the following theorem:

Theorem 2. Let Prog be a program. The algorithm ����	
���� can be executed in

����� time where � is the maximum number of arguments of each function in Prog,
� is the number of functions in Prog and � is the total size of Prog, respectively. ��

4 An Extended Model

The algorithm� in the previous section has been defined for any built-in operator as:

(PRIM) ������� � � � ������� � �� �
�
��	������	��� � ��.

This means that we assume information contained in each argument may flow into the
result of the operation � . However, this assumption is too conservative for a certain
operation. For example, if an operation � is defined as ���� �� � �, then it is clear
that information in the second argument does not flow into the result of the operation.
Another example is an encryption. Assume that for a plain text � and an encryption

key �, the result of the operation (���� �� is the cipher text of � with key �. We may
consider that the SC of (��� �� is low even if the SCs of � and � are both high.

To express the above mentioned properties of particular built-in operations, we gen-
eralize the above definition as:

(PRIM) ������� � � � ������� � �� � �������������� � ��� � � � ��������� � ���,

where ����� is an arbitrary monotonic total function on ��:

����� � ��� � � � � ��� ���

In particular, ��������� � � � � ��� �
�
��	�� �	 for the original definition of �.

However, the generalized algorithm is no longer sound in the sense of definition 1.
Suppose that we define ���(������ ��� � ��%, and consider a program

	
�� � ������� �� � ������ (��� �� � ��

����	
����������&!#&� &!#&� � ��% holds while for distinct plain texts ��, �� and
a key �, (����� �� �� (����� ��. Hence ������� is not sound. Intuitively, the fact that
the SC of expression (��� �� is inferred as low means that we cannot recover informa-
tion contained in the arguments �� � from the result of the encryption. In other words,
(����� �� and (����� �� are indistinguishable with respect to the information in the
arguments. To express this indistinguishability, we introduce the following notions.

A relation) on type val is called a congruence relation if) is an equivalence
relation which satisfies:

for each �-ary built-in operator , if �) ��	 for � � ! � �

then ����� � � � � ���) ������ � � � � �
�
��.

In the following, we assume that a particular congruence relation � is given. For �� ��

of type val, if � � �� then we say that � and �� are indistinguishable. By the defini-
tion, if �	 and ��	 for � � ! � � are indistinguishable then for any built-in operator ,
����� � � � � ��� and ������ � � � � �

�
�� are also indistinguishable. This implies that once �

and �� become indistinguishable, we cannot obtain any information to distinguish � and
�� through any operations.

Next, we require ������ to satisfy the following condition.

Condition 4 Assume ��������� � � � � ��� � � for an �-ary built-in operator . Let �	� ��	
be of type val (� � ! � �). If �
 � ��
 for each * (� � * � �) such that �
 � � , then
����� � � � � ��� � ���

�
�� � � � � �

�
��. ��

The above condition states that:

Let ��������� � � � � ��� � � . Assume that arguments of are changed from ��� � � � � ��
to ���� � � � � �

�
�. As long as �
 and ��
 are indistinguishable for each argument position

* such that �
 � � , ����� � � � � ��� and ������ � � � � �
�
�� remain indistinguishable.

Example 1 (nonstrict function). Assume that ���� �� � � and ��������� ��� � ��. For
any values ��� ���� �� and ���, �� � ��� implies ����� ��� � �� � ��� � ���

�
�� �

�
��. Hence,

condition 4 is met for any congruence relation �. ��

Example 2 (declassification). Let mk-rpt be an operator which takes a patient record
and produces a doctor’s report. Assume that no information in the argument of mk-rpt
flows into the result of the operator. In this case, we can define ���mk-rpt���&!#&� � ��%

with low�high. Condition 4 requires that for any patient records �� ��, mk-rpt���� �
mk-rpt�����. Intuitively, this means that we cannot discover information on a particular
patient’s record by reading a doctor’s report. ��

