
Dependence-Cache Slicing: A Program Slicing Method Using Lightweight
Dynamic Information

Tomonori Takada, Fumiaki Ohata, Katsuro Inoue
Department of Informatics,

Graduate School of Engineering Science,
Osaka University

t-takada@ics.es.osaka-u.ac.jp

Abstract

When we try to debug or to comprehend a large program,
it is important to separate suspicious program portions from
the overall source program. Program slicing is a promising
technique used to extract a program portion; however, such
slicing sometimes raises difficulties. Static slicing some-
times produces a large portion of a source program, espe-
cially for programs with array and pointer variables, and
dynamic slicing requires unacceptably large run-time over-
head.

In this paper, we propose a slicing method named
“dependence-cache slicing”, which uses both static and dy-
namic information. An algorithm has been implemented
in our experimental slicing system, and execution data for
several sample programs have been collected. The results
show that dependence-cache slicing reduces a slice size by
30–90% from static slice size with an increased and af-
fordable run-time overhead, even for programs using array
variables. In the future, the dependence-cache slicing will
become an important feature for effective debugging envi-
ronments.

1. Introduction

Finding faults in source programs is a time-consuming
activity in software testing and maintenance phases. Look-
ing over an entire source program to find a fault is ineffi-
cient. We want to focus our attention on a specific portion
of the source program to improve efficiency.

As a candidate for focusing aids, program slicing tech-
niques [15] have been studied. Intuitively, a program slice
is a collection of program statements that affect the value of
a variable in a statement we are interested in. We want to
concentrate our attention only on the statements in the slice
so that we can effectively debug, test, and comprehend the

source program. We have empirically evaluated the validity
of program slicing techniques for debugging and program
comprehension [9].

Much research and many applications for program
slicing have emerged from the original work of Mark
Weiser [15]. These slicing techniques are roughly catego-
rized into two classes: static slicing and dynamic slicing.

Static slicing was first proposed by Weiser [15]. A static
slice is a collection of program statements possibly affect-
ing a variable’s value at a particular program point. Static
slicing extracts portions from an original program; however,
the resulting portions are still large in many cases. In ex-
treme cases, there is no reduction after taking a static slice.
This lack of reduction is due to the nature of the analysis
of the static slicing such that all possible input data and
all possible control flows must be considered. Also, many
difficult issues of analysis exist, e.g., aliasing of variable
names, separation of array and structure data elements, and
the tracking of pointer variables. In addition, object ori-
ented programs make static analysis much more difficult be-
cause those programs contain dynamically bound methods.

Dynamic slicing was first proposed by Agrawal et. al. [1,
8]. A dynamic slice is a collection of executed program
statements actually affecting a variable’s value at a partic-
ular program point. Since dynamic slicing is based on an
execution instance for a source program with specific input
data, non-executed parts of the source program are auto-
matically excluded. This makes the size of a dynamic slice
generally smaller than a static one. However, computing a
dynamic slice is costly, requiring significant memory and
time resources because dynamic variable dependence rela-
tions must be tracked.

In this paper, we propose a new slicing method using
both static and dynamic information.

In Section 2 we briefly review static and dynamic slic-
ing. In Section 3 we propose dependence-cache slicing.
We show our experiment using an Osaka Slicing System



in Section 4. In Section 5, our findings are discussed in as-
sociation with related works. We conclude this paper with
additional remarks in Section 6.

2. Overview of Static and Dynamic Slicing

In this section, we briefly show static slicing and dy-
namic slicing for further discussions.

2.1. Static Slicing

Consider statements s1 and s2 in a source program P .
When all of the following conditions are satisfied, we say
that a control dependence (CD) relation, from statement s1

to statement s2, exists:

• s1 is a conditional predicate, and

• the result of s1 determines whether s2 is executed or
not.

This relation is denoted by s1 �s2.
When the following conditions are all satisfied, we say

that a data dependence (DD) relation, from statement s1 to
statement s2 by a variable v, exists:

• s1 defines v, and

• s2 refers to v (we say s uses v), and

• at least one execution path from s1 to s2 without re-
defining v exists.

