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Abstract

Alias analysis is a method for extracting sets of expressions which may possibly refer to the same memory

locations during program execution. Although many researchers have already proposed analysis methods for the

purpose of program optimization, difficulties still remain in applying such methods to practical software engineering

tools in the sense of precision, extensibility and scalability.

Focusing mainly on a practical use for program maintenance activities such as program debugging and under-

standing, we propose an alias analysis method for object-oriented programs and discuss our implementation of

JAAT.

Our proposed method employs a two-phase, on-demand, instance-based and extensible algorithm, in which

intra-class analysis is done in Phase 1 for whole programs and libraries, and inter-class analysis is done in Phase 2

only for a user-demanded target. We can explore different algorithms by considering the trade-off between analysis

precision and analysis cost by replacing Phase 1 (graph construction) or Phase 2 (graph traversal). JAAT can

analyze large programs or libraries such as a JDK class library. Also, JAAT includes various features for program

maintenance activities, such as GUI for displaying aliases, and an XML database for storing analysis information.

Contents Indicators: D: Software, D2: Software Engineering, D2.3: Coding Tools and Technologies (Object-

oriented programming), D2.5: Testing and Debugging (Debugging aids), D2.7: Distributed, Maintenance, and

Enhancement (Restructuring, reverse engineering, and reengineering)

Additional Keywords: Alias analysis, Maitenance, Java

1 Introduction

An alias relation between two expressions, e0 and e1, in a source program is a relation such that e0 and e1 may possibly

refer to the same memory location during program execution. Alias relations are generated by various situations such

as parameter passing, reference variables, and indirect reference with pointer variables. We say that e0 is an alias

of e1 (and vice versa) when there is an alias relation between e0 and e1. Also, we call the set of expressions in
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which each element pair satisfies an alias relation, an alias set. Alias analysis is a method for extracting alias sets by

static analysis. Moreover, alias analysis can be used for various purposes such as compiler optimization and program

slicing [2, 42].

Alias analysis was first proposed for traditional procedural languages such as C as part of the static analysis of

pointer variables [14, 21, 25, 35, 37, 43]. Concepts such as class, inheritance, dynamic binding, and polymorphism have

been introduced through object-oriented (OO) languages such as C++ and Java [8, 16, 38]. Various alias analysis

methods for OO programs have been devised [11,40]. This research focuses mainly on analysis algorithms as compiler

optimization, but has not explored practicability and scalability of software engineering tools.

We are interested in developing a practical software engineering tool for the alias analysis targeting OO languages

such as Java; however, implementation of already proposed approaches remains difficult as discussed by Hind et.

al. [23].

We believe that two major issues exist, scalability and the usage and approach of the analysis :

Scalability: Since programs have become larger and class libraries associated with the developed programs tend to

be huge and complex, the analysis should satisfy scalability in handling large programs within a reasonable time.

However, many analysis methods produce poor results due to experimental implementations and more studies

need to be conducted [23].

The usage and approach of the analysis: Most previous work focused mainly on compiler optimization and

back-end for data-flow analysis as applications of the alias analysis. For such purposes, all alias relations in the

program need to be extracted by the analysis. Nonetheless, alias analysis is useful as a software engineering tool

for program maintenance activities [23].

For program debugging and understanding, not all alias relations are needed at one time; only user-requested

relations are to be extracted quickly. Thus, we have to newly devise an on-demand, incremental analysis approach,

which can be used effectively in an interactive environment. Note that in this paper, “alias analysis” means to extract

a single set of expressions which are in alias relation to the user-specified expression, although a traditional meaning

would be to extract all alias sets in a source program.

To resolve these issues, we propose an alias analysis method for OO programs, characterized as follows:

Two-phase and on-demand algorithm: We have developed a two-phase approach, in which intra-class analysis

is done in Phase 1 for whole programs and libraries, and inter-class analysis is done in Phase 2 only for a

user-demanded target. This two-phase approach greatly contributes to the overall performance of the analysis.
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Flow-sensitive instance-based algorithm: Flow-sensitiveness of the analysis is an important factor in determin-

ing analysis precision and cost [20, 22, 34, 49]. We believe that a flow sensitive approach, rather than a flow

insensitive one, is more useful for program maintenance activities, because of its focused results.

For OO programs in particular, an instance-based analysis for individual objects instantiated from a single class

will preferably reduce the analysis result when compared to a class-based analysis (this is confirmed by our

experiments), although the instance-based approach generally requires a high analysis cost. Furthermore, as a

part of the instance-based analysis, we newly devise a method, called object context analysis, to remove surplus

alias expressions in never-invoked instance methods.

In summary, we take a flow-sensitive instance-based analysis algorithm in this research to aim for a more focused

result with a practically affordable analysis cost.

Extensible algorithm: The two-phase approach is also suitable for extending analysis algorithms since software

components for each phase and sub-phase are easily replaceable. Therefore, a new analysis policy for a precision-

cost compromise will be introduced.

We have implemented the proposed algorithm in the tool JAAT. JAAT considers scalability in the sense that it

can analyze large programs with reasonable computation time. For example, the analysis time of 58,300 lines of Java

programs with 364,721 lines of the JDK library was 30 seconds in Phase 1, and less than 1 millisecond in Phase 2.

This result shows that the user can immediately get the resulting aliases on-demand for the user-specified analysis

target after the preparation of Phase 1. Also, the result was fairly focused in the sense that for our sample programs,

about 5 - 120 aliases were found due to the instance-based approach, which comprised 30 – 97% of the class-based

approach. JAAT does not provide whole alias relations as the compiler optimization algorithm requires, but it makes

the focused or scoped results useful for the program maintainers.

An additional feature of JAAT is that it can save internal syntactic and semantic information as an external XML

database, and restore the information, in order to improve reusability of analysis results. Also, JAAT provides a useful

Graphical User Interface (GUI), which shows the resulting aliases by using several visualizations and by supporting

program maintenance activities.

In Section 2, we give a brief overview of alias analysis for OO programs. In Section 3 and Section 4, we propose

an alias analysis method for OO programs. In Section 5, we discuss the algorithm complexity of our method. In

Section 6, we introduce an implementation of the proposed method and evaluate its effectiveness using several sample
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programs. In Section 7, we discuss the evaluation results with respect to related works. In Section 8, we conclude our

discussion with a few remarks and describe our future work.

2 Preliminary

Here, we show an example of aliases and their application, and classify existing alias analysis methods. Also, we

discuss the problems of alias analysis for OO programs.

2.1 Example of Aliases

Alias analysis is useful for program debugging and program understanding. For an intuition of this, we present an

example here.

