
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

アスペクトマイニングを自動的に行うツールの提案

Livieri　 Simone† 石尾 隆† 楠本 真二† 井上 克郎†

† 大阪大学 大学院情報科学研究科 コンピュータサイエンス専攻 〒 560-8531 豊中市待兼山町 1-3
E-mail: †{simone,t-isio,kusumoto,inoue}@ist.osaka-u.ac.jp

あらまし ソフトウェアは，その規模が増大し，より複雑なものとなってきている．ソフトウェアが複雑化するに従っ

て，保守性，モジュール性が悪化することから，これらの品質を改善するための変更作業がしばしば行われている．

これに伴って，アスペクト指向プログラミングへの注目も高まっており，既存のシステムをアスペクト指向設計に改

変する作業も増加している．このような問題に対して，アスペクトマイニングと呼ばれる，横断的関心事の候補をソ

フトウェア中から発見し，リファクタリングを支援するための手法が研究されている．本稿では，アスペクトマイニ

ングを自動化する試験的な手法について述べる．

キーワード アスペクト,アスペクトマイニング,アスペクト指向プログラミング,分析

Planning an Automated Aspect Mining Tool

Simone LIVIERI†, Takashi ISHIO†, Shinji KUSUMOTO†, and Katsuro INOUE†

† Graduate School of Information Science and Technology, Osaka University, 1-3, Machikaneyama-cho,
Toyonaka, Osaka, 560-8531, Japan

E-mail: †{simone,t-isio,kusumoto,inoue}@ist.osaka-u.ac.jp

Abstract Software systems are growing in size and complexity. Increased complexity often leads to decresed

mainainability and bad modularity, and re-engineering tasks is often performed in order to increase the key qualities

of the system. With the incentive of a growing attention to aspect-oriented programming, the efforts to devise

new techniques for refactoring legacy system into an aspect-oriented design have multiplied. Aspect mining tries to

identify possible cross-cutting concerns in software systems and thus support this kind of refactoring. In this paper,

we present a tentative approach to automated aspect mining analysis aiming at finding cross-cutting concerns that

can be easily refactored to aspect-oriented artifacts.

Key words Aspect, aspect mining, aspect-oriented programming, analysis

1. Introduction

As software systems grow in size, they grow in complexity.

Increasing complexity often leads to decreased readability

and maintainability, and to bad modularity. Decomposing

large systems into small parts, more easy to manage, compre-

hend and maintain, is what developers community currently

do; but, while some behaviors of the systems can be easily

decomposed and isolated, some other ones, by their very na-

ture, are not: error-handling, logging, and tracing are typical

examples of intrinsically cross-cutting concerns [1] whose im-

plementing code exists in a redundant way, scattered across

the code base.

Aspect-Oriented Programming (AOP) [2] aims at easing the

modularization of such complex concerns. While retaining

the benefits of the Object-Oriented approach, AOP intends

to free the developer from the so-called Tyranny of the Dom-

inant Decomposition: with the traditional programming lan-

guages, a program can be modularized in only one way at a

time, and the many kinds of concerns that do not align with

that modularization end up scattered across many modules

and tangled with one another.

Since its inception in the late 90s, AOP has gained relevant

support and attracted the attention of research community

and a lot of different approaches that permit aspect-oriented

software development have been developed; among them, the

most mentioned are AspectJ [3], developed by the same peo-

ple that coined the term Aspet-Oriented Programming [2],

HyperJ [4], an offspring of subject-oriented programming [5],

and AspectWerkz [6].

The increased attention also raised the question about how

AOP can aid the re-engineering of legacy systems to improve

their key quality attributes, like evolvability and reusability:

tangled code implementing a specific concern has to be found

and isolated and thereafter extracted into a modular artifact.

These tasks are called aspect-mining and aspect refactoring

respectively.

Our approach to automatic aspect mining exploits meth-

— 1 —



ods aggregation for narrowing the search space and speed-up

the mining process.

Section 2. presents an overview of the current status of

aspect mining research. Section 3. describes our approach.

Section 4. discusses conclusions and open issues.

2. Aspect Mining

Aspect-Mining is the task of searching for candidate as-

pects in existing system and isolating them into modular

artifacts. To date, a number of research groups are working

on this topic, and a number of tools and methods for aspect

mining have been proposed.

