Multi-Project Software Engineering: An Example

Pankaj K Garg
gar g@eesour ce. net
Zee Source
1684 Nightingale Avenue, Suite 201, Sunnyvale, CA 94087, USA

Thomas Gschwind
t om@ nf osys. t uwi en. ac. at
Technische Universitat Wien
ArgentinierstralRe 8/E1841, A-1040 Wien, Austria

Katsuro Inoue
i noue@ st . osaka-u.ac.jp
Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Abstract

In this paper we present an approach for developers to
benefit from multi-project software knowledge. As we show
in this paper, this can be achieved by gathering information
about how numerous software projects are being built, and
about the interrelation of the modules within the projects.
Compared to approaches that only monitor a single project,
the contribution of our approach is that it not only sup-
ports the reuse of isolated software modules or libraries
but also the knowledge surrounding the code and individual
projects. For instance, if a component is replaced with an-
other probably better implementation within a project, this
knowledge can be shared with all relevant projects. In this
paper, we show how the collection of such data allows de-
velopers to learn about such decisions from other projects,
and hence how to benefit from such “multi-project” knowl-
edge.

1. Introduction

Recent advances in computer and networking hardware
have enabled the collection and analysis of huge amounts
of information. In this paper we present the idea that such
advances can be leveraged for Multi-Project Software Engi-
neering, i.e., engineering of thousands of software projects
simultaneously. In the past, software reuse has focused on
sharing code among projects, whether through black-box or
white-box reuse. With Multi-Project Software Engineering,

not only does code get reused across projects, but knowl-
edge surrounding the code and the project gets extensively
reused among the projects.

For example, if there’s a break-down in a reusable com-
ponent in one project, then information about the prob-
lem can be instantaneously broadcast to the thousands of
users of that component. Correspondingly, each of the other
projects does not have to independently discover the prob-
lem, and waste time through redundant problem resolution
processes. Similar mechanisms can be put in place to avoid
extra wasted effort when temporary or permanent fixes are
discovered for the component’s problem.

Enabling such Multi-Project Software Engineering re-
quires a networked infrastructure that manages process and
product information for multiple projects effectively. De-
sign choices of what information gets stored, and how, will
have substantial impact on the functionality and power of
the resulting engineering processes. To that effect, we bor-
row heavily from the lessons learned from decades of work-
ing of the Open Source communities [14]. As such, we de-
scribe an architecture of storing and utilizing Multi-Project
Software Engineering data, leveraging some of the key tech-
nologies developed by the Open Source community for sup-
porting their own software development processes.

We are actively researching different methods of ana-
lyzing the vast amounts of multi-project software engineer-
ing data. For example, one promising area of work is au-
tomatic categorization of software systems, based on the
source code of the systems, or keywords and comments as-
sociated with the source code [9, 10, 11]. In this paper, we



describe another significant analysis opportunity: utilizing
multi-project data to improve the effectiveness of the reuse
processes for component-based reuse. In particular, we de-
scribe the opportunity for real-time and continuous adap-
tation of the “best possible” component for a multitude of
projects.

Suppose a component C' is used by a multitude of soft-
ware systems S; through S,,. Further, suppose that there
are m implementations of C, C; through C,,, and each
implementation has a slight variation in the interface pro-
vided, operating system supported, performance character-
istic, and so forth. Hence, each of the n projects have to
make a choice about which implementation of the compo-
nent to use. Moreover, as time progresses, and the imple-
mentations of the components change, the projects have to
keep making these choices. Current technologies do not
provide much support for one project’s choices influencing
other projects, except through out-of-band communication
or coordination among the projects.

Through Multi-Project Software Engineering, we can
provide automation for several aspects of this reuse process:
(1) we cluster related components together, e.g., by their us-
ability or interface provided, (2) we rank the components by
their popularity among S through S,,, and (3) we can pro-
vide automatic substitution of components if and when a
problem is discovered in one of the implementations. In the
rest of this paper we give an overview of technologies used
to provide such automation.

2. Storing and Utilizing Data

An essential component of Multi-Project Software Engi-
neering is the ability to systematically collect and organize
large amounts of data, from tens of thousands of software
projects. This requires: (1) mechanisms for defining the
data to be collected from each project, (2) systematic orga-
nization of the collected data, and (3) mechanisms for easily
obtaining the data from each project.

For each of these questions, we learn from the experi-
ences of the Open Source and Free Software communities
that have demonstrated environments for collecting and or-
ganizing vast amounts of multi-project data, through the
pioneering efforts such as the Open Source Development
Network (OSDN) [15] and the Gnu software tools. Hence,
similar to the OSDN, for each project we capture complete
versioned source code trees, email discussion archives, bug
report and their workflow, and documents associated with
the project including web pages. We use a combination of
the hierarchical file system and relational database to orga-
nize the large amounts of data.