1: class Employee {

2: String name; int salary; Employee supervisor;

3: Employee(String n, int s) {

4: name = n;

5: salary = s;

6: supervisor = null;

7: }

8: void add salary(int n) {

9: salary += n;

10: }

11: void set supervisor(Employee e) {

12: supervisor = e;

13: }

14: void print() {

15: System.out.println(name + ” Salary:” + salary);

16: }

17: }

18: class Manager extends Employee {

19: Manager(String n, int s) {

20: super(n, s);

21: }

22: void manage(Employee e) {

23: e.set supervisor(this);

24: e.add salary(200);

25: }

26: }

27: class Office {

28: public static void main(String args[]) {

29: Employee Emp = new Employee(”Emp”, 750);

30: Manager Mng = new Manager(”Mng”, 750);

31: Mng.manage(Emp);

32: Emp.print();

33: Mng.print();

34: }

35: }

(a) Java source program

% java Office

Emp Salary: 950

Mng Salary: 750

(b) Program execution re-

sult with error

% java Office

Emp Salary: 750

Mng Salary: 950

(c) Program execution re-

sult without error

Figure 1: Simple debugging process of Java program with aliases

Fig.1(a) shows a sample Java program and Fig.1(b) shows its execution outputs. This program computes the

salaries of employee Emp and manager Mng. The salary of the manager should be higher than that of the employee.
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However, the program execution output is incorrect because a salary addition was made to Emp. When the user

recognizes such a fault, he/she computes the aliases for reference variable Emp at line 32. In this paper, we call such a

target expression of the alias analysis the alias criterion (or simply criterion), and it is specified by a tuple <s, e>,

where s is a statement in the source program and e is an expression at s. In the figure, shadowed expressions represent

the resulting aliases for <s32, Emp>. Emp at line 32 is the alias criterion and is also an alias itself. Therefore, it is

boxed and shadowed. We can easily see around those shadowed expressions, and can identify a fault at the salary

addition statement at line 24. By modifying the statement e.add salary(200) to add salary(200) at line 24, the

program will compute an expected result as shown in Fig.1(c).

2.2 Alias Analysis

Alias analysis methods are roughly divided into two categories: flow insensitive alias analysis (FI analysis) and flow

sensitive alias analysis (FS analysis).

1: Integer a, b, c;

2: a = new Integer(1);

3: b = new Integer(2);

4: c = b;

5: System.out.println(c);

6: c = a;

7: System.out.println(c);

(a) FI aliases

a c b new Integer(2)new Integer(1)

(b) Alias graph

Figure 2: Example of FI alias analyses

1: Integer a, b, c;

2: a = new Integer(1);

3: b = new Integer(2);

4: c = b;

5: System.out.println(c);

6: c = a;

7: System.out.println(c);

(a) FS aliases

Statement(s) Reaching alias set(RA(s))

s1 φ

s2 φ

s3 {{(s2, a), (s2, new Integer(1))}}

s4 {{(s2, a), (s2, new Integer(1))}, {(s3, b), (s3, new Integer(2))}}

s5 {{(s2, a), (s2, new Integer(1))},

{(s4, c), (s3, b), (s4, b), (s3, new Integer(2))}}

s6 {{(s2, a), (s2, new Integer(1))},

{(s4, c), (s5, c), (s3, b), (s4, b), (s3, new Integer(2))}}

s7 {{(s6, c), (s2, a), (s6, a), (s2, new Integer(1))},

{(s3, b), (s4, b), (s3, new Integer(2))}}

(b) Reaching alias set (RAset)

Figure 3: Example of FS alias analyses
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2.2.1 Flow Insensitive Alias Analysis (FI Analysis)

In FI analysis, we do not take into account the execution order of each statement in the source program [3,21, 28, 35,

37,49]. To compute FI aliases, an alias graph, as shown in Fig.2(b), is used. An alias graph is an undirected graph, in

which each node represents an expression that refers to a particular memory location. Each edge represents a possible

alias relation between two nodes, which occurs on both sides of an assignment statement and on the actual and formal

parameters.

In Fig.2(a), when we specify <s7, c> as the alias criterion, we get aliases {a, b, new Integer(1), new Integer(2)},

which are all reachable nodes from the criterion node in the alias graph.

Note that we have discussed the basic idea for FI analysis in this paper. The details are discussed in previous

papers [3,21,28,35,37.49].

2.2.2 Flow Sensitive Alias Analysis (FS Analysis)

In FS analysis, we consider the execution order of statements [14, 26, 43]. To compute FS aliases, Landi et al. have

introduced a reaching alias set (RAset) [26]. A RAset for statement s, denoted by RA(s), is a collection of alias sets,

which exists just before the execution of s. Each alias set is composed of sets of tuples (t, f) (t is a statement in the

source program and f is an expression at t), meaning that each f at t in the set possibly refers to the same memory

location. Fig.3(b) shows RAsets for each statement in Fig.3(a). In order to compute the aliases for <s, e>, we search

RA(s) for an alias set that contains e. At RA(s7) in Fig.3(b), since an alias set {(s6, c), (s2, a), (s6, a), (s2, new

Integer(1))} contains variable c, we get the result as shown in Fig.3(a).

Since FS analysis considers the execution order, it generally requires a larger amount of CPU time and memory

space than FI analysis; however, FS analysis can extract more accurate alias relations than FI analysis. In Fig.2 and

Fig.3, we can see the difference in the accuracy between the two methods. Previous work shows empirical comparisons

of these analyses. In this paper, we focus on FS analysis for more accurate analysis results [20, 22, 49].

Note that our definition of the RAset is slightly different from that of Landi et. al. [26]. The latter tries to

gather all expressions in alias relations existing in the entire target program at one time in order to perform compiler

optimization, or back-end for data-flow analysis.

2.3 Alias Analysis for Object-Oriented Programs

Alias analysis methods for OO programs have been proposed as an extension of analysis methods for procedural

programs [11,40]; however, some issues still remain to be solved for the implementation of practical alias analysis tools
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for OO programs. Here, we consider three issues, as follows:

[a] Overall computation time for analysis

In order to implement a practical analysis tool, overall computation time is one of our main concerns. We have

chosen a relatively expensive FS approach, where we must consider the execution order of statements to compute

the RAset. When the target program contains loops or recursive method calls, it should be analyzed until the

increase of the RAset settles down. In other words, when a RA(s) for statement s changes during alias computation,

we must re-compute the RAsets for all statements that are possibly affected by RA(s). Thus, convergence and

total computation time are important factors of the tool.

[b] Effective reuse of analysis results

The alias analysis tool should be used repeatedly with various alias criteria or with slightly distinct target programs.

In such cases, we do not want to re-analyze the program. In a simple and straightforward FS approach, RA(s)

for statement s must be computed by analyzing all statements in the source program along the execution order.

Therefore, when another statement t is modified, we might simply re-compute RA(s) for each statement s in the

source program even if RA(s) is not affected by the modification of t. We are interested in finding an effective

approach that re-computes only the RAsets affected by the modification.

[c] Improvement of analysis precision by separating each instance

In OO programs such as Java, each object has its own state and behavior even if they are instantiated from the

same class. In sample Java program shown at Fig.4, we prefer to have three independent alias sets:

• {(s1, new Integer(1)), (s5, x.get()), (s9, id), (s10, ref), (s11, ref), (s11, id), (s15, id)}

• {(s2, new Integer(2)), (s6, y.get()), (s9, id), (s10, ref), (s11, ref), (s11, id), (s15, id)}

• {(s4, new Integer(3)), (s7, z.get()), (s9, id), (s12, ref), (s13, ref), (s13, id), (s15, id)}

However, if we apply a simple analysis approach such that all objects instantiated from the same class share the

alias information of their attributes and their calling-contexts, we get only one alias set which is the union of these

3 alias sets:

{(s1, new Integer(1)), (s5, x.get()), (s2, new Integer(2)), (s6, y.get()), (s3, null), (s4, new Integer(3)),

(s7, z.get()), (s9, id), (s10, ref), (s11, ref), (s11, id), (s12, ref), (s13, ref), (s13, id), (s15, id)}

In this case, many expressions are unwillingly in the same alias set.
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1: Ident x = new Ident(new Integer(1));

2: Ident y = new Ident(new Integer(2));

3: Ident z = new Ident(null);

4: z.set(new Integer(3));

5: . . .= x.get();

6: . . .= y.get();

7: . . .= z.get();

8: class Ident {

9: private Integer id;

10: public Ident(Integer ref)

11: { id = ref; }

12: public void set(Integer ref)

13: { id = ref; }

14: public Integer get()

15: { return id; }

16: }

Figure 4: Example of aliases across instances

In order to increase the analysis precision, we will separately hold the alias information for each attribute of each

object instance, although this approach generally requires more analysis cost. However, we will devise an efficient

approach to resolve this.

