Refactoring Support Based on Code Clone
Analysis

Yoshiki Higo!,Toshihiro Kamiya?, Shinji Kusumoto! and Katsuro Inoue!

1 Graduate School of Information Science and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan
Phone:+81-6-6850-6571,Fax:+81-6-6850-6574
{y-higo,kusumoto,inoue}@ist.osaka-u.ac.jp
2 PRESTO,Japan Science and Technology Agency
Current Address:Graduate School of Information Science and Technology, Osaka
University,

Toyonaka, Osaka 560-8531, Japan
Phone:+81-6-6850-6571,Fax:+81-6-6850-6574
kamiya@Qist.osaka-u.ac.jp

Abstract. Software maintenance is the most expensive activity in soft-
ware development. Many software companies spent a large amount of
cost to maintain the existing software systems. In perfective mainte-
nance, refactoring has often been applied to the software to improve the
understandability and complexity. One of the targets of refactoring is
code clone. A code clone is a code fragment in a source code that is iden-
tical or similar to another. In an actual software development process,
code clones are introduced because of various reasons such as reusing
code by ‘copy-and-paste’ and so on. Code clones are one of the factors
that make software maintenance difficult. In this paper, we propose a
method which removes code clones from object oriented software by us-
ing existing refactoring patterns, especially “Extract Method” and “Pull
Up Method”. Then, we have implemented a refactoring supporting tool
based on the proposed method. Finally, we have applied the tool to an
open source program and actually perform refactoring.

1 Introduction

It is well known that software systems are evolving by adding new functions and
modifying existing functions over time. On the other hand, through the evolu-
tion, the structure of the software becomes more complex. Then, the understand-
ability and maintainability are deteriorating. So, perfective maintenance [9], that
is defined as a modification to a software product after delivery to improve its
performance and/or maintainability, is an important maintenance activity.
Refactoring is an effective technique to conduct the perfective maintenance.
It is defined as “the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure[7].” In [7], several refactoring patterns are described. It is necessary to

Before After

void printOwing() { void printOwing() {
printBanner(); printBanner();
printDetails(getOutstanding());
Jlprint details :> }
System.out.printin ("name: " + _name);
System.out.println ("amount " + getOutstanding()); void printDetails (double outstanding) {
} System.out.println ("name: " + _name);

System.out.println ("amount " + outstanding);

}

Fig. 1. Example of Extract Method

identify the refactoring candidates that contain “bad-smells” in order to apply
refactoring patterns.

Code clone is one of the typical bad-smells that make software maintenance
very difficult[7]. A code clone is a code fragment in a source file that is identical
or similar to another. Code Clones are introduced because of various reasons such
as reusing code by ‘copy-and-paste’ and so on. Code clones make the source files
very hard to be modified consistently. Hence effective code clone detection will
support the refactoring activities of perfective maintenance. Up to the present,
several code clone detection methods have been proposed [2][3][6][8].

In this paper, we show that the existing refactoring patterns[7] can be used to
remove code clones. Then, we propose a method to support refactoring activity
by applying code clone detection techniques. Furthermore, we implement a tool
supporting our proposed method. This tool uses CCFinder[10], which is a code
clone detection tool, and Gemini[16], which is code clone analysis environment.
The function of this tool is to find certain code clones to which the refactoring
patterns can be applied to. User can get code clone information for refactoring
graphically.

2 Preliminaries

In this section, we briefly explain two refactoring patterns, “Extract Method”
and “Pull Up Method” that are related to the code clone. Also, we define the
code clone.

These patterns can be regarded as one typical activity to remove code clones.
In other words, these patterns get code clones into common routine like method
by using distinctive functions of object oriented programming language.

2.1 Refactoring Pattern

Extract Method To put it plainly, “Extract Method” means extraction of a
part of existing method as a new method, and the extracted part is replaced by
a new method caller shown in Figure 1. In general, this pattern is applied to the
case that there is a too long method. In applying the pattern to code clones, a
new method, that is a code fragment of code clone, is defined and the original

Before After

Employee
Employee
getName
I | I I
Salesman Engineer
Salesman Engineer
getName getName

Fig. 2. Example of Pull Up Method

code clones are replaced by the new method caller. As the result, we can remove
the code clones.