Rather than collect such data a posteriori, we collect and
organize such data in situ. A critical aspect of this is to col-
lect data as a side-effect rather than as an after-thought. This

implies the existence of a Multi-Project Software Engineer-
ing Environment (MSEE) that can easily accommodate the
development effort of tens of thousands of projects. In the
following, we briefly describe the architecture of one such
MSEE, SourceShare [1, 2], with which we are most famil-
iar. Other MSEE’s (e.g., see [7]) have similar architecture.

SourceShare is a web-based service. Through the web
interface, SourceShare provides capabilities to:

e Add a new software project to the collection

e Browse through existing projects, using various sort-
ing orders like categories, software name, contact
name, or date of submission.

e Search through the software projects, either through
the source code, software descriptions, mailing list
archives, or issues and bug reports.

When a user adds a new software project, SourceShare
requires the user to input a set of information about the soft-
ware, e.g., who were the authors of the software, some key-
words, a brief software description and title, etc. Source-
Share stores this information in an XML file associated with
the project. It also instantiates a version control repository,
a mailing list, and a bug tracking system for that software
project. Henceforth, users of SourceShare can start working
on the project using the version control repository for their
source code management. As in the case of Open Source
software, SourceShare requires that all decision making and
discussions about the software project be carried out using
the email discussion list associated with the project, thereby
maintaining a history of project decision making.

General users of SourceShare are free to browse through
the source code and mailing list discussion forums to get a
better understanding of the software. If they find any prob-
lems or issues with any software, they can input such issues
in the bug tracking system associated with that software.

Hence, an MSEE provides some important features en-
abled by the rapid advances in network, CPU, and disk ca-
pacities:

e maintain and make visible tens of thousands of soft-
ware projects at the same time,

e systematically collect and organize fine-grained data
on each project for source code versions, problem re-
ports and their resolution, and project discussions,

e provide a uniform web-based interface to all informa-
tion, and

e collect data as side-effect of normal project activities.



3. Multi-Project Analysis

In a multi-project environment, larger projects typically
rely on components implemented as part of other, proba-
bly smaller projects. A potential problem in such a work
environment, especially in an Open Source setting, is that
projects may die and are no longer maintained by their de-
velopers. In the subsequent discussion, we use project D to
denote such a project. If such a situation arises, projects that
rely on a component implemented as part of project D need
to find other components providing the same or a similar
functionality.

Typically, if such a situation arises, the maintainers of all
the projects relying on a component that was provided by
project D are seeking for alternatives. Thus, the process of
locating projects that provide a viable alternative is dupli-
cated several times. Using multi-project analysis, it is pos-
sible to base ones decision on the decision made by other
projects that have used the same project D in the past. That
is, one can issue queries such as “which other projects have
been using components provided by project D, and which
other projects did they use in order to substitute the compo-
nents originally provided from D?”

One challenge is that for different projects, different sub-
stitute projects may be adequate, hence we must rank the
components according to their popularity or similarity to
the original project D. In order to solve this problem, we
can use the component rank system that we have presented
in [8].

Another challenge is that the substitute component typ-
ically provides a different interface than that provided by
the original component D. In this case, it is necessary to
adapt the substitute component. After the first project, how-
ever, has switched already to that given substitute compo-
nent, we can learn from this other project the steps that have
been taken in order to adapt the substitute component and
reuse this kind of adaptation code. In order to achieve this
functionality, a technique such as provided by type-based
adaptation [6] can be used.

3.1 Component Rank

There are two kinds of technology elements needed to
find alternative components.

1. Find a set S¢ of components which have similar func-
tionality to the replaced component C in D.

2. Find the most reliable componentin S¢.

To resolve these issues, we have developed a model
called component rank [8]. In this model, the search space
for the components is represented as a directed graph. Each
node in the graph represents a component. Each edge shows

a use relation from a component to another in the sense of a
method invocation, instance variable access, and so on. The
component rank for a component is then the sorted order
of the component by its eigenvalue of the adjacent matrix
of the graph. This ranking intuitively shows significance
and reliability of the components in the search space, i.e.,
a component with many incoming use edges from higher
ranked components has a higher rank. A component used by
many other components inside the project or other projects
have many incoming edges, and it will generally have a high
rank.

