
53

ARIES: Refactoring Support Tool for Code Clone
 Yoshiki Higo1 Toshihiro Kamiya2 Shinji Kusumoto1 Katsuro Inoue1

1Graduate School of Information Science and Technorogy, Osaka University
2PRESTO, Japan Science and Technology Agency

+81(06)6850-6571
 {y-higo,kamiya,kusumoto,inoue}@ist.osaka-u.ac.jp

ABSTRACT
In this paper, we explain our refactoring support tool Aries. Aries
characterizes code clones by several metrics, and suggests how to
remove them.

1. Introduction
It is generally said that code clone is one of the factors that make
software maintenance difficult. A code clone is a code fragment
that is identical or similar to another. If we modify a code
fragment and it has many code clones, it is necessary to consider
whether we have to modify each of its code clones. So, efficient
code clone detection and removal is necessary and important in
software development and maintenance.
In this paper, we describe refactoring support tool Aries. Aries
supports removing code clones from source code. Concretely,
Aries characterizes code clones by some metrics, and suggests
how to remove them. In other words, Aries tells the user which
code clones can be removed and how to remove them. So, the user
can concentrate on modifying source code, which leads software
development and maintenance to more effective ones.

2. Preliminaries
Here, we define some terminology regarding code clones. Next,
we briefly explain our code clone detection, a code clone detection
tool CCFinder[4].

2.1. Code Clone
A clone relation is defined as an equivalence relation (i.e.,
reflexive, transitive, and symmetric relation) on code fragments[4].
A clone relation holds between two code fragments if (and only if)
they are the same sequences. (Sequences are sometimes original
character strings, strings without white spaces, sequences of token
type, and transformed token sequences.) For a given clone
relation, a pair of code fragments is called a clone pair if the clone
relation holds between the fragments. An equivalence class of
clone relation is called a clone set. That is, a clone set is a

maximal set of code fragments in which a clone relation holds
between any pair of code fragments. A code fragment in a clone
set of a program is called a code clone or simply a clone.

2.2. Detecting Code Clone
CCFinder detects code clones both within files and across files
from programs to output the locations of the clone pairs on the
programs. The length of minimum code clone is set by the user in
advance. Clone detection of CCFinder is a process in which the
input is source files and the output is clone pairs. The process
consists of following four steps:
Step1: Lexical analysis: Each line of source files is divided into
tokens corresponding to a lexical rule of the programming
language. The tokens of all source files are concatenated into a
single token sequence, so that finding clones in multiple files is
performed in the same way as single file analysis.
Step2: Transformation: The token sequence is transformed, i.e.,
tokens are added, removed, or changed based on the
transformation rules that aim at regularization of identifiers and
identification of structures. Then, each identifier related to types,
variables, and constants is replaced with a special token. This
replacement makes code fragments with different variable names
clone pairs.
Step3: Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are detected as clone
pairs.
Step4: Formatting: Each location of clone pair is converted into a
position (line number) on the original source files.
CCFinder adopts suffix-tree algorithm, which is enable to analyze
the system of millions line scale in practical use time[4].

3. Refactoring for Code Clone

3.1. Extraction of Refactoring-Oriented Code
Clone
The removal of code clones is generally referred as refactoring[2]
or restructuring. The key idea of our method is to find a kind of
cohesive code fragment (like compound block or method bodies)
from the code clone fragments. Figure 1 shows an example. In this
figure, there are two code fragments A and B from a program, and
the code fragments with hatching are maximal clones between
them. In code fragment A, some data are assigned to list data
structure from the head successively. In code fragment B, they are
done so from the tail successively. The |for| blocks in A and B
have a common logic that handles a list data structure. There are,

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
3-WoSQ ‘05, May 17, 2005, St Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-122-8/05/0005…$5.00.