Pull Up Method “Pull Up Method” is a simple refactoring pattern. It means
pulling up a method which defined in child class to its parent class. If the parent
class has several child classes and some of them have the same method (that is,
code clone), pulling up the method can remove the code clone.

2.2 Code Clone

Definition of code clone A clone relation is defined as an equivalence rela-
tion (i.e., reflexive, transitive, and symmetric relation) between two code frag-
ments[10]. A clone relation holds between two code fragments if (and only if)
they are the same sequences. (Sequences are sometimes original character strings,
strings without white spaces, sequences of token type, and transformed token
sequences.) For a given clone relation, a pair of code fragments is called a clone
pair if the clone relation holds between the fragments. An equivalence class of

1]

[~—Imeans Code Clone.
means Clone Pair.

Fig. 3. Clone Relationship

clone relation is called a clone class. That is, a clone class is a maximal set of
code fragments in which a clone relation holds between any pair of the code
fragments as shown in figure 3.

A code fragment in a clone class of a program is called a code clone or simply
a clone.

Code Clone Detection Tool : CCFinder CCFinder detects code clones from
program source codes and outputs the locations of the clone pairs in the source
codes. The length of minimum clone is specified by a user beforehand. The length
of minimum clone is the minimal size of the code fragment that CCFinder detect
as a code clone.

Clone detection process of CCFinder consists of the following four steps:

Stepl Lexical analysis: Each line of source files is divided into tokens according
to a lexical rule of the programming language. The tokens of all source files
are concatenated into a single token sequence so that finding clones among
multiple files is performed in the same way as a single file analysis.

Step2 Transformation: The token sequence is transformed, i.e., tokens are added,
removed, or changed based on the transformation rules that aim at regular-
ization of identifiers and identification of structures. Then, each identifier
related to types, variables, and constants is replaced with a special token.
This replacement makes code fragments including different variable names
clone pairs.

Step3 Match Detection: From all the sub-strings on the transformed token
sequence, equivalent pairs are detected as clone pairs.

Step4 Formatting: Each location of the clone pair is converted into line numbers
on the original source files.

Figure 4 illustrates the types of the code clones. CCFinder extracts the fol-
lowing two types of code clone corresponds to a code fragment C:

Exact code clone: E is a code fragment that is the same as C' except for the
difference about blank, new line and comments.

Renamed code clone: R is a code fragment that is the same as C except for the
difference about the corresponded names of user-defined identifier (name of
variables, constant, class, method and so on). Also, the reserved words and
the sentence structures are the same between R and C.

3 Extraction of Refactoring—Oriented Code Clones

3.1 Filtering approach

As described in Section 2.2, the clone detection process of CCFinder is very fast
but only lexical analysis is performed. Since code clones detected by CCFinder
are sequences of tokens, they are not necessarily appropriate to be directly

If (a> b)

C b++;

Copied and pasted

Renamed

If (a > b) If (i>])
{ {
b++; e
a=1; i=0;
} }

Exact code clone Renamed code clone

Fig. 4. Exact and renamed code clone

merged into one module (subroutine, function etc.). Some of them are not suit-
able for refactoring. In order to deal with the problem, we propose a method
that extracts refactoring—oriented code clones from the whole set of code clones
detected by CCFinder.

We have already proposed the key idea of this approach in [15]. In this paper,
we extend the idea, and propose more practical approach to detect distinctive
code clones to which these refactoring patterns are easy to apply. In the follow-
ings, we explain the detail of the approach.

The key idea is to find a kind of cohesive code fragment (like compound
block or method bodies) from the code clone fragments. Figure 5 illustrates an
example. In Figure 5, there are two code fragments A and B from a program,
and the code fragments with hatching are maximal clones between them. In code
fragment A, some data are substituted to list data structure from the head suc-
cessively. In code fragment B, they are done so from the tail successively. The
for blocks in A and B have a common logic that handles a list data structure.
There are, however, sentences before and after for block, that are not necessar-
ily related with the for block from semantic point of view. Such semantically
unrelated sentences often obstruct refactoring. In other word, extracting only
for block as a code clone is more preferable from refactoring viewpoint in this
example.

tmp = hea;.i;

for(i = 05 i < 10; i++)