This relation is denoted by s1 �v s2.
A Program Dependence Graph (PDG) is a directed

graph whose edges show dependence relations (CD or DD)
between statements, and whose nodes are statements such
as conditional predicates or assignment statements in a pro-
gram. For the Pascal source program shown in Figure 1
(which computes an absolute value of the squared or cubed
value selected by an input), we have a PDG presented in
Figure 2. To handle function/procedure calls, we employed
additional nodes for input and output parameters.

A Static Slice with respect to a variable v on a statement
s (this pair (v, s) is called a slicing criterion) in a program is
a collection of statements corresponding to the nodes in the
PDG, which possibly reach s using v first, following tran-
sitive CD and DD edges. The static slice for variable d at
line 24 as the slicing criterion for the program is a collection
of all statements except for the message output statements
(lines 12, 14, 16) shown in Figure 3.

1 program Square_Cube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x*x
6 end;
7 function Cube(x : integer):integer;
8 begin
9 Cube := x*x*x

10 end;
11 begin
12 writeln(‘‘Squared Value ?’’);
13 readln(a);
14 writeln(‘‘Cubed Value ?’’);
15 readln(b);
16 writeln(‘‘Select Feature! Square:0 Cube: 1’’);
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20 else
21 d := Cube(b);
22 if (d < 0) then
23 d := -1 * d;
24 writeln(d)
25 end.

Figure 1. A Sample Source Program

x-para

Square:=x*x

Square-exit

x-para

Cube:=x*x*x

Cube=exit
writeln(d)

if d<0
d:=-1*d

d:=Cube(b)

d:=Square(a)

if c=0

readln(c)

readln(b)

readln(a)
writeln("Sq...

writeln("Cu...

writeln("Sel...

Data Dependence Control Dependence

x

Square

a

x

Cube

Cube

d

d

d

b

c

a

Main

Square

Cube

b

Square

Figure 2. Program Dependence Graph (PDG)
of the Program shown in Figure 1.



1 program Square_Cube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x*x
6 end;
7 function Cube(x : integer):integer;
8 begin
9 Cube := x*x*x

10 end;
11 begin
12
13 readln(a);
14
15 readln(b);
16
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20 else
21 d := Cube(b);
22 if (d < 0) then
23 d := -1 * d;
24 writeln(d)
25 end.

Figure 3. Static Slicing Result by d at Line 24

1 program Square_Cube(input,output);
2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x*x
6 end;
7
8
9

10
11 begin
12
13 readln(a);
14
15
16
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20
21
22
23
24 writeln(d)
25 end.

Figure 4. Dynamic Slicing Result by d at Line
24 with input (a = 2, b = 3, c = 0)

2.2. Dynamic Slicing

For dynamic slicing, the analysis target is an execution
trace in contrast to a source program for static slicing. An
execution trace is a sequence of statements that are actually
executed for an input data. The rth-executed statement in
an execution trace is called execution point r.

When all of the following conditions are satisfied, we say
that a dynamic control dependence (DCD) relation, from
execution point r1 to execution point r2, exists:

• r1 is a conditional predicate, and

• the result of r1 determines whether r2 is executed or
not.

When the following conditions are all satisfied, we say
that a dynamic data dependence (DDD) relation, from exe-
cution point r1 to execution point r2 by a variable v, exists:

• r1 defines v, and

• r2 uses v, and

• no execution path from s1 to s2 with a re-defining v
exists.

A dynamic dependence graph (DDG) is created using
the dynamic dependence relations: DCD and DDD.

Consider an execution point r and variable v in an exe-
cution trace e whose input variables set is X . The triple (X ,
r, v) is called the dynamic slicing criterion.

A dynamic slice for dynamic slicing criterion (X , r, v) is
computed by tracing DDG’s edges backward from the node
for r, and by mapping all reachable nodes into the source
program.

Figure 4 shows a dynamic slice of the program shown in
Figure 1. The dynamic slicing criterion is an input data set
(a = 2, b = 3, c = 0), line 24 (of the last instance), and
variable d.

