
On Refactoring for Open Source Java Program

Yoshiki Higo1,Toshihiro Kamiya2, Shinji Kusumoto1, Katsuro Inoue1 and Yoshio Kataoka3

1Graduate School of
Information Science and Technology,

Osaka University
{y-higo, kusumoto, inoue}@ist.osaka-u.ac.jp

2PRESTO, Japan Science and Technology Corp.
kamiya@ist.osaka-u.ac.jp

3System Engineering Laboratory, Toshiba Corp.
yoshio.kataoka@toshiba.co.jp

Abstract

Software maintenance is the most expensive activity in
software development process. It have been reported that
many software companies spent a large amount of cost to
maintain the existing systems. Refactoring is an effective
technique to conduct the perfective maintenance. It is de-
fined as “the process of changing a software system in such
a way that it does not alter the external behavior of the code
yet improves its internal structure.” Code clone makes soft-
ware maintenance difficult and so is called a typical ‘bad-
smell’. A code clone is a code fragment in a source code
that is identical or similar to another. In an actual soft-
ware development process, code clones are introduced be-
cause of various reasons such as reusing code by ‘copy-
and-paste’ and so on. This paper describes the application
of the refactoring to an open source Java program, ANTLR,
using a code clone analysis. First, we extract some code
clones from the source code with a code clone detection
tool. Second, we identify some code clones that some refac-
toring patterns could be applied to. Finally, we apply the
refactoring patterns to the code clones and rewrite the code.
The result shows that the applied two refactoring patterns
“Extract Method” and “Pull Up Method” reduce the code
size by 1000LOC. Also we confirm that the behavior of the
ANTLR after the refactoring is the same as before.

1 Introduction

Software maintenance is the most expensive activity
during the entire software development process. It have
been reported that many software companies spent a large
amount of cost to maintain the existing systems. One of
the maintenance activities is a perfective maintenance [7],
that is defined as a modification to a software product after
delivery to improve its performance and/or maintainability.

Refactoring is an effective technique to conduct the per-
fective maintenance. It is defined as “the process of chang-
ing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal
structure[5].” In [5], several refactoring patterns are de-
scribed. It is necessary to identify the refactoring candidates
that contain “bad-smells” in order to apply refactoring pat-
terns.

Code clone is one of the typical bad-smells that makes
software maintenance very difficult[5]. A code clone is a
code fragment in a source file that is identical or similar to
another. Clones are introduced because of various reasons
such as reusing code by ‘copy-and-paste’ and so on. Code
clones make the source files very hard to be modified con-
sistently. Hence effective code clone detection will support
the refactoring activities of perfective maintenance. Up to
the present, several code clone detection methods have been
proposed [2][3][4][6].

We have been developing a code clone detection tool
CCFinder[8]. CCFinder detects code clones from program
source codes and outputs the locations of the clone pairs in
source codes. The clones detected by CCFinder were not,
however, necessarily appropriate for refactoring.

In [12], we have proposed a method to extract the part
of code clones which are appropriate for refactoring, or
“refactoring–oriented code clones.” In this paper, we intend
to apply the proposed method to an actual software prod-
uct and evaluate its effectiveness. The target open source
program is ANTLR. We found 174 code clones in total and
performed two refactoring patterns: “Extract Method” and
“Pull Up Method.” As a result, we could decrease 1000
LOC from the original ANTLR without changing its be-
havior.



2 Refactoring Process based on Code Clone

2.1 Definition of code clone

A clone relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) between
two code fragments[8]. A clone relation holds between two
code fragments if (and only if) they are the same sequences.
(Sequences are sometimes original character strings, strings
without white spaces, sequences of token type, and trans-
formed token sequences. ) For a given clone relation, a pair
of code fragments is called a clone pair if the clone rela-
tion holds between the fragments. An equivalence class of
clone relation is called a clone class. That is, a clone class
is a maximal set of code fragments in which a clone relation
holds between any pair of the code fragments.

A code fragment in a clone class of a program is called a
code clone or simply a clone.

2.2 CCFinder

CCFinder detects code clones from program source
codes and outputs the locations of the clone pairs in the
source codes. The length of minimum clone is specified
by a user beforehand. The length of minimum clone is the
minimal size of the code fragment that CCFinder detect as
a code clone.