54

:
tail = getTail(head);
c = 100;
for(j = 0; j < c; j++)
{

tail->next = (struct List *)malloc(sizeof(List));
tail = (List *)tail->next;
tail->j = j;
tail->next = NULL;

}
tail = NULL;

:

:
tail = head;
for(i = 0; i < 10; i++)
{

tail->next = (struct List *)malloc(sizeof(List));
tail = (List *)tail->next;
tail->i = i;
tail->next = NULL;

}
a = i;

:

Code fragment A

Code fragment B

for($ = 0; $ < $; $++)
{

tail->next = (struct List *)malloc(sizeof(List));
tail = (List *)tail->next;
tail->$ = $;
tail->next = NULL;

}

Merged fragment

:
tail = getTail(head);
c = 100;
for(j = 0; j < c; j++)
{

tail->next = (struct List *)malloc(sizeof(List));
tail = (List *)tail->next;
tail->j = j;
tail->next = NULL;

}
tail = NULL;

:

:
tail = head;
for(i = 0; i < 10; i++)
{

tail->next = (struct List *)malloc(sizeof(List));
tail = (List *)tail->next;
tail->i = i;
tail->next = NULL;

}
a = i;

:

Code fragment A

Code fragment B

for($ = 0; $ < $; $++)
{

tail->next = (struct List *)malloc(sizeof(List));
tail = (List *)tail->next;
tail->$ = $;
tail->next = NULL;

}

Merged fragment

Figure1. Example of merging two code fragments

however, sentences before and after |for| block, that are not
necessarily related with the |for| block from semantic point of
view. Such semantically unrelated sentences often obstruct
refactoring. In other word, extracting only |for| block as a code
clone is more preferable from refactoring viewpoint in this
example.

This method was implemented as a filter for the output of
CCFinder. We named the filter CCShaper[3]. The extracting
process using CCShaper consists of the following three steps:
Step1: Detect clone pairs using CCFinder.
Step2: Provide syntax information (body of method, loop and so
on) to each block by parsing the source files where clone pair are
detected in Step1 and investigating the positions of blocks.
Step3: Extract structural blocks in the code clone using the
information of location of clone pairs and structural blocks.
Intuitively, structural block indicates the part of code clone that is
easy to move and merge.
CCShaper performs Steps 2 and 3. For example, CCShaper
extracts the following types of code clone as refactoring-oriented

code clones for Java language.
Declaration: class { }, interface { }
Method: method body, constructor, static initializer
Statement: if, for, while, do, switch, try, synchronized

3.2. Provision of Refactoring Pattern
CCShaper extracts the refactoring-oriented clones. Then, the user
has to decide how to remove the code clones.
The rest of this section describes a solution to this problem. We
have introduced some metrics to determine how to remove them.
Extracted clones are quantitatively characterized by using the
metrics which support the user how to remove them.

3.2.1. Refactoring for Code Clone Removal

We use existing refactoring patterns[2], especially “Extract
Method” and “Pull Up Method”, to remove code clones. “Extract
Method” means that a fragment of source code is extracted and
redefined as a new method[2]. Originally, this pattern is applied to
too long method or too complex part. Here, we use “Extract
Method” to extract code clone fragments as a common new
method. “Pull Up Method” means that the same methods defined
in child classes are pulled up to its parent class[2]. This pattern is
performed because of various reasons such as design pattern. If
two or more child classes which have a common parent class
include a clone method, pulling up such methods means clone
removal.

3.2.2. Code Clone Metrics for Determining
Refactoring Pattern

We attempt to identify which refactoring pattern is applicable to
each code clone, by measuring its characteristics. For example,
“Extract Method” is the extraction of a code fragment, so it is
desirable that the target fragment has low coupling with the other
surrounding fragments in the method, in other words, the variables
defined outside it aren’t used (referred and assigned) in it. If such
variables are used, it is necessary to provide them as parameters
for the new method. Therefore, we measure the amount of such
variables.
On the other hand, “Pull Up Method” means moving identical
methods in child classes to the parent class, so it is necessary that
the child classes have common parent class. Therefore, we
measure the position and distance of clones in the class hierarchy.
The above characterizing makes it possible to determine how each
clone can be removed. In order to make the decision, we introduce
three metrics.
For the variables which are defined outside the code clone
fragment, we define two metrics NRV(S)(the Number of Referred
Variables), and NAV(S)(the Number of Assigned Variables). Here,
we assume that clone set S includes code fragments f1, f2, … ,fn.
Code fragment fi refers si-th variables which are defined outside it,
and assigns to ti-th variables which are also defined outside it.
Then,

∑
=

=
n

i
si

n
SNRV

1

1)(, ∑
=

=
n

i
ti

n
SNAV

1

1)(,

Intuitively, NRV(S) represents the average of the number of
externally defined variables referred in the fragments of the clone

55

set S. Additionally; NAV(S) represents the average of the number
of assigned ones.