Dynamic slicing is based on a single execution path, and
it can give narrower slices than static slices. This situation
is preferable in a debugging situation, since it is easier for
us to focus our attention on smaller slices.

2.3. Approaches to reducing the Dynamic Slicing
Overhead

Dynamic slicing is useful for software testing and main-
tenance phases because it can extract smaller slices than the
slices extracted by static slicing. But dynamic slicing re-
quires a huge run-time overhead.

To reduce this overhead, several methods using both
static and dynamic information exist. These method can
be categorized into two types.



• Methods collecting an execution path
These methods collect and use the information of
execution paths to reduce slice-sizes. Importantly,
these methods effectively collect the information of
execution paths with lightweight run-time overhead.
The Profiling Method [1], the Call Mark Slicing
Method [13] and the Hybrid Slicing Method [4] are
based on this idea.

• Methods collecting data flow information
These methods collect and use the information from
the data flow information to determine the data depen-
dence relation of non-scalar (pointer, array, or struc-
tured) variables. The Reduced DDG Method [1] is
based on this idea.

In the next section, we propose a new slicing method
called, “dependence-cache slicing” that collects data flow
information.

3. Dependence-Cache Slicing

3.1. Overview

Collecting the precise data dependence relations of vari-
ables with a static method is difficult in general, although
the control dependence relations are fairly easily collected
statically [6, 7, 10].

Once we execute a program with an input data set, we are
able to collect actual dependence relations between state-
ments, although the penalty for collecting precise depen-
dence relations has a fairly high overhead.

Here, we propose the Dependence-Cache Slicing
method, for a good compromise between slice precision and
execution overhead. The following are the major steps for
computing dependence-cache slices.

Step 1 Static Control Dependence Analysis

We statically construct a part of PDG, named
PDGDS. First, we prepare nodes for each statement
or predicate statement, and then draw control depen-
dence edges between nodes, as we do when construct-
ing a PDG for static slicing. No data dependence edges
are added to the graph at this step.

Step 2 Dynamic Data Dependence Collection

The target program is executed with an input data set.
Along the execution, dynamic data dependence rela-
tions are collected using the data dependence collec-
tion algorithm shown in the next section, and data de-
pendence edges are added to the graph. When the pro-
gram execution terminates, PDGDS has been com-
pleted.

Step 3 Post-Execution Slice Construction

The completed PDGDS is traversed in a backward
manner, as we do for static slicing, from a slice cri-
terion (sc, v) where sc is a statement and v is a vari-
able. A dependence-cache slice is a collection of all
reachable nodes by this traversal.

3.2. A Data Dependence Collection Algorithm

Figure 5 shows the data dependence collection algorithm
used at Step 2 in Section 3.1.

For each variable v in a program, we prepare a cache,
denoted by C(v). For a static variable like a global variable,
a cache is prepared before the program starts. For a dynamic
variable like an automatic variable on a stack or a variable in
the heap, a cache is prepared when the variable is allocated.
At each point of the program execution, C(v) keeps a node
for a statement that most recently defined v.

When v is used (referred to) at a statement s, a data de-
pendence edge from the node kept in C(v) to the node for
s is added to PDGDS if the edge does not exist yet. When
v is defined at s, C(v) is updated to the node for s. We do
this for all variables in s.

For an array or a structured variable, we prepare caches
for each element of the variable. For example, for an array
variable A that has ten elements A[1], A[2], . . . , A[10], we
prepare caches C(A[1]), C(A[2]), . . . C(A[10]).

When a pointer variable p is used in a statement s, we
must consider not only p, but p ↑. Thus, direct and indi-
rect references must be contained in PDGDS as data de-
pendence edges; i.e. C(p) �p s and C(p ↑) �p↑

s. Also,
in the case of indirect assignment with a pointer variable q
such as q ↑:= . . . at statement t, we update cache C(q ↑)
with t, and we also add an edge C(q) �q t (if not existing)
since q is used at t.