These issues are also major concerns for traditional programming languages, and they have been studied in various

research [10,20,43,48]. Moreover, these issues are even more critical problems of alias analysis for OO languages such

as Java because of the nature of OO languages.

3 Analysis Overview

In this section, we provide an overview of our proposed method. In the following, we explain three analysis policies

and define a new term, object context. Also, we discuss many issues of the alias analysis for OO programs. The details

of our proposed method will be shown in the next section.

3.1 Approach

Here, we divide alias relations into two categories, intra-class alias relations and inter-class alias relations. Inrta-class

alias relations do not depend on their usage contexts. Inter-class alias relations are obtained by analyzing expressions

with method invocations and reference variables over classes.

For example, in Fig.4, {(s9, id), (s10, ref), (s11, ref), (s11, id)}, {(s9, id), (s12, ref), (s13, ref), (s13, id)} and

{(s9, id), (s15, id)} are intra-class alias relations, and {(s1, new Integer(1)), (s10, ref)}, {(s5, x.get()), (s15, id)},

{(s2, new Integer(2)), (s10, ref)}, {(s6, y.get()), (s15, id)}, {(s3, null), (s10, ref)} and {(s4, new Integer(3)),

(s12, ref)} are inter-class alias relations.

Here, we will adopt the following analysis policies:
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Policy 1: Compute intra-class alias relations in advance.

Policy 2: Compute inter-class alias relations on-demand.

Utilizing these two policies, the modularity and independence of the analysis will be established. This is particularly

important in OO programming, since we usually use large class libraries in addition to user-developed classes. The

analysis cost of these class libraries is generally large. Thus, modularizing the analyses of class libraries and user-

developed classes is essential.

Note that mixing inter-class alias relations reduces precision. In the case of Fig.4, mixing all alias expressions will

unwillingly generate a large and useless alias set. In order to resolve this problem, we use the following policy:

Policy 3: Compute inter-class alias relations based on the individual invocations and references of instance methods

and attributes (we call this instance-based analysis).

The instance-based analysis of OO programs can be considered to be an extension of the context-sensitive analysis

of procedural programs.

3.2 Object Context

To further improve the analysis precision of the instance-based analysis of OO programs, we introduce a notion of

object context.

Consider an alias set A, which contains expressions referring to object instances. Some instance methods of these

objects are invoked directly or indirectly from the expressions in A, and some are never invoked from the context of

A. We delete unnecessary alias expressions which appear in the body of never-called instance methods to improve

analysis precision.

The object context for alias set A, denoted by OC(A), is a set of instance methods that are in instance objects

pointed to by expressions in A, and that may be invoked from some expression associated with expressions in A.

The concept of object context is inspired by a static analysis for virtual method resolution [31, 39]. By statically

analyzing virtual method resolution using rapid type analysis (RTA) via a pointer analysis or a data-flow analysis,

compilers can optimize the method invocation process. The object context analysis collects method invocation infor-

mation for the specific object, by applying static virtual method resolution techniques to all the method invocations

related to the object.
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OC(A) := φ

foreach (s, e) in A do

if an invocation of instance method m appears in expressions such as e.m(. . .) then

if m /∈ OC(A) then

OC(A) := OC(A) ∪ {m}

endif

endif

end

repeat

foreach m in OC(A) do

if an invocation of an internal instance method n appears in m’s body

such as this.n(. . .) (i.e., m possibly calls n) then

if n /∈ OC(A) then

OC(A) := OC(A) ∪ {n}

endif

endif

end

until OC(A) is unchanged

Figure 5: Algorithm for object context analysis

The object context is formally obtained by the algorithm shown in Fig.5. In the first iteration, all instance method

invocations directly associated with expressions in A are collected 1. In the second loop, instance methods indirectly

invoked in the same class are collected.

Fig.6 shows an example of the object context. Assume that A is the aliases for a at line 22 such that {(s20, a),

(s20, new Calc()), (s22, a)}. Now we know that A is a Calc type, and possible instance method invocations are new

Calc() at line 20 and a.inc() at line 22. Thus, Calc::Calc() and Calc::inc() are included in OC(A). Since these

two methods have no further invocations of other instance methods in a Calc class, we finally know that OC(A) is

{Calc::Calc(), Calc::inc()}.

Also, if we assume that A is an alias set for b at line 21, then OC(A) is {Calc::Calc(), Calc::add(), Calc::result()}.

When we compute the aliases for e.i such that e is in A, we can limit the candidate methods to be considered

further by using OC(A). In other words, we can exclude the instance methods that can not be invoked in the objects

referred to by expressions in A. In the case that we can not specify a unique A’s type, we might have more than one

method; method overriding would cause such a situation.

As in many other analysis methods, we can also consider two variants of the object context, flow insensitive object

context (FIOC) and flow sensitive object context (FSOC). The former takes into account the method invocation order,

whereas the latter does not. FSOC extracts more accurate alias information than FIOC; however, FSOC requires

1Only the expressions in A are focused.
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1: public class Calc {

2: Integer i;

3: public Calc() {

4: i = new Integer(0);

5: }

6: public void inc() {

7: i = new Integer(i.intValue() + 1);

8: }

9: public void add(int c) {

10: i = new Integer(i.intValue() + c);

11: }

12: public Integer result() {

13: return(i);

14: }

15: }

16: class Test {

17: Calc a, b;

18: Integer c;

19: Test() {

20: a = new Calc();

21: b = new Calc();

22: a.inc();

23: b.add(1);

24: c = b.result();

25: }

26: }

Figure 6: Example program for object context analysis

more analysis cost than FIOC. In our system, we use the FIOC approach, which is computed by the above mentioned

algorithm. We will discuss FSOC in Section 7.

Note that our object context is an orthogonal notion of the instance-based analysis. In our system, after resolving

the object context, we will perform the instance-based analysis as part of the inter-class analysis.

3.3 Other Issues of OO Program Analysis

OO languages like Java contain more features than traditional procedural languages. We use the following approaches

for each feature.

Inheritance: The inheritance concept causes other features such as method overriding and dynamic binding. In

addition, we must take virtual method invocation mechanisms into account, so that inter-class alias analysis

algorithms must consider the inheritance.

Method overriding and dynamic binding: Method overriding might generate two or more methods that have

the same signature in a class hierarchy. Since the determination of the invoking method depends on the reference-

type of the object that receives a message, static identification of the actually invoked method is difficult. This

difficulty stems from an undecidable type of receiver object without program execution; however, with alias

analysis we can infer such a type more accurately.

For example, when we identify the invoking method of expression a.b(), we can use the alias information of a in

order to infer the reference-types of the instances that might be referred to by a.
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Typecasts: Our alias analysis is not affected by typecast operations, since we determine the reference-type of an

expression e using class instance creation expressions in e’s aliases.