One of the first effort in identifying cross-cutting con-

cerns was the Aspect Mining Tool (AMT) of Hannemann

and Kiczales [7]. AMT supports both text and type-based

analysis and can be extended with other types of analysis.

Because each of these analyzes has benefits and drawbacks,

AMT has been set as a multi-modal analysis tool. The tool

allows user defined queries based on type usage and regular

expressions, displaying matching lines in specific colours in

the source code.

FEAT [8] utilizes concern graphs to represent and docu-

ment cross-cutting concerns. They are based on localizing

an abstracted representation of the program elements con-

tributing to the implementation of the concern. The struc-

ture of a concern is stored in a concern graph and, at the

same time, the relationships between the concern’s elements,

such as classes, methods and fields are documented. FEAT

supports the analysis of the dependencies between a concern

and the rest of the program and allows the viewing of the

source code, in a Java system, associated to a concern graph

element. For concern identification, FEAT supports the use

of structural queries and integrated lexical searches. The

tool displays a concern graph as a collection of trees with

respect to certain convention, e.g. the root of each tree is a

class that contributes to the implementation of the concern.

FEAT is also implemented as an Eclipse plug-in.

PRISM [9] is a framework for aspect mining based on the

assumption that aspects can be defined in terms of structures

in the source code. It uses two extensible concepts to rep-

resent aspects in software systems. The first concept is the

aspect fingerprint: an aspect fingerprint abstracts a pattern,

a structure in the source code, which can be used to locate

aspects. The second concept is an aspect footprint: an aspect

footprint is an abstraction of the location of a particular as-

pect fingerprint. The aspect mining is performed selecting

a collection of aspect fingerprints and walking through the

source code decomposition units generating a collection of

aspect footprint. PRISM exists also as a plug-in for Eclipse:

this specific extension of the framework implements a decom-

position based on AMTEX an extension to AMT.

DynAMiT [10] is a dynamic aspect mining approach based

on program traces that are generated during the execution

of a program. These traces are investigated for recurring

execution relations that describes certain classes of aspects

of the software. The main classes considered are inside-

aspects, when the call of a method m1 occurs always inside

a call of a method m2, and outside-aspects, when the call

of a method m1 occurs always before (or after) the call of a

method m2. Furthermore they distinguish subclasses such as

inside-methods that can be first-in or last-in inside a specific

method call, and outside-method than can be after or before

a specific method call.

Ophir [11] identifies initial refactoring candidates using a

control-based comparison, followed by a filtering based on

data dependence information. The initial identifications

phase uses Program Dependence Graphs (PDG) to detect

code clones that are successively filtered in order to elimi-

nate undesirable refactoring candidates. The output of the

filter phase is a set of candidate pairs, where each member

of a pair is a from a different method, that are coalesced into

sets of similar candidates.

While the tools currently available for aspect mining pro-

vide support for the process of identification of aspects in

existing software, each approach suffers from one or more of

the following drawbacks:
• users are required to have considerable amount of

knowledge about the program being analyzed;
• search seeds need to be specified as an explicit input

to the analysis;
• the identification and filtering phase is not fully auto-

matic;
• the identification analysis can miss desiderable as-

pects;
• the analysis can take a large amount of time;

The main downfall of lexical searches is the requirement of

a user to input a seed. Formulating a significative seed is a

non-trivial task that requires the user to have great under-

standing of the code base. Even is a good seed is formed, the

fragility of the lexical search limits its effectiveness. Lexical

search is just a look for copy of the seed, while often dupli-

cate code means, methods, statements or group of statements

with the same semantics.

Exploratory tools can be of great help in aiding the identi-

fication of the aspects candidate and system comprehension,

but the main drawback is that they require a lot of time to

complete the identification due to the necessary interaction

with the user.

Exhaustive approaches like [11] have the drawback or re-

quiring a lot of time to complete.

In this paper we present an aspect mining analysis with

the following properties:
• desiderable candidates for refactoring are identified

automatically
• no input from the user is required

Our approach to automatic aspect mining exploits code clone

analysis of portion of the code base that could contain aspect

candidates. The next section presents some insights of the

proposed technique.