{
tmp->next = (struct List

*ymalloc(sizeof(List));

tmp = (List *)tmp->next;
tmp->i = i;
tmp->next = NULL;

- or($ = 0; § < 5; $+4)
Code fragment A $>next = (struct List “Jmalloc(sizeof(Lis);
$ = (List *)$->next;
; $58=§;
tail = getTail(head);) $>next =NULL;

c=100;
for(j = 0;j < c;j+4) Shaped clone
{

tail->next = (struct List *)malloc(sizeof(List));

tail = (List *)tail->next;
tail->j = j;
tail->next = NULL;
}
tail = NULL;

Code fragment B

Fig. 5. Example of merging two code fragments

The proposed method is implemented as a filter for the output of CCFinder.
We named the filter CCShaper. Currently CCShaper can be applied to only Java
language. The extracting process using CCShaper consists of the following three
steps:

Stepl: Detect clone pairs using CCFinder

Step2: Provide semantic information (body of method, loop and so on) to each
block by parsing the source files where clone pair are detected in Stepl and
investigating the positions of blocks.

Step3: Extract structural blocks in the code clone using the information of
location of clone pairs and semantics of blocks. Intuitively, structural block
indicates the part of code clone that is easy to move and merge.

CCShaper performs Step 2 and Step 3. CCShaper extracts the following kinds
of code clone as a refactoring-oriented code clone.

Declaration : class { }, interface { }
Method : method body, constructor, static initializer
Statement :if-statement, for-statement, while-statement, do-statement, switch-
statement, try-statement, synchronized-statement
Block : range surrounded with ‘{” and ‘}’

3.2 Application of refactoring patterns

Here, we explain how these refactoring patterns are applied to the extracted
code clones by CCShaper. At first, we have to say that there are two types of

code clone in which we are interested. One is “method-unit clone”, ant the other
is “statement-unit code clone”.

For example, if all fragments of a given clone class are in the same class
and the type is statement-unit, we can extract the clone statements as a new
private method. In the other case, if all classes which have some fragments of a
given clone class succeed to the same parent class and the type is method-unit,
pulling up these fragments to the common parent class removes the code clones.
In the similar case, if all classes which have some fragments of a given clone class
succeed to the same parent class and type is statement-unit, each fragment could
be extracted as a new method by applying “Extract Method”, and in addition,
each new method could be pulled up to the common parent class.

4 Case Study

4.1 Target Software

In order to evaluate the usefulness of the proposed method, we have applied
it to a famous Java software: ANTLR(Version 2.7.1)[1]. ANTLR(ANother Tool
for Language Recognition) is a language tool that provides a framework for
constructing recognizers, compilers, and translators from grammatical descrip-
tions containing C++ or Java actions. ANTLR includes 189 files and the size is
42000LOC.

4.2 Code Clone Analysis Environment : Gemini

In this case study, we used Gemini[16], which is graphical code clone analysis
environment. Gemini uses CCFinder as a code clone detector, and greatly helps
user to analysis code clone and modify source code. Currently, the function of
CCShaper is included in Gemini, and the three steps of CCShaper(written
in 3.1) are performed automatically. The followings explain some functions of
Gemini, which were used in this case study.

Scatter Plot Figure 6 shows an example of scatter plot. Both the vertical
and horizontal axes represent code portions of source files. The following two
sequences are used as sample code portions in the scatter plot.

code portion X: “ABCDCDEFBCDG”,
code portion Y: “ABCEFBCDEBCD”

Here, symbols “A” “B”,“C”,. .. are code portions in an unit such as character,
token, line, statement, function, etc (In Gemini, it is token). In Figure 6, each
small black square means that corresponding two elements on the two axes are
the same. So, a clone pair is shown as a diagonal line segment. If the same code
portions are arranged on the two axes, naturally, a diagonal line from the upper
left to the lower right is drawn since such dot means comparison of token with
itself, and the dots are symmetrical with a diagonal line.

code fragment Y
1 2 3 4 5 6 7 8 9 10 11 12

Lalefclefrle[clp[eB]c]n]

—_

=

X 1uowsderj opoo
Nl oo -3 [=)} W S w [\8]

)

—
—_

12

EEREREERCREE

A,B,C, ... : character, token, line, statement or function, ... etc.