Constructors: We deal with constructors as ordinary methods except that we should associate method invocation

this(. . . ) or super(. . . ) with its corresponding constructor in this class or super class.

Static fields and methods: Our alias algorithm focuses on only user-requested alias relations in a specific scope

or object. For a given alias criterion, we analyze only classes whose methods are probably invoked from the class

with the criterion, or where instance variables are probably accessed from the class. Therefore, if expressions

which access static fields or methods are in the user-requested scope or object, they are considered. On the other

hand, if expressions which access to static fields or methods are outside the scope or object, they are ignored.

Our approach might be insufficient for collecting whole and precise alias information at one time; however, it is

sufficient and effective for interactively computing aliases under program maintenance activities.

4 Details of Analysis

Based on the above mentioned Policy 1 – 3 and the object context, we propose the following two-phase approach.

Phase 1: Intra-class analysis for all source programs are composed of the following two sub-phases:

(a) Construction of AFG (defined later) by analyzing inside each method.

(b) Construction of MFG (defined later) by analyzing methods in each class.

Phase 2: Inter-class analysis for a specified alias criterion, i.e., computation of the aliases by traversing AFG and

MFG along with the object context.

In this section, we describe the details of this approach.

4.1 Phase 1: Construction of AFG and MFG

4.1.1 Phase 1(a): Construction of AFG

An alias flow graph (AFG) is an undirected graph which shows FS alias relations inside a single method. A node

represents either

• an expression that refers to an object (e.g., a reference variable, an instance creation expression, or a method

invocation) or
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• a parameter to/from a method or an instance.

A node representing an expression referring to an object is called an AFG normal node. A node with regard to methods

or classes is called an AFG special node. Each special node is created according to the following rules:

• For each method invocation such as a.m(a1, a2, . . . , an) in AFG, we add an method invocation (MI) node. Also,

for each actual parameter a1, a2, . . . , an, we add an actual alias in (AA-in) node.

• For each definition of instance method such as m(f1, f2, . . . , fn) of class C, the following special nodes are added

in the AFG.

– For each formal parameter, a formal alias in (FA-in) node. 2

– For each attribute of C, a instance alias in (IA-in) and a instance alias out (IA-out) node.

– For each return expression, a method alias out (MA-out) node.

Except for MI, these AFG special nodes are added only when they are reference-type expressions.

An edge in AFG denotes an alias relation immediately determined inside each method. Alias relations created by

assignment statements, variable definitions and their uses (def-use relations), and assignments of parameters to/from

special nodes are called direct alias relations. Direct alias relations are easily obtained by RAset-based FS may-alias

analysis inside methods [26]. Also, a path formed with more than one edge is called an indirect alias relation.

Note that an expression specifying an attribute b (or a method b()) associated with an instance a is denoted by

a.b (or a.b()) in Java3. In such a case, we say that the node for a in AFG is a parent of the node for b, and the node

for b is called a child of the node for a (although we show no explicit edge for this relation in the figures of AFG). A

parent-child relationship is used for the alias computation in Phase 2. Also, a parent-child relationship between an

MI node and its corresponding AA-in nodes is created at this phase.

Fig.7 shows a small Java program and its AFG. Nodes in AFG are shown as circles with expressions inside,

and the edges are denoted with solid lines. Other strings out of those nodes (e.g., Integer, =, Integer b, c;) are

comments used to identify the occurrences of expressions and to help the reader imagine the original source text. In

Fig.7(b), since (s1, new Integer(0)) is assigned to (s1, a) in the source program, we can see that the node for (s1,

new Integer(0)) is connected to the node for (s1, a) with an edge. This edge represents a direct alias relation.

2There is no actual alias out (AA-out) or formal alias out (FA-out) node in Java. The former is alias passed by actual parameter

to caller, and the latter is alias passed by formal parameter to caller. This is because Java only uses a passed-by-value mechanism. We

discuss the cases of AA-out and FA-out in our technical report [30].
3When class C has an instance attribute b, we can refer to b in the form of both b and this.b in the method of C. In this case, we

consider this.b as simply b.
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1: Integer a = new Integer(0);

2: Integer b, c;

3: b = a;

4: c = b;

(a) Source program

c  =  b  ;

b  =  a  ;

Integer a = new Integer (0);

Integer b, c;

(b) AFG

Figure 7: Example of AFG

Fig.8 is a Java program with two class definitions and its AFG. Variable i appearing at each right-hand side

expression (line 7 and 10) is a reference-type instance variable. Thus, AFG special nodes IA-in[i] and IA-out[i] are

employed for each method in class Calc. Also, the expression for the return value, return(i), at line 13 is a reference

to an object. Therefore, an AFG special node MA-out is created for method Calc::result().

1: public class Calc {

2: Integer i;

3: public Calc() {

4: i = new Integer(0);

5: }

6: public void inc() {

7: i = new Integer(i.intValue() + 1);

8: }

9: public void add(int c) {

10: i = new Integer(i.intValue() + c);

11: }

12: public Integer result() {

13: return(i);

14: }

15: }

16: class Test {

17: Calc a, b;

18: Integer c;

19: Test() {

20: a = new Calc();

21: b = new Calc();

22: a.inc();

23: b.add(1);

24: c = b.result();

25: }

26: }

(a) Source program

public class Calc
Integer i;

public void inc()

i = new Integer(i.intValue() + 1);

IA-in[i]

IA-out[i]

i = new Integer(0);

public Calc() IA-in[i]

IA-out[i]

public void add(int c)

i = new Integer (i.intValue() + c);

IA-in[i]

IA-out[i]

public Integer result() IA-in[i]

return  (i);

MA-out

Calc b  ;
class Test

Test()

Calc a  ; Integer  c  ;

IA-out[c]IA-out[b]IA-out[a]

a = new Calc(); b = new Calc();

a.inc(); b.add(1);

c = b.result ();

IA-in[a] IA-in[c]IA-in[b]

IA-out[i]

(b) AFG

Figure 8: Example of AFG with special nodes

b.result() at line 24 is represented in AFG with a parent node b and a child node result().
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4.1.2 Phase 1(b): Construction of MFG

A method flow graph (MFG) is a directed graph, which represents the caller-callee relations of methods in a single

class4. An MFG node denotes the definition of each method, and when method A possibly calls method B, an MFG

edge is drawn from the node for A to the node for B.

Fig.9 shows a sample program and its MFG. Method p() is not defined in class B, and method A::p() is executed

when p() is activated on B’s object. In this case, method call to q() appearing in A::p() causes activation of B::q(),

not A::q(). Thus, the resulting MFG for class B is as shown in Fig.9(b).

1: class A {

2: void p() { q(); }

3: void q() { r(); }

4: void r() { }

5: }

A::r()A::p() A::q()

(a) class A

6: class B extends A {

7: void q() { s(); }

8: void s() { }

9: }

B::q() B::s()A::p() A::r()

(b) Class B

Figure 9: Example of MFG

Fig.10 shows the MFG for the class Calc and the class Test shown in Fig.8(a). Since neither class has intra-class

method calls, no MFG edge exists.