For a dynamic variable, we prepare caches for each in-
stance. Consider a case when a structured variable v has
two elements: v1 and v2. We prepare caches C(v1) and
C(v2). We perform the same operation as with the algo-
rithm shown in Figure 5 when v1 or v2 is used or defined
independently. When the whole structure v is defined at
statement s, we do C(v1) := s and C(v2) := s. When v is
used at s, we add data dependence edges C(v1) �v1 s and
C(v2) �v2 s to PDGDS (v1 and v2 are element names that
can be statically specified).

The cache space required by this algorithm is propor-
tional to the number of variables (variable elements) used
at the program execution, and the run-time overhead is pro-
portional to the number of the variable access.



Input

PDGDS: Partially constructed PDG

P : Target Program

I: Input set for P

Temporary

Data Dependence Caches C(v) for each variable
v in P

Output

OUT : Output of execution of P for I

PDGDS: Completely constructed PDG

Algorithm Body

1. For each variable v in P , C(v) := ⊥
{ Initialize with not assigned marks. Note that
if we use a dynamically allocated variable, we
also dynamically prepare a cache initialized
with the not-assigned mark }

2. Repeat following until execution of P termi-
nates
{ Execute P with I from the beginning to

the termination, statement by statement }
(a) Execute a next single statement s of P

associated with I

(b) For each variable u used (referred to) at
s, if C(u) �= ⊥, then add a data depen-
dence edge C(u) �u s to PDGDS un-
less the edge exists

(c) For each variable w defined at s,
C(w) := s

Figure 5. Data Dependence Collection Algo-
rithm

4. Experiments

4.1. Overview of the Osaka Slicing System

In order to investigate various slicing algorithms, we
have developed a software development and debugging en-
vironment called the Osaka Slicing System [14]. The target
language is Pascal.

This system contains a program executor and debugger.
We can compute static slices and dynamic slices on this sys-
tem. In this work, we added the functions for computing
call-mark slicing [13] and dependence-cache slicing.

4.2. Execution of Sample Programs

Using this system, we have executed various programs
and obtained many metric values. Program P1 is a calen-
dar calculation program. P2 is an inventory management
program for a wholesaler. P3 is also an extended version of
the inventory management program P2.

Figure 6 shows the slice sizes of three sample programs.
These values can vary with different slice criteria and in-
put data sets. Here, we show the average values for several
criteria and inputs for a typical debugging situation. (The
criteria are mostly program output variables, and the output
statements are placed almost at the end part of the program
execution.)

Figure 7 shows the time needed for the analysis before
the execution. In the case of the static slicing, this value is
the time needed to construct a PDG. The time for comput-
ing both PDG and CED (caller statements with execution
dependence) is counted for the call mark slicing. For the
dependence-cache slicing, the value is the time needed for
constructing an initial PDGDS . In the case of the dynamic
slicing, this kind of the analysis is not necessary.

In Figure 8, the execution time is shown. In the case
of the static slicing, the original program is executed with-
out any extra run-time overhead; thus this value represents
the execution time of the original program. The execution
for the dynamic slicing is performed in association with
the construction of the DDG. Therefore, the execution time
contains the time for this construction. The time for the
dependence-cache slicing includes the time for caching data
dependence relations and for adding data-dependence edges
in PDGDS . In the case of the call mark slicing, the time to
mark callers is included.

Figure 9 shows the time needed for collecting statements
to be included in the resulting slices. In the case of the static
slicing and dependence-cache slicing, these are the times
needed for traversing PDG and PDGDS respectively. For
the dynamic slicing, the time needed for traversing dynamic
dependence relations is counted. For the call mark slicing,



21

182
187

17

162 166

15 16

61

5 5 8

0

20

40

60

80

100

120

140

160

180

200

P1 P2 P3

l
i
n
e
s

static

call-mark

dependence-cache

dynamic

Figure 6. Size of Slice (lines)

11

213

710

14

215

698

5 19
48

N/AN/AN/A
0

100

200

300

400

500

600

700

800

P1 P2 P3

m
s

static
call-mark
dependence-cache
dynamic

Figure 7. Pre-execution Analysis Time (ms)

this is the time needed for traversing PDG and for deleting
nodes that are in non-executed functions from the slice.

We discuss these figures in detail in the next section.