@@ :codeclone

Fig. 6. Scatter Plot Model

The state of distribution of code clone can be grasped at a glance. However,
as for large scale software in which there are many code clones, it is very difficult
to decide which plot (that is code clone) in the huge scatter plot should be kept
our eyes on. That is, if many files are located on the axis of coordinate in naive
order, such as alphabetical order with file name, the distribution of code clones
is occasionally spread widely without conspicuous deviation. So, Gemini has the
function to sort the order of files on the two axes. It causes code clones not to
distribute all over a scatter plot as much as possible. As a basic idea, the more
code clones exist among two source files, the nearer the files are to be located in
each axis. The details are described in [16].

Metric Graph Figure 7 shows the model of metric graph. A polygonal line is
drawn per a clone class. Besides, each of five vertical bars represents the each
metric. The followings are the metrics.

RAD :Represent the range of the source code fragments of a code clone in
the directory hierarchy, when the source code is supposed to be stored in
the hierarchical directory. When all the code fragments of a clone class are
located in one source file, the RAD value of the clone class is equivalent to
0. When the code fragments of the clone class are located in multiple source
files stored in one directory, the RAD is 1. If those sources files are stored
in different directories, then RAD is the maximum depth of those sources
measured from their common parent director.

RAD LEN LNR pop DFL

\/

Fig. 7. Metric Graph Model

4— new sub routine
[] ' ‘7 caller statements
]]
[]

Fig. 8. Replace cloned portions with new identical routine

LEN :Represent the maximum length of element(code fragment) in a given
clone class.

LNR :Represent the number of tokens without repeated part of the clone code
fragments. each LNR is the same or smaller than LEN.

POP :Represent the number of element(code fragment) for a given clone class.
If this value is high, it means that the similar code fragment appears in many
places.

DFL :Represent an estimation of how many tokens would be removed from
source files when all element(code fragment) of a given clone class are re-
placed with caller statements of a new identical routine like figure 8.

Metric graph allows user to set upper and lower bound on each metric, which
enables user to select arbitrary clone class which he or she is interested in.

Source Code View User can browse source codes of code clones which are
selected in scatter plot or metric graph. In this view, code clones are highlighted,
so he or she can easily recognize the range of them.

4.3 Refactoring Activity

First, we have applied CCFinder to ANTLR. In this case study, we specified 50
as the length of minimum clone of CCFinder and 30 as the length of minimum

I
- N
i
: \~,,
(a) Before refactoring (b) After refactoring

Fig. 9. Comparing on scatter plot

block of CCShaper. The result of scatter plot is shown in Figure 9(a). We can
see there are many code clones in ANTLR. Totally, there are 276 clone classes
and 13290 clone pairs.

Then, we extracted several code clones using CCShaper and investigated
their appropriateness for refactoring. In this selection, we used metric graph. As
a result, we identified the following two types of such code clones.

A clone class (C1), which was one of the types, included 24 code fragments.
Each code fragment of C1 included 82 tokens and implemented the same algo-
rithm to parse different lexical entities, such as the comma, the semi-colon, or
the operators. All code fragments of (C1) were methods, and 17 code fragments
of them were in same class. So, we applied “Extract Method” pattern [7] to (C1)
and merged the 17 code fragments into a single method. Figure 10 shows some
of the code fragments of C1 and Figure 11 shows the merged method.

As for the second type, a clone class (C2) included 150 code fragments and
each of them included 33 tokens. All code fragments of (C2) were if-statements,
and appeared in three classes. Furthermore these three classes inherited the same
class as its parent. So, we firstly applied “Extract Method” pattern to (C2),
which extracted the cloned portions as new methods. And then, we applied
“Pull Up Method” to the new method. As the result, cloned if-statements are
pulled up to common parent class as a new identical method shown in Figure
12.

The refactoring process to (C1) and (C2) resulted in 1000LOC reduction of
the source code.

EEE]

750 public final void mBANG(boo|ean _createToken) throms RecosnitiorException, CharStreanException, TokenStreanException {
751 int _ttype: Token _tokenFnull: int besin=text.lensthi);

752 _thype = BANG:

753 Tnt _savelndex;

764

766 match(™!")