3. Automated Aspect Mining

Detection of aspect candidates can be conducted in two

ways: in a top-down approach, where the code that imple-

ments well-known aspects is searched, and in a bottom-up

way, where symptoms of the lack of proper aspect support

in the language used are searched. More specifically, these

symptoms are code scattering and code tangling. Suitable

techniques for identifying such symptoms may be clone de-

tection (for scattering) or slicing (for untangling functional-

ity).

Detecting aspect candidates can mean detecting very short

code clones: for example, the code implementing the logging

— 2 —



concern is often a simple line of code inserted in many dif-

ferent locations of the source code. Different techniques for

code clone detections have been proposed, each with its ad-

vantages and disadvantages: if applied to large code bases,

more precise detection methods, like AST or PDG based

ones, can be slow, and fast detection methods, like token

based ones [12], can miss significative clones（注1）. It is nat-

ural to think that devising a way for narrowing the search

space will be of sure benefit to the code clone analysis. In our

approach we narrow the search space through the indentifi-

cation of so-called cross-cut unit set that are a subsets of the

set containing all the methods of the code base containing

cross-cutting code.

The proposed automated aspect mining analysis is based

on AspectJ. In AspectJ there are several type of advice, such

as: before and after. This advice can be execute at a specified

joint-point. Joint-points are the points that one can specify

within a program to execute a code segment, points such as

the beginning of a method or before an access to a field.

What we pursue is to effectively discover aspect candidates

that can be easily refactored into before aspects at the be-

ginning of a method.

Our algorithm consists of four phases:

（ 1） Construct cross-cut unit sets.

（ 2） Identify code clones (token based).

（ 3） Prune the set of code clones (constraint based).

（ 4） Classify the aspect candidates (dependence based).

3. 1 Constructing cross-cut unit sets

We call cross-cut unit a method or a class containing code

implementing some cross-cutting concern. Scattered code is

called from different places throughout the software system,

and it is likely to have a very high value of the fan-in metric,

defined in [13] as:

“[...]the number of distinct method bodies that can

invoke [a method] m[...]”

The analysis is made in three consecutive steps (the first

two steps are taken from [13]):

Step 1 Automatic computation of the fan-in metric for all

the methods in the target code base.

Step 2 Filtering of the result of the first step:
• Restrict the set of methods to those having a fan-in

above a certain threshold.
• Remove accessor methods.
• Remove known utility methods

Step 3 For each method m in the restricted set compute

the cross-cut units set CX
m whose elements are all the meth-

ods containing a call to m. A method can belong to more

than a cross-cut unit: this is absolutely not a problem be-

cause, as we will see soon, it just means that that method

may contain more than one aspect candidate.

Figure 1 outlines a small example to illustrate this step.

The methods m1, m2 invoke method mX
1 , method m3 invokes

methods mX
1 and mX

2 , and method m4 invokes method mX
2 .

In this scenario the methods m1, m2 and m3 belongs to the

same cross-cut unit set, similarly the methods m3 and m4

are in the same set.

（注1）：Token based methods for code detection, detect clones with a

minimum length of a given number of tokens: a small length value will

result in too many reported clones, making them useless.

mX
2mX

1

m1 m2 m3 m4

図 1 Cross-cut unit sets

3. 2 Identifying code clones

Scattered code can span more than the call site of a high

fan-in method, thus it is reasonable to thoroughly conduct

a code clone analysis on each of the set CX
mX . As stated

before, code clone analysis can be performed in several way.

For our approach we decided that, for comparison purpose,

two techniques will be evaluated:
• the first will be token based and will rely on the use

of the tool CCFinder;
• the second will use a Program Dependence Graph and

will borrow, and eventually tailor to our specific needs, the

algorithm outlined in [14].

The identification process can be split in 2 steps:

Step 1 Let n be the total number of cross-cut unit sets.

For each of the n cross-cut unit set CX
mX

i
(i = 0, 1, . . . , n),

perform a code clone analysis with targets all the methods

m ∈ CX
mX

i
. The result of this step is the set CCLONE

m,mX of code

clones contained in the body of the method m;

Step 2 Compute the complete set of code clones for each

method m′ as:

CCLONE
m =

n∪
i=0

CCLONE
m,mX

i

3. 3 Pruning the clone sets

The result of the preceding step are nm code clone sets

CCLONE
m with nm being the number of methods in the tar-

get code base. We can expect that a code clone set may

contain code clones that are not cross-cut by any of the mX
i

and, for this reason, of no interest to us. Hence, from each of

the nm code clone set CCLONE
m we remove those code clones

that don’t comprise a call of a method mX
i for some i in

{0, 1, . . . , n}.
3. 4 Classifying the aspect candidates

Aspect candidates, that is, code clones that don’t present

data dependencies with the surrounding code are obviously

more easy to refactor than code that has data dependencies.