5. Discussion

5.1. Interpretation of Experiment Data

• Slice Size

Figure 6 shows the sizes of slices. The sizes of the
dependence-cache slices are 9–71% of the static slices.
These are smaller and better than the static slice sizes
and bigger and worse than the dynamic slice sizes.
Also, we can say that the dependence-cache slices are
much better (smaller) than the call mark slices. This
is because the dependence-cache slicing reflects data
dependence relations on a particular execution path,
while the call mark slicing only removes unexecuted

47 43

4700

47 43

4731

51 45
174

4540

206464

4834

0

1000

2000

3000

4000

5000

6000

P1 P2 P3

m
s

static
call-mark
dependence-cache
dynamic

Figure 8. Execution Time (ms)

0.4

1.9

3.0

0.6

1.8

3.0

0.3
0.7

1.2

76 101 24969

0

2

4

6

8

10

P1 P2 P3

m
s

static

call-mark

dependence-
cache
dynamic

Figure 9. Slice Construction Time (ms)



parts of the statically detected data dependence rela-
tions based on the collected calling sequence. Reduc-
tion of P2’s and P3’s slice size by the dependence-
cache slicing is larger than that of P1’s. This is be-
cause P1 uses only scalar variables and P2 and P3
employ array variables whose element-wise data de-
pendence relations are only analyzed by dependence-
cache slicing or the dynamic slicing.

• Pre-Execution Analysis

As shown in Figure 7, dependence-cache slicing needs
a lightweight pre-execution analysis only for control
dependence relations, which is a fairly smaller over-
head than the data dependence analysis for the static
and call mark slicing.

• Execution Time

The execution time shown in Figure 8 indicates that the
overhead of dynamic slicing is huge. If the program
execution becomes longer by, for example, a repeated
execution of loops, then this overhead will cause a se-
rious decline of performance so that a programmer will
not find the dynamic slicing acceptable.

For the dependence-cache slicing, extra execution time
is required; however, the values are much smaller than
for those of the dynamic slicing.

The execution time presented here is based on our in-
terpretive system; therefore, the run-time overhead for
these slicings might be masked by the overhead of the
interpretive execution. This issue will be discussed in
Section 5.2.

• Slice Construction Time

As shown in Figure 9, dynamic slicing requires a long
time to collect the slice result. For dependence-cache
slicing, collecting the slice result takes less time than
for the static slicing. This is because dependence-
cache slicing constructs PDGDS , which is smaller
than PDG, so that the searching space within the
PDGDS is smaller than that for static slicing. For
dynamic slicing, traversing a large DDG is evidently
quite costly.

5.2. Application Domain and Limitation of
Dependence-Cache Slicing

The above experiment was done under the interpreter en-
vironment of the Osaka Slicing System. Here, we discuss
its characteristics of the analysis and execution times.

We have written a merge sort program in C. This pro-
gram has been modified to collect data dependence relations
with the dependence-caches during the execution of this
merge sort. The execution speed of the compiled code with

the dependence-caches was 8.6 times slower than the orig-
inal code. This indicates that the run-time overhead of the
dependence-cache slicing is large under a compiler-based
environment 1. However, this overhead can be minimized if
we collect the data dependence information only for array
and pointer variables. Data dependence relations for non-
array or non-pointer variables are fairly easily determined
statically. Thus, we should analyze only difficult depen-
dence relations at the execution time. Based on this idea,
we have modified the C merge sort program again, so that
the data dependence relations for only array elements were
collected dynamically. The execution-time ratio between
the original program and the partially dependence caching
program became 1 to 3.4, and we consider this practically
acceptable.

As we can see in Figure 6, the dependence-cache slices
are larger than the dynamic slices. This difference is based
on the rationale that the dependence-cache slicing does not
distinguish repeated occurrences of a single statement and
that it only holds the latest Def-Use relations in caches.

Consider the following simple example.