758 It { _createToken &% _token==nul| & _tiype!=Token.SKIP } {

767 _token = makeToken(_ttvpe);

758 Ttoken. setTexttnew String(text.zetBuffer(), _besin, text.lensth()-_begin));

753

760 _returnToken = _token;

761 1

762

762 public final void mSEMI(boolean _createToken) throms RecosnitiorException, CharStreanException, TokenStreanException {
764 int _ttype; Token _tokenFnull: int besintext.lensthi);

785 _thype = SEMI:

768 Tnt _savelndex;

767

768 match(’:")

769 It _creataToken B tokerssrull 86 tiyps!=Token. SUTP 3 |

m _token = makeToken(_ttvpe);

m Ttoken. setTexttnew String(text.zetBuffer(), _besin, text.lensth()-_begin));

e i
3 _returnToken = _token; I
74 1

75

78 public final void COMMA(boa|een cresteToken) Lhrows RecognitionExcept ion, CharStreanException, TokenStreamExcest ion {
m int _ttype; Token _token=null: int _bexin=text.length

78 _thype = COMMA;

beg] Tnt _savelndex;

780

781 match(”,”)

782 It _creataToken B tokerssrull 86 tiyps!=Token. SUTP 3 |

783 _token = makeToken(_ttvpe);

784 Ttoken. setTexttnew String(text.zetBuffer(), _besin, text.lensth()-_begin));

785

788 _returnToken = _token;

7 1

788

788 public final void mRCURLY(boolean _createToken) throws RecoenitionException, CharStreamExcetion. TokenStreamExcestion {
790 int _ttype; Token _token=null: int besin=text.lensthi);

41 ype = RLURLYS

Fig. 10. Source code of C1

Finally, we have to confirm that the functionality is not changed by the above
refactoring process to ANTLR. We have checked the behavior of ANTLR after
refactoring using all sample programs included in ANTLR package. For the 84
sample programs, the outputs from ANTLR before and after refactoring are
exactly the same ones.

Figure 9(b) shows the scatter plot of ANTLR after refactoring. You can see
that most of the clones located on the upper left side of Figure 9(a) have been
removed.

5 Related Works

For the purpose of procedure extraction, code clone detection method for se-
mantically cohesive ones using PDG(program dependence graph) have been pro-
posed[12][14]. Also, Baxter et al. proposed a method to detect code clones using
control/data flow dependencies from AST (abstract syntax trees)[3]. However, it
is difficult to apply their approach to large scale softwares since the cost to create
PDG/AST is very high.

Other interested approach is proposed by Balazinska et al[5]. They find func-
tion level clones by using 21 metrics[8], and apply different analysis[4][13] and
context analysis[5] to detected clones, which means an estimation of refactoring
applicability for each clone.

public final void ExtractedMethod(boolean _createToken, int _new_int, char _new_char)
throws RecognitionException, CharStreamException, TokenStreamException {

int _ttype; Token _token=null; int _begin=text.length();
_ttype = _new_int;
int _savelndex;

match(_new_char);
if (_createToken && _token==null && _ttype!=Token.SKIP) {
_token = makeToken(_ttype);
_token.setText(new String(text.getBuffer(), _begin, text.length()-_begin));

_returnToken = _token;

Fig. 11. Extracted method for C1

6 Conclusion

We have applied CCShaper with CCFinder to a practical Java software ANTLR.
We found two clone classes that refactoring patterns can be applied and actually
conducted refactoring to them. As the result, we could reduce the code size by
1000 LOC without changing its original functionality.

But, since the current approach just extracts structural code clones from
detected ones by CCFinder, it does not guarantee that all extracted structural
code clones can be removed. So, as one of the future works, we will perform two
types of analyses to get more precise result. One is to analyze variables which
are referred in the code clone portions. For example, if all referred variables are
declared in the same code clone portion, the portion can be easily moved to the
parent class and so on. Otherwise, some referred variables are declared outside
of the code clone portion, it is difficult to move the cloned portion to other class.

The other is to analyze the portion relationship between code fragments
belonging to same clone class in class hierarchy. For example, all code fragments
of a given clone class are in the plural classes, if these classes inherit the same
parent class, this clone class may be removed. But, if they don’t have common
parent class, it is difficult to remove them. We consider that above two types of
analyses can help us to perform refactoring.