Calc::Calc() Calc::inc()

Calc::add() Calc::result()

(a) Class Calc

Test::Test()

(b) Class Test

Figure 10: MFG for Fig.8(a)

4.2 Phase 2: Alias Computation Using AFG and MFG

4.2.1 Traversal of AFG

Using AFG and MFG, we compute aliases A(e) for an alias criterion e, which is a reference-type expression. e itself

is also an element of A(e). The nodes in AFG are visited beyond the class boundary using MFG information.

We show the overall algorithm of Phase 2 in Fig.11. For the readability of the algorithm, we use intuitive descrip-

tions. A more formal definition is presented in our technical report [30]. Also, for the simplicity of the description, we

4MFG corresponds to a caller-callee graph (call graph) in procedural languages.
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use the same symbol for an expression in the program text and for its corresponding AFG node.

The following is an overview of the traversal algorithm.

1. When we compute the aliases for e with a parent p, first we compute p’s aliases A(p), and then we collect

information about A(p), such as

• types for A(p) and

• OC(A(p)).

After computing these, we compute e’s aliases. When computing the OC(A(p)), we use MFG at the second loop

in the OC computation algorithm (see Section 3). There are many cases where we can not compute the aliases

for e without A(p) and their types. If we do not know p’s aliases, we would have to consider that p could refer

to all the objects instantiated from the classes derived from p, so that e’s alias result would be enlarged.

We have named this the parent-first-child-last approach.

2. When we reach an MI, MA-out, an FA-in or an AA-in node during AFG traversal, using MFG we determine

the callee or caller method using the object context, and then we traverse from the corresponding MA-out, MI,

AA-in or FA-in node, respectively.

For the programs with recursive method calls, AFG traversal terminates as discussed in the following section.

As an example of Phase 2, we show an alias computation process for <s24, c> (boxed with a bold line) in Fig.12,

which shows the same program as Fig.8(a).

1. Start AFG traversal from alias criterion (s24,c), and immediately reach method invocation (MI node) (s24,

result()) (Fig.13(a)).

2. Since (s24, result()) has a parent node (s24, b) (denoted by B), first compute (s24, b)’s aliases to specify the

object related to (s24, result())’s aliases.

(a) Compute (s24, b)’s aliases A(B). The result is {(s21, new Integer()), (s21, b), (s23, b), (s24, b)}.

(b) Compute the types of A(B) using class instance creation expressions included in A(B). In this case, the

type is determined to be Calc.

(c) Compute OC(A(B)). The result is {Calc::Calc(), Calc::add(int c), Calc::result()}. We know that

Calc::inc() is never invoked in the context of b’s aliases.
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Input:

an AFG G = (V , E) for target classes;

an alias criterion e ∈ V ;

Output:

alias set A(e);

Variables:

A(e); /* set for the resulting alias nodes */

S; /* set for the nodes not yet checked */

c; /* a node in V . */

begin

A(e) := φ;

S := all reachable nodes from e;

while S 6= φ do begin

remove a node c from S and add c to A(e);

case c of

reference to a variable: begin

if c has a parent p such as p.c then

determine possibly-called methods m using the context of p;

/* p’s context is computed by A(p), A(p)’s type and OC(A(p)) */

add to S m’s entry nodes for c; /* IA-in node, where c may be referred in m */

add to S m’s exit nodes for c; /* IA-out node, where c may be defined in m */

add to S nodes c′ such that q.c′ where q ∈ A(p) and c and c′ are the same variables;

/* c may be accesses through different parent variables */

endif ; /* else if no parent, do nothing */

end;

method invocation: begin /* MI node */

if c has a parent p such as p.c() then

determine possibly-called methods X::c() in the context of p; /* by OC(A(p)) */

else /* no parent */

determine possibly-called methods this::c in the context of this; /* by OC(A(this)) */

endif ;

add to S c’s return expression node; /* traverse from the callee tail, MA-out */

end;

entry (or exit) node of instance variable: begin /* IA-in or IA-out node */

determine possibly-called methods m in the context of this; /* by OC(A(this)) */

add to S m’s exit (or entry) node of the instance variable; /* IA-out or IA-in node */

end;

actual parameter: begin /* AA-in */

determine callee method m with c as its parameter;

add to S m’s formal parameter node corresponding to c;

end;

formal parameter: begin /* FA-in */

determine caller method m in the context of this; /* by OC(A(this)) */

add to S m’s actual parameter node;

end;

end; /* case */

end; /* while */

end;

Figure 11: Overall algorithm in Phase 2
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3. Since the alias computation for (s24, b) indicates that it refers to the objects that are instantiated from class

Calc, traverse AFG from the return expression (MA-out node) in Calc::result() (Fig.13(b)).

(a) Reach the entry of an instance variable i (IA-in[i]) in Calc::result().

(b) Traverse from the exits of instance variable i (IA-out[i]) at methods

Calc::Calc(), Calc::add(int c) and Calc::result().

The resulting aliases are the masked expressions in Fig.12. Since OC(A(B)) does not contain Calc::inc(), expressions

in Calc::inc() are excluded from the candidates for (s24, c)’s aliases.

Together with Phase 1, the overall analysis algorithm establishes a FS, may-alias, instance-based, and FIOC

approach.

1: public class Calc {

2: Integer i;

3: public Calc() {

4: i = new Integer(0);

5: }

6: public void inc() {

7: i = new Integer(i.intValue() + 1);

8: }

9: public void add(int c) {

10: i = new Integer(i.intValue() + c);

11: }

12: public Integer result() {

13: return(i);

14: }

15: }

16: class Test {

17: Calc a, b;

18: Integer c;

19: Test() {

20: a = new Calc();

21: b = new Calc();

22: a.inc();

23: b.add(1);

24: c = b.result();

25: }

26: }

Figure 12: Aliases for <s24, c> (masked expressions are aliases)

4.2.2 Algorithm Termination

For the programs without recursive structures, the algorithm shown in Fig.11 always terminates for a finite-size target

program.

For the programs with recursive structures, we replace the statement at line 14 of Fig.11, ’remove a node c from

S and add c to A(e)’, and its successive case statements, with the following statements.

• For each node c ∈ S, we add c to RNlist(e) (RNlist(e) represents reached node list (RNlist) for e).

– If c ∈ RNlist(e), we remove c from S without dding c to A(e). Also, the successive whole case statements

are skipped.
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 Calc  b  ;
class Test

Test()

Calc a  ;  Integer  c  ;

IA-out[c]IA-out[b]IA-out[a]

a = new Calc(); b = new Calc();

a.inc(); b.add(1);

c = b.result ();

IA-in[a] IA-in[c]IA-in[b]

(a) <s24, b>

public class Calc
Integer i;

public void inc()

i = new Integer(i.intValue() + 1);

IA-in[i]

IA-out[i]

i = new Integer(0);

public Calc() IA-in[i]

IA-out[i]

public void add(int c)

i = new Integer (i.intValue() + c);

IA-in[i]

IA-out[i]

public Integer result() IA-in[i]

return  (i);

MA-out IA-out[i]

(b) <s24, result()>

Figure 13: Aliases in AFG for Fig.12 (masked expressions are aliases)

– If c /∈ RNlist(e), we remove c from S with adding c to A(e). The case statement is executed as Fig.11.

• An RNlist is created for each alias set. For example, when x.y is an alias criterion, RNlist(x) and RNlist(y) are

created.

• Suppose that x.y.z is an alias criterion and we have reached node c in the alias computation for x. When we

check if c ∈ RNlist(x), we should also check if c ∈ RNlist(y) and check if c ∈ RNlist(z), respectively.