There are many cases that a single component devel-
oped in a project is repeatedly duplicated and reused in later
projects with slight modifications. In order to identify the
duplication, we define syntactical similarity among compo-
nents. Various mechanisms have been used to identify syn-
tactical similarity among the source codes of components,
such as code-clone detection, distance computation by diff,
and various metrics-value computation (e.g., LOC or com-
plexity). Very similar components are merged into a single
node in the graph so that the effect of multiple duplication
will be removed.

A component search system has been developed using
this model. In this system, a Java class is a component,
and the system has many features, such as keyword search,
use relation trace among classes, various software metrics
computation, code-clone detection, and so on.

To find the alternative components using the component
rank system, the following process will be applied.

1. Find S¢ in the search space.

(a) Locate C in the search space. There are two pos-
sible ways to do this. We may browse the pack-
age hierarchy for the target C, or give keywords
which will uniquely extract C.

(b) Search all similar components S¢. The system
has already collected and merged all syntacti-
cally similar components into a single node in
the graph. So the collected components for C
are the member of S¢. Also, functionally sim-
ilar components are collected by the keyword
search mechanism of the component search sys-
tem. Unique names in library-call statements or
in comments will be used as the keyword.

2. Compute the component ranks of all components in
Sc, and pick up a high-valued component as reli-
able one. The system lists up the components in the
sorted order of the component ranks, and the devel-
oper checks each component from the top until a satis-
factory component is found.



3.2 Component Substitution

In the previous section, we have seen how a substitute
component can be located on the basis of the knowledge
of other projects. Once a substitute component has been
located that provides the same functionality as the original
component, it needs to be adapted. This is because it is un-
likely that another implementation C.;,: 0f the component
C provides the same interface as the original component
Com'g-

One option for the developer is to modify the implemen-
tation of C,p5; to make it fit his needs. This approach, how-
ever, defeats the purpose of component-based development
as it no longer allows the component C,ps; to be main-
tained separately. Otherwise, the implementation of Cyps:
would have to modified whenever a new version made avail-
able. In order to avoid this problem, developers typically
implement small wrappers that adapt the component in a
way such that it provides the interface required by their ap-
plication (i.e., that of Cyy4).

Once, a project has already located a substitute compo-
nent and the developers have already implemented the nec-
essary wrappers in order to provide the interface of the orig-
inal component, it would be more efficient if other projects
could simply reuse these wrappers. This can be achieved
by putting them into a shared repository where they can be
queried for as information about the component interfaces
they wrap, respectively provide. By doing so, this reposi-
tory can be queried by other projects. Hence, adapters be-
come first order objects and can be reused in a way similar
to component implementations.

This kind of infrastructure is provided by type-based
adaptation which we have presented in [6]. In addition to
storing wrappers in a repository, type-based adaptation can
only determine when adapters can be combined in order to
provide more powerful adaptations. In fact, adapters can be
combined when the interface provided by one adapter is the
subtype of the interface required by another adapter. In cer-
tain situations, this relationship may be relaxed as we have
shown in [5].

Type-based adaptation only requires the ability to iden-
tify the interfaces required by a project C,,;, and that pro-
vided by a component Cl,;s:. Both can be identified on the
basis of project data available in the CVS repository as well
as the project’s inter-dependencies. By using this informa-
tion and the adapter’s stored in the repository, type-based
adaptation can automate the adaptation process by deciding
when a adapters are needed and how they are to be applied.

More importantly, type-based adaptation can determine
when it is necessary to chain several existing wrappers to
effect an adaptation that is more powerful than any one ex-
isting wrapper can do by itself. This ability to chain wrap-
pers together greatly increases the power of the process and

requires many fewer wrappers to be written by the program-
mers. As we have mentioned before, we only have to define
rules on when two wrappers may be combined. In the sim-
plest case, this is the case one wrapper provides the interface
that can be used by another wrapper and hence, they may be
combined.

4. Related Work

Mockus, Fielding and Herbsleb present a case-study
about Open Source Software projects in [12]. They used
email archives of source code change history and Bugzilla
problem reports to analyze the overall community and de-
velopment process such as the code contribution, problem
reporting, code ownership, and code quality including de-
fect density in the final programs and problem resolution
capacity. However, they only used this data to compare
the open source development methods by looking at the
Apache and Mozilla projects with the traditional commer-
cial one. Our approach, however, focuses on the knowledge
surrounding multiple projects and to try to learn from these
projects.

Another approach that takes modification and problem
reports into account is presented by Fischer, Pinzger and
Gall in [3]. They use this data to analyze the evolution of
a given software project and to track and to identify hidden
relations between different features of the software system.
Unlike our approach, however, they only take a single soft-
ware project into account and do not try to identify relation-
ships between multiple different software projects.