It is also necessary to evaluate the refactoring effect[11] after detecting the
bad-smell part in the actual refactoring process. Without knowing the effect, we
cannot judge whether we should go for refactoring or not because we have to be
cost sensitive. We are going to examine it in the refactoring process based on
the code clone information.

References

1. ANTLR, http://www.antlr.org/, (2000).

2. B. S. Baker: “Parameterized Duplication in Strings: Algorithms and an Applica-
tion to Software Maintenance,” STAM Journal on Computing, 26, 5, pp. 1343-1362
(1997).

Before Refactoring After Refactoring
}

}
}
_cnt3++;
} while (true);
}

_cnt3++;
} while (true);

if (_createToken && _token==null && _ttype!=Token.SKIP) {
_token = makeToken(_ttype);
_token.setText (new String (text.getBuffer(),

_begin,
text.length() - _begin));

‘_to ken = _CLASSO(_createToken,_token,_ttype,_begin);

_retumToken = _token;

_returnToken = _foken;

}

Call new method

= =

v
lew Method(this method was added in common parent class)
protected Token _CLASSO (boolean _CLASSO_first, Token CLASSO_second,

int _CLASSO_third, int_CLASSO_forth) {

if (_CLASSO_first && CLASS0_second==null && CLASSO_thirdl=Token.SKIP){
_CLASS0_second = makeToken(_CLASSO_third);
_CLASSO0_second.setText(new String(text.getBuffer(),
_CLASSO_forth,
textlength() - _CLASSO_forth));
}
return _CLASS0_second;

Fig. 12. Refactoring to C2

3. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier: “Clone Detection
Using Abstract Syntax Trees,” Proc. of ICSM98, pp. 368-377 (1998).

4. M. Balazinska, E. Merlo, M.Dagenais, B. Lagu, and K. Kontogiannis: “Measuring
clone based reengineering opportunities,” Proc. of METRICS99, pp. 292-303 (1999).

5. M. Balazinska, E. Merlo, M. Dagenais, B. Lagu, and K. Kontogiannis: “Ad-
vanced Clone-Analysis to Support Object-Oriented System Refactoring,” Proc. of
WCRE2000, pp. 98-107 (2000)

6. S. Ducasse , M. Rieger, and S. Demeyer: “A Language Independent Approach for
Detecting Duplicated Code,” Proc. of ICSM99, pp. 109-118 (1999).

7. M. Fowler: Refactoring: improving the design of existing code, Addison Wesley
(1999).

8. J. Mayland, C. Leblanc, and E. Merlo: “Experiment on the Automatic Detection of
Function Clones in a Software System Using Metrics,” Proc. of ICSE96, pp. 244-253
(1996).

9. IEEE Std 1219-1992: Standard for Software Maintenance, (1992).

10. T. Kamiya, S. Kusumoto, and K. Inoue: “CCFinder: A multi-linguistic token-based
code clone detection system for large scale source code,” IEEE Trans. on Software
Engineering, 28, 7, pp. 654-670 (2002).

11. Y. Kataoka, T. Imai, H. Andou and T. Fukaya: “A quantitative evaluation of main-
tainability enhancement by refactoring,” Proc. of ICSM2002, pp. 576-585 (2002).
12. R. Komondoor and S. Horwitz: “Using slicing to identify duplication in source code

”, Proc. of the 8th International Symposium on Static Analysis, pp. 40-56 (2001).

13. K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M.Bernstein: “Pattern
Matching Techniques for Clone Detection,” Journal of Automated Software En-
gineering, Kluwer Academic Publishers, Vol. 3. pp.77-108, 1996.

14. Jens Krinke: “Identifying Similar Code with Program Dependence Graphs ”, Proc.
of the 8th Working Conference on Reverse Engineering, pp. 562-584(2001).

15. Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K. Inoue: “On software mainte-
nance process improvement based on code clone analysis,” Proc. of Profes 2002, pp.
185-197 (2002).

16. Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini: Maintenance Support Envi-
ronment Based on Code Clone Analy sis, 8th International Symposium on Software
Metrics, June 4-7, 2002.