Since the size of each RNlist is less than E (total number of expressions in the target program) and the number of

the RNlists is less than k (maximum length of the parent-child chain), we can prevent infinite recursive structures or

endless loop statements by creating RNlists so that the AFG traversal always terminates.

5 Complexity Analysis

In this section, we discuss the complexity of each phase of the algorithm.

TABLE 1 shows the meaning of the symbols used in the complexity expressions here.

• Phase 1(a): Construction of AFG

When the target program has loop statements, we must analyze expressions at most E2 times. In

this case, expressions mean reference-type expressions, such as variables, parameters, and non-void

method invocations. In order to analyze each expression, two or three set operations are needed; we

remove the alias relations with regard to defined variables from RAset, and add a new alias relation
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Table 1: meaning of symbols used for complexity expressions
Symbol Description

A Maximum number of attributes in each class (inherited attributes are also counted)

M Maximum number of methods in each class (inherited methods are also counted)

L Maximum number of sum of local variables and parameters in a method

C Total number of classes in the target program

E Total number of expressions in the target program

k Maximum length of parent-child chains

(when a chain forms a recursive loop, we do not count the previously visited expressions)

between the defined and the referred variables to the RAset, and so on. Since the set operation cost is

proportional to the number of elements in the target set, the time complexity of the set operation is

covered by O(A +L). Thus, in the worst case, the time complexity is O((A +L) ·E2). The number of

AFG nodes is O(E), and the number of AFG edges is O(E2). The space complexity is O(E2) in the

worst case. In our experimentation, however, both the time consumption and the space usage grew in

near liner order.

• Phase 1(b): Construction of MFG

One MFG component is constructed for each class. Since we must check each expression once in order

to find method calls, the time complexity is O(E). Since the number of methods in a class is less than

M , the number of MFG nodes is O(C · M), and the number of MFG edges is O(C · M 2). Thus, the

space complexity is O(C · M 2) in the worst case. Also, the actual time and space grew in near liner

order in our experimentation.

• Phase 2: Alias computation using AFG and MFG

Since we use the instance-based approach, we must also compute the aliases for parent nodes, recur-

sively. In the worst case, the time complexity and the space complexity are both O(Ek); however,

such a case is quite rare. In our experimentation, k’s values were 2 or 3 on average.

6 A Java Alias Analysis Tool (JAAT)

We have implemented the proposed method in the tool Java Alias Analysis Tool (JAAT). Using JAAT, we have

analyzed several programs and obtained various data.
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6.1 Overview of JAAT

JAAT consists of three subsystems, the analysis subsystem, the XML database subsystem, and the user interface (UI)

subsystem. Fig.14 shows the structure of JAAT. We will present an overview of each subsystem.

Parse tree AFGSource file Semantic tree

User

MFG

XML database

Syntax
analyzer

Semantic
analyzer

Alias
analyzer

Semantic tree-XML
converter

XML-XML
converter

Source text with HTML tags

Source file

GUI

User

[XML database subsystem]

[Analysis subsystem]

[UI subsystem]

XML-HTML
converter

XML-Java
converter

Figure 14: Architecture of JAAT

Analysis subsystem: The analysis subsystem consists of three components, the syntax analyzer, the semantic

analyzer, and the alias analyzer. The syntax analyzer analyzes Java source files and generates syntactic trees5.

The semantic analyzer proceeds with a semantic analysis that creates symbol tables and extracts declare-refer

relations among identifiers and generates semantic trees. The alias analyzer generates MFGs and AFGs at Phase

1, and computes the aliases for the alias criterion specified by the user’s request at Phase 2. The alias analyzer

returns the resulting aliases to the UI subsystem.

XML database subsystem: Generated trees and graphs are proprietary data structures, and are placed into the

memory space of JAAT, as are many other analysis tools [5,44]. Since the translation from a source program to

the corresponding semantic tree is a fairly time-consuming process, we do not want to discard analysis results

from the analysis sessions. Thus, we build a database for semantic trees. This feature improves the reusability

of the analysis results along with the AFG and MFG approaches.

We use an extensible markup language (XML) database that holds semantic tree information [15]. The XML

converters converts semantic trees to XML documents and vice versa. 6

5The syntax analyzer is generated by ANTLR [4].
6These converters use libxml as an XML parser and Xalan-C++ as an extensible stylesheet language transformations (XSLT) processor

[45–47].
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UI subsystem: The UI subsystem7 has two main functions, editing programs and visualizing the resulting aliases.

Examples will be shown in Section 6.2.5.

6.2 Evaluation

In order to explore the applicability of JAAT, we have applied it to various sample programs. TABLE 2 shows features

of the sample programs. Note that we must analyze not only these sample programs but also all related classes in JDK

for inter-class alias analysis. For example, TextEditor is composed of one file with 1,125 lines. TextEditor directly

and indirectly uses the classes in JDK, which are in 878 files with a total of 351,890 lines (99.7% of the overall total

lines). This data shows that a heavy effort must be put on the analysis for the related classes in JDK.

Table 2: characteristics of analyzed sample programs
Programs Sample Program Related Classes in JDK

Number of Files Number of Lines Number of Files Number of Lines

TextEditor 1(0.1%) 1125(0.3%) 878(99.9%) 351,890(99.7%)

JLex (Parser Generator) 1(0.4%) 7,835(6.9%) 275(99.6%) 105,234(93.1%)

java cup (Parser Generator) 35(11.3%) 10,610(9.1%) 274(88.7%) 105,598(90.9%)

JFlex (Parser Generator) 40(4.3%) 13,029(3.6%) 882(95.7%) 353,067(96.4%)

WeirdX (X server) 47(5.0%) 19,701(5.2%) 892(95.0%) 356,217(94.8%)

ANTLR (Parser Generator [4]) 129(31.6%) 25,283(19.3%) 279(68.4%) 105,483(80.7%)

Ant (Build Tool) 98(24.0%) 26,428(18.8%) 310(76.0%) 114,262(81.2%)

DynamicJava (Java Interpreter) 242(21.1%) 58,300(13.8%) 903(78.9%) 364,721(86.2%)

6.2.1 Computation Time of Phase 1(a)

Our modularized analysis is effective in that we only have to re-analyze modified parts of the programs when small parts

of the program are modified. On the other hand, there are several FS analysis algorithms already proposed [14,26,43].

Those algorithms mainly focus on language-specific problems such as pointers to the stack, and they do not concern

the separation of analysis results for each module. Therefore, if we would employ those algorithms, the overall program

have to be re-analyzed.

It should be noted that user-written programs are often modified but their related classes in JDK are seldom

modified.