For the dispersion in class hierarchy, we defined a metric
DCH(S)(the Dispersion of Class Hierarchy). As described above,
the clone set S includes code fragments f1, f2, … ,fn. Ci denotes the
class which includes code fragment fi.

Then, if the classes C1, C2, … ,Cn have several common parent
classes, Cp is defined as the class which lays the lowest position in
class hierarchy among the parent classes C1, C2, … ,Cn. Also,
D(Ck, Ch) represents the distance between class Ck and class Ch in
the class hierarchy.

),(,),,2(),,1(max()(CpCnDCpCDCpCDSDCH Λ=

The value of DCH(S) also becomes larger as the degree of the
dispersion of its clone set S becomes large. If all code fragments
of a clone set S are in the same class, the value of its DCH(S) is
set as 0. If all code fragment of a clone set are in a class and its
direct child classes, the value of its DCH(S) is set as 1.
Exceptionally, if classes which have some code fragment of a
clone set S don’t have common parent class, the value of its
DCH(S) is set as -1. In detail, this metric is measured for only the
class hierarchy where the target software exists because it is
unrealistic that the user pulls up some methods which are defined
in the target software classes to library classes like JDK.
We define the upper and lower limits of these metrics for not only
“Extract Method” and “Pull Up Method”, but also “Form
Template Method”, “Parameterize Method” and so on. When the
metric values of a clone set are within the limits, the
corresponding refactoring pattern is applicable to the clone set.

4. Refactoring Support Tool: Aries

4.1. Overview
Based on the proposed method, we have implemented a
refactoring support tool named Aries with Java language. For
detection of code clones, Aries internally calls CCShaper[3].
Figure 2 shows snapshots of Aries with the name of the windows.
Intuitively, the user specifies the distinctive clone set on the Main
Window. Then, he/she analyzes the details of it on the Clone Set
Viewer.

4.2. Function
The user mainly uses the Metric Graph View to identify, filter, and
select clone sets.

4.2.1. Metric Graph View

The Metric Graph View uses existing metrics, LEN(S), POP(S),
and DFL(S) [5] in addition to three metrics defined in Section
3.2.2. The existing metrics are defined as follows:
LEN(S): LEN(S) for clone set S is the average length of code
fragment (the number of tokens) in S.

Metric Graph View NRV/NAV Selector Clone Set List

Clone Unit Selector

Metric Graph View NRV/NAV Selector Clone Set List

Clone Unit Selector
[Main Window]

Code fragment list Metrics value panel

Source code view NRV/NAV List

Code fragment list Metrics value panel

Source code view NRV/NAV List
[Clone Set Viewer]

Figure2. Snapshots of Aries

POP(S): POP(S) is the number of code fragments of a given clone
set S. A high value of POP(S) means that similar code fragments
of S appear in many places.
DFL(S): DFL(S) indicates an estimation of how many tokens
would be removed from source files when the code fragments in a
clone set S are reconstructed. This reconstruction is considered as
the simplest case that all code fragments of S are replaced with
caller statements of a new identical routine (function, method,
template function, or so). Before the reconstruction,
LEN(S)xPOP(S) tokens are occupied in the source files. In the
newly reconstructed source files, they occupy kxPOP(S) tokens
(let k be the number of tokens for one caller statement) for caller
statements and LEN(S) tokens for callee routine.