Example 3 (encryption). Let E be an encryption function which takes a plain text and
an encryption key as arguments. Assume that no information in the plain text can be
discovered by manipulating the encrypted text. In this case, we can define
���(���&!#&� &!#&� � ��%. Condition 4 requires that for any plain texts �� �� and keys
�� ��, (���� �� � (����� ���. ��

Now we can define the soundness by using the notion of indistinguishability as follows:

Definition 2 (generalized soundness). Let � be a congruence relation. We say that an
algorithm ������� is sound (with respect to �) if the following condition holds:

If ����	
������������� � � � � ��� � � ,
	����� �� ������� � � � � ���
 �, 	����� �� �������� � � � � �

�
��
 ��, and

�! �� � ! � �� � �	 � �� �	 � ��	
then � � �� holds. ��

It is not difficult to prove the following theorem in a similar way to the proof of theorem
1.

Theorem 3. If condition 4 is satisfied, then the generalized algorithm ������� is sound
in the sense of definition 2. ��

5 Conclusion

In this paper, we have proposed an algorithm which can statically analyze the informa-
tion flow of a procedural program containing recursive definitions. It has been shown
that the algorithm is sound and that the algorithm can be executed in polynomial time in
the size of an input program. In [Y01], the proposed algorithm is extended to be able to
analyze a program which may contain global variables and a prototypic analysis system
has been implemented. Table 1 shows the execution time to analyze sample programs
by the implemented system.

Table 1. Analysis time
Program Number of lines Average analysis time (sec)

Ticket reservation system 419 0.050
Sorting algorithm 825 0.130
A program library 2471 2.270

Extending the proposed method so that we can analyze a program which has pointers
and/or object-oriented features is a future study.

Acknowledgments

The authors sincerely thank Fumiaki Ohata and Reishi Yokomori of Osaka University
for their valuable comments and discussions.

References

[BBM94] J. Banâtre, C. Bryce and D. Le Métayer: Compile-time detection of information flow
in sequential programs, 3rd ESORICS, LNCS 875, 55–73, 1994.

[D76] D. E. Denning: A lattice model of secure information flow, Communications of the ACM,
19(5), 236–243, 1976.

[DD77] D. E. Denning and P. J. Denning: Certification of programs for secure information flow,
Communications of the ACM, 20(7), 504–513, 1977.

[HR98] N. Heintze and J. G. Riecke: The SLam calculus: Programming with secrecy and in-
tegrity, 25th ACM Symp. on Principles of Programming Languages, 365–377, 1998.

[JMT99] T. Jensen, D. Le Métayer and T. Thorn: Verification of control flow based security
properties, 1999 IEEE Symp. on Security and Privacy, 89–103, 1999.

[LR98] X. Leroy and F. Rouaix: Security properties of typed appletes, 25th ACM Symp. on
Principles of Programming Languages, 391–403, 1998.

[M96] J. Mitchell: Foundations of Programming Languages, The MIT Press, 1996.
[M99] A. C. Myers: JFLOW: Practical mostly-static information flow control, 26th ACM Symp.

on Principles of Progmming Languages, 228–241, 1999.
[ML98] A. C. Myers and B. Liskov: Complete, safe information flow with decentralized labels,

1998 IEEE Symp. on Security and Privacy, 186–197.
[NTS01] N. Nitta, Y. Takata and H. Seki: Security verification of programs with stack inspection,

6th ACM Symp. on Access Control Models and Technologies, 31–40, 2001.
[O95] P. Ørbæk: Can you trust your data? TAPSOFT ’95, LNCS 915, 575–589.
[SV98] G. Smith and D. Volpano: Secure information flow in a muti-threaded imperative lan-

guage, 25th ACM Symp. on Principles of Programming Languages, 355–364, 1998.
[VS97] D. Volpano and G. Smith: A type-based approach to program security, TAPSOFT ’97,

LNCS 1214, 607–621.
[Y01] R. Yokomori: Security analysis algorithm for object-oriented programs, Master’s Thesis,

Osaka University, 2001.