TABLE 3(a) shows AFG construction time for sample programs and their related classes in JDK. The sum of

these two is the total time for Phase 1(a). The analysis time for the related classes in JDK is much longer than for

those of the sample programs. For example, TextEditor itself requires only 10 milli seconds, and its related classes

7The UI subsystem uses Gtk−− tool kit [17].
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Table 3: experimental results (computation time [ms])

Programs Sample Program Related Classes in JDK

TextEditor 10 14,224

JLex 892 3,863

java cup 844 3,813

JFlex 16,140 14,339

WeirdX 2,835 14,666

ANTLR 6,154 7,856

Ant 1,845 4,005

DynamicJava 12,255 15,646

(a) Phase 1(a)

Programs Sample Program Related Classes in JDK

TextEditor 13 768

JLex 10 100

java cup 10 99

JFlex 10 759

WeirdX 10 823

ANTLR 304 99

Ant 22 104

DynamicJava 1,892 843

(b) Phase 1(b)

Programs Average

TextEditor 0.01

JLex 0.76

java cup 0.37

JFlex 0.41

WeirdX 0.62

ANTLR 0.69

Ant 0.78

DynamicJava 0.07

(c) Phase 2

— Pentium4-2GHz-2GB(FreeBSD 4.6-STABLE)

Table 4: experimental results (Average number of detected aliases [expressions (variables)])
Programs (target class) Instance-based Class-based

TextEditor (TextEditor) 5.09(1) 5.09(1)

JLex (JLex.CLexGen) 69.17(2.02) 231.5(5.43)

java cup (java cup.parser) 101.6(1.48) 104.6(2.17)

JFlex (JFlex.LexParse) 124.2(1.50) 127.5(2.36)

WeirdX (com.jcraft.weirdx.Client) 68.33(2.97) 84.35(3.41)

ANTLR (antlr.Tool) 6.62(1.49) 11.37(2.30)

Ant (org.apache.tools.ant.Main) 20.94(3.25) 36.62(6.26)

DynamicJava (koala.dynamicjava.interpreter.TypeChecker) 9.16(1.89) 17.19(2.40)
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require 14,224 milli seconds. When we modify TextEditor, we do not need to re-analyze its related classes, but only

the TextEditor.

6.2.2 Computation Time of Phase 1(b)

TABLE 3(b) shows MFG construction time for sample programs and their related classes. Since MFG construction

time does not depend on the program’s size, but on the number of intra-class method calls, the MFG construction

time of the sample program is not always longer than that of the related classes in JDK. For example, DynamicJava

itself requires 1,892 milliseconds, but its related classes require only 843 milli seconds. However, the overall MFG

construction time, the sum of these, is much smaller than the AFG construction time.

6.2.3 Computation Time of Phase 2

TABLE 3(c) shows the average AFG traversal time. According to TABLE 3(c), it is clear that Phase 2 takes much

less computation time than Phase 1. In the case of TextEditor, 0.01 milli second is much smaller than the AFG

construction time (14,234 milli seconds = 10 milli seconds + 14,224 milli seconds) for TextEditor and its related

classes in JDK.

Our on-demand approach might be unsuitable as a back-end for data-flow analysis and compiler optimization,

which needs whole alias analysis results. However, when we do not need to compute the aliases for all expressions, or

when we implement an interactive programming support tool with alias analysis features, our method is a practical

choice.

6.2.4 Average Number of Detected Aliases

The proposed method uses the instance-based approach that can distinguish inter-class alias relations on objects

instantiated from the same class. On the other hand, if we use the class-based approach that shares inter-class alias

relations with other objects instantiated from the same class, analysis precision will decrease.

On each testsuite, we select one main class (this does not mean the class which holds public static int main(),

but the class which plays an dominant role in the testsuite), and we compute the aliases for each AFG normal node

in that class.

TABLE 4 shows the comparison results between those two approaches with regard to the average number of

detected aliases for various alias criteria in the main classes. For example, the instance-based approach generates more

accurate results than the class-based approach (9.16 nodes v.s. 17.19 nodes) in DynamicJava. The average size of

aliases is about 30 – 97% of the class-based approach; therefore, we think that our approach is of practical value.
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In some cases, the average number of detected aliases is not small. This is because we repeatedly count each

expression, even if they have the same signature. If a specific variable is repeatedly used in a class, the number of

the aliases becomes large. For example, in the case of JLex, the average number of the aliases is 69.17, for instance

variable JLex.CLexGen.m outstream, where m outstream is referred to more than 400 times in the JLex.CLexGen

class. However, the average number of unique variables in those aliases in JLex.CLexGen is only 1.50. This suggests

that the users can easily focus their attention on only those few variables.

6.2.5 Application of JAAT

We focus on program maintenance activities as an application of JAAT. In order to examine JAAT’s effectiveness, we

have applied JAAT to the following program debugging case.

SpreadSheet.java (1000 lines) is a small spreadsheet Java applet contained in JDK. We assume that an

error occurred on the execution of SpreadSheet.java (Fig.15(a)). Since cell C1 was defined A1*B1, C1

should be 5000; however, C1’s value was incorrectly 10.

(a) Incorrect output (b) Correct output

Figure 15: Example case: Output

In order to find the fault position, we tried to compute aliases for a String-type actual parameter formula in a

method parseFormula(), which is a parser for the input expressions.

From the alias tree window 8 in Fig.16(a), we could consider that the resulting aliases are in parseFormula()

and parseValue() only. We examined each expression on the alias tree using the alias tree window and the text

window 9 as shown in Fig.16(b). After checking all aliases in parseFormula(), we noticed that the return expression

in parseValue() is variable formula.

8The alias tree window shows an aliases tree, in which each node denotes class, method, or an expression which contains aliases.
9The text window shows the resulting aliases with colored backgrounds. Statements without any aliases can be compressed on the

screen with smaller fonts according to the user’s request.
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(a) Alias tree window

(b) Text window

Figure 16: Example case: results
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By examining several statements near the last return expression, we noticed that the return variable should be

the variable restFormula, instead of formula. After fixing it, a new SpreadSheet.java was executed correctly

(Fig.15(b)).

In this example, there are only 20 aliases, so that the user’s attention can be focused on only 20 lines out of the

original source program with about 1000 lines. The alias tree windows can help the user to grasp the overall resulting

aliases, and the text windows can help the user to get detailed information about each alias. Using these windows,

the user can efficiently perform program maintenance activities.

7 Discussion

Our proposed method for alias computation, which consists of two analysis phases, has produced effective results. In

this section, we compare our method and related works, and also show an extension of our method to programs with

pointer variables in ordinary languages.

7.1 Alias Analysis for Java

Analysis goal: Most prior studies on alias analysis for Java programs are for compiler optimization, such as syn-

chronization removal and escape analysis [6, 7, 13, 32, 41]. For such purposes, all alias relations in the program

need to be extracted by the analysis. Since the optimized program should compute the same execution results

as the original program, analysis results must satisfy conservative approximation.

Nonetheless, we believe that alias analysis is useful for program maintenance activities as a software engineering

tool. For such activities, not all the alias relations are needed at one time; only user-requested relations on the

specific scope or object are to be extracted quickly. Also, good GUI that intuitively presents the analysis results

to the user is very important.

Threads and exceptions: Since FS analysis considers the execution order of statements, its analysis precision de-

pends on the precision of control-flow information. Thus, if we can collect more precise control-flow information,

FS analysis results should become more precise.

Currently, since JAAT’s control-flow representation does not consider possible control-flows caused by exceptions

and threads, its resulting aliases contain surplus alias relations for exceptions and miss aliases caused by shared

variables in threads. For exceptions, we applied a conservative approach that assumes all possible exceptions

that might occur. However, since many researchers have already proposed control-flow analysis methods for
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threads and exceptions, we will adopt them to construct the improved control-flow representation [33, 36, 51].

Native methods: In Java, OS-dependent functions are implemented as native methods, such as the core parts

of thread, I/O, reflection (dynamic class loading) and so on. Since JAAT does not concern native methods,

its analysis results would be insufficient in a sense. However, since the user’s focus is generally given to the

user-developed parts of the program, current JAAT is enough to support program maintenance activities.