Component rank was first inspired by the famous docu-
ment search engine Google [4, 13]. Google collects various
documents from the Internet, analyzes their link structures
among the documents, and computes the significance of
each document using similar algorithm as ours. For queries
of keywords from the users, Google returns the lists of doc-
uments containing the keywords in decrease order of their
significance.

Google mainly targets general documents such as HTML
and PDF, but it also contains source code of software. So
it could be used as the software component search. How-
ever Google generally returns less precise lists than the lists
made by the component rank. This is because Google does
not have any mechanism for the source code analysis such
as use-relation analysis and similarity check done in our
component rank computation.

5. Summary

In this paper, we have presented a novel idea that an-
alyzes the modification and bug report data of multiple
different projects. By analyzing this data, it is possible



to deduct knowledge used by the different projects that if
shared among the project can lead to improved software en-
gineering practices. A benefit that we have shown in this
paper, is that projects can benefit from other projects that
make use of the same or similar components.

By identifying projects that use the same component
implementation C; of a component C, it is possible to
share knowledge surrounding the component across mul-
tiple projects. For instance, if one of the projects using C;
uses an updated version of this component or replaces it
with another component providing the same kind of func-
tionality, this knowledge can be shared across projects.
Hence, it allows a component C; to be replaced with a su-
perior component C'; more quickly within a large number
of projects. Such kind of knowledge is especially of im-
portance when the component implementation C; no longer
fulfills the requirements of the project. In this case, it is
necessary to locate a substitute component ¢’ that is able
to meet the projects demands. As we have seen, using our
component rank system it is possible to determine the us-
ability and flexibility of different software components and
based on that knowledge to infer which component imple-
mentation C; should be used to replace the original compo-
nent C.

Another challenge that is typically encountered is that
a substitute component may not provide exactly the same
component as the original component used for a given
project. In such a case it is necessary for a given compo-
nent C; to be adapted in order to meet the requirements of a
given project (i.e., to provide the same interface as the origi-
nal component C;). Such adaptation, however, can be easily
accomplished using type-based adaptation. As we have ex-
plained, type-based adaptation allows the reuse of code that
has been implemented in order to adapt a substitute compo-
nent C; in order to meet the requirements of the originally
used component C;.

References

[1] J. Dinkelacker and P. Garg. Corporate Source: Applying
open source concepts to a corporate environment. In 1st
ICSE International Werkshop on Open Source Software En-
gineering, 2001.

[2] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progres-
sive Open Source. In Proceedings of the International Con-
ference on Software Engineering, Orlando, Florida, 2002.

[3] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE),
pages 90-99. IEEE, Nov. 2003.

[4] The Google website. ht t p: / / ww. googl e. com

[5] T. Gschwind. Automated adaptation of component inter-
faces with type based adaptation. Technical Report TUV-
1841-2003-14, Technische Universitat Wien, Apr. 2003.

[6] T. Gschwind. Type Based Adaptation: An adaptation ap-
proach for dynamic distributed systems. In Proceedings
of the 3rd International Workshop on Software Engineer-
ing and Middleware, volume 2596 of Lecture Notesin Com-
puter Science, pages 130-143. Springer-Verlag, 2003.

[7] T.J.Halloran, W. L. Scherlis, and J. R. Erenkrantz. Beyond
Code: Content management adn the open source develop-
ment portal. In 3rd ICSE International Workshop on Open
Source Software Engineering, 2003.

[8] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component Rank: Relative sig-
nificance rank for software component search. In Proceed-
ings of the 25th International Conference on Software Engi-
neering, pages 14-24, 2003.

[9] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic Categorization for Evolvable Software Archive.
In International Workshop on Principles of Software Evolu-
tion, pages 195-200, In conjunction with ESEC/FSE 2003,
Helsinki, Finland, 2003.

[10] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic Categorization Tool for Open Software Reposito-
ries. In Workshop on Open-Source in an Industrial Context,
In conjunction with OOPSLA 2003, Anaheim, CA, 2003.

[11] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. On
Automatic Categorization of Open Source Software. In 3rd
Workshop on Open Source Software Engineering, pages 79—
83, In conjunction with ICSE 2003, Portland, OR, 2003.

[12] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309-346, 2002.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Techni-
cal Report 1999-66, Stanford Digital Library Technologies,
Jan. 1998. http://dbpubs. stanford. edu/ pub/
1999- 66.

[14] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly,
1999.

[15] SourceForge.net. htt p: // sour cef or ge. net.