1: a[0]:=10 ;
2: a[1]:=20 ;
3: for i:=0 to 1
4: b[i]:= a[i] ;
5: writeln(b[0]) ;

The dynamic slice for this program is a set of statements
1, 3, 4 and 5. On the other hand, the dependence-cache slice
is a set of statements 1, 2, 3, 4, and 5. The dependence-
cache slice includes statement 2 as its result. This is be-
cause dependence-cache slicing cannot distinguish the first
and second occurrences of statement 4 execution, and de-
pendence relations from both statements 1 and 2 are tar-
geted to a single node for statement 4.

This limitation increases the slice size for dependence-
cache slicing, compared to dynamic slicing; however, the
dependence-cache slice size is fairly smaller than the static
slice, and we think that this approach is a practical and
promising method which compromises between effective-
ness and overhead.

5.3. Related Works

A few works focus on collecting data flow information
dynamically. The Reduced DDG Method [1] is one of them.
In this method, the same sub-structure of DDG has been
identified and shared with one structure. This method has
achieved both the precision of dynamic slicing and the re-
duction of required memory space. However, such a method

1Also, this result suggests that the execution overhead for dynamic slic-
ing is unacceptably huge.



requires a similarity checking of DDG at execution time, so
the run-time overhead is serious.

Researches exist in which pointer and array variables are
statically analyzed [6, 7]. Much of this research tries to stat-
ically determine possible aliases of pointer variables and ar-
ray elements, but these still remain the uncertain cases [16].
Since our dependence-cache slicing uses dynamic informa-
tion, we can get reasonable slice precision with affordable
execution overhead.

In [3], a constrained slice, which is a generalization of
static and dynamic slices, is proposed. This method takes
a subset of the inputs of the program as a symbolic pro-
gram execution. Using this input constraint, the program is
rewritten and dependence relations are computed. However,
the efficient implementation of such a generalized approach
does not exist. It is also not known whether or not it is use-
ful practically.

Hybrid slicing [4] reduces the static slice size by us-
ing two types of dynamic information: breakpoint informa-
tion and call history information. The former information,
which is supplied by the programmer, is used to infer the
executed control flow. The latter is used to compute por-
tions of dynamic slices for the periods between every func-
tion/procedure call and return. The weakness of hybrid slic-
ing is that we have to specify appropriate breakpoints to get
a better slice, and this method requires a fairly large amount
of memory space to record the call history proportional to
the program execution length.

Call mark slicing [13] uses the information of whether or
not each function/procedure call statement in the program is
executed. The precision of slices can be improved if we take
such information for all the statements in the program. This
approach, mentioned in [1] as the type 1 method, can be
implemented using a similar method to computing profiling
and program coverage information. For each statement, we
employ a one bit flag whether the statement is executed or
not. The mechanism is simple; however, it requires more
run-time overhead and a significant modification of the ex-
ecutable program. The call mark slicing information can be
obtained by minor modification of the function/procedure
entry routine to collect caller statements.

Other methods focus on the semantics of programs. Con-
ditioned slicing [2] employs a condition in a slicing crite-
rion. Statements that do not match the condition are deleted
from the slice. Amorphous slicing [5] allows for sim-
plifying transformations that preserve semantic projection.
These methods cannot be compared to the dependence-
cache slicing directly because the approaches differ. How-
ever, we think dependence-cache slicing can be combined
with these methods if both a semantic approach and a re-
duction of run-time overhead are needed.

6. Conclusions

We have proposed a lightweight dynamic slicing
method, dependence-cache slicing. This method requires
simple static analysis and lightweight run-time data depen-
dence collection. The resulting slices are smaller than the
corresponding static ones, but larger than the corresponding
dynamic ones. We have implemented this slice algorithm on
our experimental interpreter system. We have also executed
various sample programs, and confirmed our approach.

For future work, we will also evaluate dependence-cache
slicing through user testing. In addition, we plan to design a
debugging environment based on a compiler-based system,
rather than on the current interpreter-based system. The
compiler-based system will be able to compute dependence-
cache slices, associated with various debugging features.
This compiler will generate a run-time environment with
dependence-caches, and the generated codes will automati-
cally collect dynamic data dependence relations. This infor-
mation will be displayed as a slice or an another debugging
aid when requested by users, and will provide more fruitful
possibilities for fault localization.