Clone detection process of CCFinder consists of the fol-
lowing four steps:

Step1 Lexical analysis: Each line of source files is divided
into tokens according to a lexical rule of the program-
ming language. The tokens of all source files are con-
catenated into a single token sequence so that finding
clones among multiple files is performed in the same
way as a single file analysis.

Step2 Transformation: The token sequence is transformed,
i.e., tokens are added, removed, or changed based
on the transformation rules that aim at regularization
of identifiers and identification of structures. Then,
each identifier related to types, variables, and con-
stants is replaced with a special token. This replace-
ment makes code fragments including different vari-
able names clone pairs.

Step3 Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are de-
tected as clone pairs.

Step4 Formatting: Each location of the clone pair is con-
verted into line numbers on the original source files.

Figure 1 illustrates the types of the code clones.
CCFinder extracts the following two types of code clone
corresponds to a code fragmentC:

Figure 1. exact and renamed code clone

Exact code clone:E is a code fragment that is the same as
C except for the difference about blank, new line and
comments.

Renamed code clone:R is a code fragment that is the
same asC except for the difference about the cor-
responded names of user-defined identifier (name of
variables, constant, class, method and so on). Also,
the reserved words and the sentence structures are the
same betweenR andC.

2.3 Extraction of Refactoring–Oriented Code
Clones

For the purpose of procedure extraction, code clone
detection method for semantically cohesive ones us-
ing PDG(program dependence graph) have been
proposed[10][11]. Also, Baxter et al. proposed a method
to detect code clones using control/data flow dependencies
from AST(abstract syntax trees)[3]. However, it is difficult
to apply their approach to large scale softwares since the
cost to create PDG/AST is very high.

On the other hand, the clone detection process of
CCFinder is very fast but only lexical analysis is performed.
Since code clones detected by CCFinder are sequences of
tokens, they are not necessarily appropriate to be directly
merged into one module (subroutine, function etc.). Some
of them are not suitable for refactoring. In order to deal with
the problem, we proposed a method that extract refactoring–
oriented code clones from the whole set of code clones de-
tected by CCFinder [12]. Figure 2 describes the key idea.



Figure 2. Example of merging two code frag-
ments

In Figure 2, there are two code fragments A and B from a
program, and the code fragments with hatching are maxi-
mal clones among them. In code fragment A, some data are
substituted to list data structure from the head successively.
In code fragment B, they are done so from the tail succes-
sively. Thefor blocks in A and B have a common logic
that handles a list data structure.

There are, however, sentences before and afterfor
block, that are not necessarily related with thefor block
from semantic point of view. Such semantically unrelated
sentences often obstruct refactoring. In other word, extract-
ing only for block as a code clone is more preferable from
refactoring viewpoint in this example.

The proposed method is implemented as a filter for the
output of CCFinder. We named the filter CCShaper. The
extracting process using CCShaper consists of the following
three steps:

Step1: Detect clone pairs using CCFinder

Step2: Provide semantic information (body of method,
loop and so on) to each block by parsing the input
source files and investigating the positions of blocks.

Step3: Extract meaningful blocks in the code clone using
the information of location of clone pairs and seman-
tics of blocks. Intuitively, meaningful block indicates
the part of code clone that is easy to merge.

The details of CCShaper algorithm are shown in [12].

3 Case Study

In order to evaluate the usefulness of the proposed
method, we have applied it to a famous Java soft-

(a) Before refactoring

(b) After refactoring

Figure 3. Comparing on scatter plot

ware:ANTLR(Version 2.7.1)[1].

ANTLR(ANother Tool for Language Recognition) is a
language tool that provides a framework for constructing
recognizers, compilers, and translators from grammatical
descriptions containing C++ or Java actions. ANTLR in-
cludes 189 files and the size is 42000LOC.

First, we applied CCFinder to ANTLR. The result is
shown in Figure 3(a). This figure is called “Scatter plot.”
It shows visually where clone pairs exist in ANTLR. Both
the vertical and horizontal axes represent code fragments of
ANTLR. A clone pair is shown as a diagonal line segment.
In this figure, the same code fragments are arranged on the
two axes. Naturally a diagonal line from the upper left to
the lower right is drawn since such dot means comparison



Figure 4. Source code of C1

of token with itself, and the dots are symmetrical with re-
spect to the diagonal line. We can see there are many code
clones in ANTLR. Totally, there are 276 clone classes and
13290 clone pairs.