In order to consider native methods, we need the following approaches:

• Simulate the behavior of native methods.

• Implement a framework by which the user can provide helpful information to tools.

The former is useful in the case that tools can automatically infer the type of the related objects (for thread,

I/O), the latter is useful in the case that tools need the user’s help for type inference (for reflection).

7.2 Two-phase Approach

Several prior studies also propose two-phase approaches such as intra-procedural analysis in advance [11, 12, 18, 28].

Ramkrishna et al. have used a FS approach [11, 18]. Cheng et al. have used a FI approach [12, 28].

In the FS approach, each element R (alias relation) in an RAset holds conditions if a specific alias relation R0 really

exists (if true, R exists) [11, 18]. These conditions are used for indirect alias relations; however, all combinations of

accessible variables should be taken into account as candidates for R0. In our method, since each AFG edge represents

a direct alias relation, we can easily extract each indirect alias relation as an AFG path. These conditional-based

algorithms are suitable as back-end for data-flow analysis (e.g., program slicing), which requires whole alias relations

in the target programs.

Since we focus mainly on program maintenance activities using the alias information itself, a simpler representation

is useful. In such cases, the maintainers prefer the local alias information on which they focus. Also, we believe that

they would request quick and simple answers even if the resulting aliases might be insufficient.

On the other hand, since our AFG traversal algorithm is designed to compute the aliases for the single alias criterion

specified by the user, it is unsuitable for data-flow analysis (however, can define a new AFG traversal algorithm for

computing whole alias relations in target programs).

Also, Cheng et al. target only ordinary procedural languages, and Ramkrishna et al. do not discuss on-demand

analysis.
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7.3 Instance-based Analysis

The instance-based approach was proposed in object slicing, which is a method for slicing OO programs proposed by

Liang et al. [27]. They extend the system dependence graph (SDG) and define the traversal algorithm to compute

slices with regard to a specific object; however, they assume that the alias analysis have been already performed by

another method. To get a practical alias analysis tool, combining an alias analysis method and the instance separation

method into a single method is very important, as we have proposed here.

7.4 On-demand Alias Extraction

We applied an on-demand approach to alias analysis. Although alias information has been used for compiler optimiza-

tion, data-flow analysis and so on, alias information is itself useful for program maintenance activities such as program

debugging and understanding of Java programs. Java programs generally have many aliases caused by reference-type

expressions, and some are not easily identified by the developer. Since all alias information in the target program is not

necessary on program maintenance activities, we believe on-demand (or query-based) analysis will be a cost-effective

approach.

Although Heintze et al. have proposed a demand-driven pointer analysis, their approach is FI for procedural

language C, and their goal is to compute the full point-to graph [19].

7.5 Selection of the Analysis Algorithm

Many prototype tools have been implemented for validation of their approaches [20, 22, 49]. However, there is little

discussion on the extensibility of the algorithm. Since we have employed a phased approach for the implementation

of JAAT, we can explore different algorithms by replacing each phase or sub-phase.

In Phase 1(a), we have used the FS approach for the analysis of a single method. Although FS analysis requires

much larger computation time than the FI analysis, the intra-class analysis is generally a less costly process than the

inter-class analysis. Thus, applying FS policy to the intra-method alias analysis is a practical choice.

In Phase 2, we have chosen an instance-based approach for generic inter-class analysis. This approach is efficient

as well as effective in reducing the resulting aliases as shown in Section 4. Therefore, there is no reason to choose a

class-based approach.

Here, we discuss other issues not yet discussed.

Object context: For computation of the object context at Phase 2, we have used the flow-insensitive object context

(FIOC) approach rather than the flow-sensitive one (FSOC). We do not know the practical effectiveness of FSOC,
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but we would be able to extend the system to FSOC by introducing a notion of flow direction in AFG.

Undirected AFG and directed AFG: Our AFG construction algorithm is based on the FS alias algorithm [14,

26, 43]. However, since the current AFG is an undirected graph, the difference between the analysis computed

by current AFG and traditional FS analysis exists in the sense that the current AFG does not hold an alias flow.

For example, in Fig.17(a), in traditional FS analysis, A(<s1, a>) is {(s1, a), (s1, new Integer(1))}, and A(<s2,

b>) is {(s2, b), (s2, a), (s1, a), (s1, new Integer(1))}. However, in the current AFG, both A(<s1, a>) and

A(<s2, b>) are {(s2, b), (s2, a), (s1, a), (s1, new Integer(1))}. Also, in Fig.17(b), due to two direct alias

relations {(s1, a), (s2, a)}, and {(s1, a), (s3, a)}, an indirect alias relation {(s2, b), (s3, c)} is unwillingly

generated.

1: a = new Integer(1);

2: b = a;

(a)

1: a = new Integer(1);

2: if(. . . ) { b = a; }

3: else { c = a; }

(b)

Figure 17: FS alias and undirected AFG

By introducing a notion of flow direction in AFG, the above problems are solved; however, we still need to

consider the trade-off between the analysis precision and the analysis cost.

May-alias and must-alias: Distinguishing may-alias relations and must-alias relations is effective for more pre-

cise analysis. Applying this approach to AFG construction and traversal algorithms strengthens the system

performance, but it increases the complexity of the system.

Heap-allocated storages: We can consider a special treatment for the heap-allocated storages, such as array

variables and recursive structures. For array variables, the current AFG does not deal with each element

separately as A[0], A[1], . . . . We can try to distinguish each element of array variables; however, by static

analysis, the result would not be promising.

Recursive data structures: For recursive data structures such as LinkedList class with the attributes data and

next, we can separately identify L.data, L.next.data, . . . , L.next. . . . .data, etc. (L is an instance of LinkedList)

by our instance-based approach. Each attribute, however, cannot be distinguished if a class-based approach were

to be employed. Landi et. al. have proposed k-limiting approach [25]; k is a recursive-sensitivity parameter that
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differentiates the first k objects in LinkedList. Our implemented instance-based approach corresponds to k = 1,

and the class-based approach corresponds to k = 0.

7.6 Alias Analysis for Pointer Variables

In Section 4, we have described an alias analysis method for reference-type expressions in Java. This method has

also been extended to the alias analysis of ordinary procedural programs with pointer variables such as C or C++. In

this case, we need special consideration of indirect reference by pointers (e.g., multi-level pointers like **p) because a

callee can modify its caller’s alias relations using n-order (n ≥ 2) pointer variables even if parameter passing uses a

passed-by-value mechanism. The detail is shown in our technical report [30].

8 Conclusions

We have proposed an alias analysis algorithm for Java programs, which is a scalable and on-demand algorithm with

high precision and extensibility. Also, we have implemented this algorithm in the tool JAAT, and evaluated its

effectiveness.

We are planning to implement the flow sensitive object context approach (FSOC), and compare this approach with

the existing flow insensitive object context (FIOC) approach. In addition, we plan to extend our AFG construction and

AFG traversal algorithms for full exception and thread compliance. Also, JAAT will be applied to existing software

development activities, and the effectiveness of JAAT will be evaluated. The definition and implementation of an alias

analysis algorithm for all alias relations simultaneously is also part of our future research.

We have shown that we can reduce analysis cost by our modularized approach where we re-analyze only modified

modules, without re-analysis of other stable modules including libraries. In the future, we will include a feature to

automatically identify modified modules and stable modules.
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