Acknowledgments

The authors are grateful to Akira Nishimatsu, Minoru
Jihira, Yoshiyuki Ashida, and Shinji Kusumoto of Osaka
University who have contributed to designing and imple-
menting the dependence-cache slicing system.

References

[1] Agrawal, H. and Horgan, J.: “Dynamic Program Slic-
ing”, SIGPLAN Notices, Vol.25, No.6, pp. 246–256,
1990.

[2] Canfora, G., Cimitile, A., and De Lucia, A.: “Con-
ditioned Program Slicing”, Information and Software
Technology, vol. 40, no. 11/12, November 1998, pp.
595-607.

[3] Field, J. and Ramalingam, G.: “Parametric Program
Slicing”, Proc. of 22nd ACM Symposium on Principles
of Programming Languages, pp. 379–392, San Fran-
cisco, USA, January (1995).

[4] Gupta, R., Soffa, M.L., and Howard, J.: “Hybrid
Slicing: Integrating Dynamic Information with Static
Analysis”, ACM Transaction on Software Engineering
and Methodology, Vol. 6, No. 4, pp. 370–397, 1997.

[5] Harman, M. and Danicic, S.: “Amorphous pro-
gram slicing”, IEEE International Workshop on Pro-
gram Comprehesion (IWPC’97), pp. 70-79, Dearborn,



Michigan, USA, May 1997. IEEE Computer Society
Press, Los Alamitos, California, USA.

[6] Hind, M., Burke, M., Carini, P., and Choi, J.: “Inter-
procedural Pointer Alias Analysis”, ACM Trans. on
Programming Languages and Systems, Vol.21, No. 4,
pp. 848–894 (1999).

[7] Horwitz, S., Pfeiffer, P., and Reps, T.: “Depen-
dence Analysis for Pointer variables”, Proceedings
of SIGPLAN ’89 Conference on Programming Lan-
guage Design and Implementation, pp.28–40, SIG-
PLAN Notices Vol. 24, No. 6 (1989).

[8] Korel, B. and Laski, J.: “Dynamic Program Slicing”,
Information Processing Letters, Vol.29, No,10, pp.
155–163 (1988).

[9] Kusumoto, S., Nishimatsu, A., Nishie K., and Inoue,
K.: “Experimental Evaluation of Program Slicing for
Fault Localization”, Empirical Software Engineering,
7, pp.49-76 (2002).

[10] Liang, D. and Harrold, M. J.: “Efficient Points-
To Analysis for Whole-Program Analysis”, Proc. of
7th European Software Engineering Conference and
7th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pp.199–215, Toulouse, France
(1999).

[11] Ning, J. Q., Engberts, A., and Kozaczynski, W. V.:
“Automated Support for Legacy Code Understand-
ing”, Communications of the ACM, Vol. 37, No. 5,
pp.50–57, May (1994).

[12] Nishimatsu, A., Kusumoto, S., and Inoue, K.: “An Ex-
perimental Evaluation of Program Slicing on Fault Lo-
calization Process”, Technical Report of IEICE Japan,
SS98–3, pp. 17–24, (1998)(in Japanese).

[13] Nishimatsu, A., Jihira, M., Kusumoto, S., and In-
oue, K.: “Call-Mark Slicing: An Efficient and Eco-
nomical Way of Reducing Slice”, Proceedings of The
21st International Conference on Software Engineer-
ing, pp.422-431, Los Angeles, CA, USA, 1999.

[14] Sato, S., Iida, H., and Inoue, K.: “Software Debug
Supporting Tool Based on Program Dependence Anal-
ysis”, Transaction on IPSJ, Vol. 37, No. 4, pp. 536–
545 (1996) (in Japanese).

[15] Weiser, M.: “Program Slicing”, Proceedings of the
Fifth International Conference on Software Engineer-
ing, pp. 439–449 (1981).

[16] Ramalingam, G.: The Undecidability of Aliasing,
ACM Transactions on Programming Languages and
Systems, Vol. 16, No. 5, pp. 1467–1471 (1994).