Then we extracted several code clones using CCShaper
and investigated their appropriateness for refactoring. As a
result, we identified the following two types of such code
clones. A clone class (C1), which is one of the types, in-
cludes 24 code fragments. Each code fragment of C1 in-
cludes 82 tokens and implements the same algorithm to
parse different lexical entities, such as the comma, the semi-
colon, or the operators. We applied “Extract Method” pat-
tern [5] to this clone class and merged the 17 code fragment
into a single method. Figure 4 shows some of the code frag-
ment of C1 and Figure 5 shows the merged method. As
for the second type, a clone class (C2) includes 150 code
fragments and each of them includes 33 tokens. We ap-
plied two refactoring patterns “Extract Method” and “Pull
Up Method” to the clone class and merged all the code frag-
ments into a single method. The refactoring process to (C1)
and (C2) resulted in 1000LOC reduction of the source code.

Finally, we have to confirm that the functionality is not
changed by the above refactoring process to ANTLR. We
checked the behavior of ANTLR after refactoring using all

Figure 5. Extracted method for C1

sample programs included in ANTLR package. For the 84
sample programs, the outputs from ANTLR before and after
refactoring are exactly same.

Figure 3(b) shows the scatter plot of ANTLR after refac-
toring. You can see that most of the clones located on the
upper left side of Figure 3(a) have been removed.

4 Conclusion

We have applied CCFinder with CCShaper to a practi-
cal Java software ANTLR. We found two clone classes that



refactoring patterns can be applied and actually conducted
refactoring to them. As a result, we could reduce the code
size by 1000 LOC without changing its original functional-
ity.

It is necessary to evaluate the refactoring effect[9] after
detecting the bad-smell part in the actual refactoring pro-
cess. Without knowing the effect, we cannot judge whether
we should go for refactoring or not because we have to be
cost sensitive. We are going to examine it in the refactoring
process based on the code clone information.

References

[1] ANTLR, http://www.antlr.org/ , (2000).

[2] B. S. Baker: “Parameterized Duplication in Strings: Al-
gorithms and an Application to Software Maintenance,”
SIAM Journal on Computing, 26, 5, pp. 1343-1362
(1997).

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L.
Bier: “Clone Detection Using Abstract Syntax Trees,”
Proc. of ICSM98, pp. 368-377 (1998).

[4] S. Ducasse , M. Rieger, and S. Demeyer: “A Language
Independent Approach for Detecting Duplicated Code,”
Proc. of ICSM99, pp. 109-118 (1999).

[5] M. Fowler: Refactoring: improving the design of exist-
ing code, Addison Wesley (1999).

[6] J. Mayland, C. Leblanc, and E. Merlo: “Experiment on
the Automatic Detection of Function Clones in a Soft-
ware System Using Metrics,” Proc. of ICSE96, pp. 244-
253 (1996).

[7] IEEE Std 1219-1992: Standard for Software Mainte-
nance, (1992).

[8] T. Kamiya, S. Kusumoto, and K. Inoue: “CCFinder: A
multi-linguistic token-based code clone detection sys-
tem for large scale source code,” IEEE Trans. on Soft-
ware Engineering, 28, 7, pp. 654-670 (2002).

[9] Y. Kataoka, T. Imai, H. Andou and T. Fukaya: “A quan-
titative evaluation of maintainability enhancement by
refactoring,” Proc. of ICSM2002, pp. 576-585 (2002).

[10] R. Komondoor and S. Horwitz: Using slicing to iden-
tify duplication in source code ”, Proc. of the 8th In-
ternational Symposium on Static Analysis, pp. 40-56
(2001).

[11] Jens Krinke: “Identifying Similar Code with Program
Dependence Graphs ”, Proc. of the 8th Working Con-
ference on Reverse Engineering, pp. 562-584(2001).

[12] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K. In-
oue: “On software maintenance process improvement
based on code clone analysis,” Proc. of Profes 2002,
pp. 185-197 (2002).