56

LEN POP DFL NRV NSV DCH

S1

S2

LEN POP DFL NRV NSV DCH

S1

S2

[Before selection]

LEN POP DFL NRV NSV DCH

S1

S2

LEN POP DFL NRV NSV DCH

S1

S2

[After selection]

Figure3. Metric Graph

Here, we explain the Metric Gragh View using an example shown
in Figure 3. In the Metric Graph View, each metric has a parallel
coordinate axe. Upper and lower limits are set per each metric.
The hatching part is between upper and lower limits of each
metric. A polygonal line is drawn per each clone set. In this
example, values for the clone sets S1 and S2 are drawn. In the top
graph, all metric values of S1 and S2 are between upper and lower
limits. So, these two clone sets are said to be in selected state. In
the bottom graph, the value of S2 is bigger than the upper limit of
DCH, which means S2 is in unselected state. The Metric Graph
View enables the user to select arbitrary clone set by changing
upper and lower limits of each metric. And, the result of selection
is reflected on the Clone Set List.

NRV/NAV Selector: In the NRV/NAV Selector, Figure 2, the
user can decide which types of variables are counted as metrics
NRV(S) and NAV(S). Currently, the variables are selected from
the following six types, field members of its class and parent
classes and interfaces, “this” variable, “super” variable, and local
variables.
For example, if the user is going to perform “Extract Method”
within a class, it is not necessary to count all types of variables
except local ones because these variables can be accessed
anywhere in the same class. On the other hand, if the user is going
to perform refactoring that crosses over two or more classes like
“Pull Up Method”, these ones should be counted.

Clone Unit Selector: In the Clone Unit Selector, the user can
decide which types of clone unit are shown in the Metric Graph
View. Currently, twelve types of clone units exist as described in

Section 3.1. For example, if the user is going to perform “Pull Up
Method”, he/she should check only ‘method’ unit because the
target of this pattern is the existing methods.

Clone Set List: The Clone Set List shows all clone sets which
are filtered in the Metric Graph View. And the list can sort clone
sets in ascending and descending sequence of each metric value.
Double-clicking a clone set on this view is a trigger to run the
Clone Set Viewer as shown in Figure 4.2. It shows more detail
information of the selected clone set.

Metrics Value Panel: The Metrics Value Panel shows the
values of all metrics of clone set selected in the Main Window.

Code Fragment List: The Code Fragment List shows the list
of all code fragments included in the selected clone set. Each
element of the list has three kinds of information, a path to each
file which includes the code clone fragment, the location of the
code clone in the file(the number of beginning line, beginning
column, end line and end column), and the number of token
included in the code clone fragment.

Source Code View: The Source Code View works
cooperatively with the Code Fragment List. The user can obtain
the actual source code corresponding to the code clone fragment
selected in the Code Fragment List. The fragment including the
clones is emphatically displayed.

NRV/NAV List: The NRV/NAV List shows the list of all
variables which are used and defined externally in the code
fragment which is selected in the Code Fragment List. Each
element of this list has three kinds of information, the name of its
variable, the type of its variable and the count of used.

4.3. Case Study
We have applied Aries to Ant[1], which is an open source
program. We set 30 tokens as the minimum length of code clone
and got 154 clone sets. Then, by using the proposed metrics, we
identified clone sets that can be refactored by “Extract Method”
or “Pull Up Method”.
As the results, 52 clone sets could be merged by “Extract
Method” and 12 ones could be merged by “Pull Up Method”,
respectively.

[1] Ant, |http://ant.apache.org|, 2003.
[2] M. Fowler, Refactoring: improving the design of existing
code, Addison Wesley, 1999.
[3] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K. Inoue,
On software maintenance process improvement based on code
clone analysis, Proc. 4th International Conference on Product
Focused Software Process Improvement, pp.185-197,
Rovaniemi, Finland, Dec. 2002.
[4] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A
multi-linguistic token-based code clone detection system for
large scale source code IEEE Transactions on Software
Engineering, vol.28, no.7, pp.654-670, Jul. 2002.
[5] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini:
Maintenance Support Environment Based on Code Clone
Analysis, 8th International Symposium on Software Metrics,
pp.67-76, Ottawa, Canada, June, 2002.