Candidates can then be ranked proportionally to the number

of dependencies, with rank 0 being the highest rank.

More specifically, data dependencies can be of two kinds:
• dependencies to some data outside the clone (outgoing-

dependencies);
• dependencies from some data outside the clone

(incoming-dependencies).

Outgoing dependencies are less strict than incoming de-

pendencies, and this can be expressed assigning a weight wO

to each outgoing dependency, and a weight wI to each in-

coming dependency, with wI À wO. Let nI
c and nO

c be the

number of incoming dependencies and the number of outgo-

ing dependencies respectively of a code clone c, the rank r of

— 3 —



c can be computed as:

r(c) = nI
cwI + nO

c wO

The result of this step is an ordered list of code clones

c0, c1, . . . cn with r(c0) <= r(c1) <= . . . <= r(cn)

Clones at the head of the list are considered better candi-

dates for an aspect-oriented refactoring.

4. Conclusion

This short paper presented a tentative approach at au-

tomating the mining of aspects in existing software systems.

While we are confident of the soundness of the approach,

at the time of writing there are no experimental data for

validating it. Some questions can be answered only after

thoroughly experimentation:
• what is the percentage of false positives?
• what is the percentage of false negatives?
• what are the performance of the approach in terms of

time and memory usage?

文 献
[1] P.L. Tarr, H. Ossher, W.H. Harrison, and S.M.S. Jr., “N

degrees of separation: Multi-dimensional separation of con-

cerns,” Proceedings of the International Conference on Soft-

ware Engineering, pp.107–119, 1999.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.M. Loingtier, and J. Irwin, “Aspect-oriented

programming,” Proceedings of the European Conference on

Object-Oriented Programming, ed. M. Akşit and S. Mat-

suoka, Berlin, Heidelberg, and New York, pp.220–242,

Springer-Verlag, 1997.

[3] AspectJ-Team, “The aspectj programming guide.”

[4] P. Tarr, H. Ossher, V. Kruskal, and M. Kaplan, “The hyperj

homepage.” http://www.alphaworks.ibm.com/tech/hyperj.

[5] W. Harrison and H. Ossher, “Subject-oriented program-

ming: a critique of pure objects,” Proceedings of the Confer-

ence on Object Oriented Programming Systems Languages

and Applications, pp.411–428, 1993.

[6] J. Bonzr and A. Vasseur, “The aspectwerkz homepage.”

http://aspectwerkz.codehaus.org.

[7] J. Hannemann and G. Kiczales, “Overcoming the prevalent

decomposition of legacy code,” Proceedings of the Work-

shop on Advanced Separation of Concerns, 2001.

[8] M.P. Robillard and G.C. Murphy, “Concern graphs: find-

ing and describing concerns using structural program de-

pendencies,” Proceedings of the International Conference

on Software Engineering.

[9] C. Zhang and H.A. Jacobsen, “A prism for research in

software modularization through aspect mining.” Techni-

cal Communications, Middleware System Research Group,

University of Toronto, September 2003.

[10] S. Breu and J. Krinke, “Aspect mining using event traces,”

Proceedings of the 19th Conference on Automated Software

Engineering, IEEE Press, 2004.

[11] D. Shepherd, L. Pollock, and E. Gibson, “Design and eval-

uation of an automated aspect mining tool,” Proceeding of

the International Conference on Software Engineering Re-

search and Practice, 2004.

[12] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A

multi-linguistic token-based code clone detection system for

large scale source code,” IEEE Transactions on Software

Engineering, vol.28, pp.654–670, July 2002.

[13] M. Marin, A.v. Deursen, and L. Moonen, “Identifying

aspects using fan-in analysis,” Proceedings of the 11th

Working Conference on Reverse Engineering (WCRE2004).,

pp.132–141, IEEE Computer Society, 2004.

[14] J. Krinke, “Identifying similar code with program depen-

dence graphs,” Proc. Eigth Working Conference on Reverse

Engineering, pp.301–309, 2001.

— 4 —


