
CoxR: Open Source Development History Search System

Makoto Matsushita, Kei Sasaki and Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

1-3, Machikaneyama-cho, Toyonaka-shi, Osaka, 560-8351 Japan
{matusita,k-sasaki,inoue}@ist.osaka-u.ac.jp

Abstract

In typical open source software development, develop-
ers use revision control systems for product manage-
ment, mailing list systems for human communications,
and bug tracking systems for process management. All
of these systems store development histories of the prod-
ucts that show significant information of problems dur-
ing the development.However, it would be a hard job
to retrieve useful information related to a current prob-
lem faced by developers. In this paper, we describe a
software development supporting system CoxR that is
capable of crawling the development histories. CoxR
creates software development information web which
consists of developers, emails, and program deltas, and
provides an interface to search, navigate, browse, and
retrieve past development results. Through a case study,
we confirmed that CoxR helps developers to solve their
problems by making it easier to search development his-
tory.

1. Introduction

In a open source software development, develop-
ers all around the world use revision control system for
managing their products, mailing lists for communica-
tion among developers, and bug tracking system that
manages what issues are running. These systems store
development histories of the products that the develop-
ers developed, and the transmitted e-mails at the indi-
vidual archive. The archive information include much
information that is useful to future development. De-
velopers can obtain a deeper understanding about for-
mer development ”task and knowledge” by reviewing
an archive in the software development, and it is ex-
pectable that they help developers. In addition, if new
developer wants to use or develop the existing system,
he/she must refer the history information or question
for Developer’s community. Stated another way, we as-

sume that developers have “knowledge” and the knowl-
edge is stored to repositories mentioned above. How-
ever, as those information become immense volumes, it
is hard to retrieve the information from the stored infor-
mation that developers want.

So, we purpose the CoxR[9] that extracts informa-
tion from existing repositories by integrating supporting
system for source code modification (CoDS)[11] and
software products cross reference system(SPxR)[7].
Also, we applied this system to real data in open source
development for applicable experimentation. Next, we
implement CoxR as a web system as CoDS and SPxR
does, and evaluate with actual data from existing open-
source software development. As a result, we confirm
that CoxR makes developers possible to get useful in-
formation from archives by web navigation.

In section 2, we will briefly overview the CoxR. In
section 3, we will present the implementation of CoxR.
In section 4 we also show an example of using CoxR.
In section 5 we discuss related works of CoxR, and fi-
nally we will conclude our works with a few remarks in
section 6.

2. CoxR

In this section, we briefly explain the software de-
velopment supporting system CoxR. CoxR aims at re-
alizing the following five functions.

(1) Search by code fragment they have; similar codes
and its modification histories in repositories could
be found, and it would be useful for future devel-
opment.

(2) Search by file name or directory name; highly re-
lated files could be found.

(3) Search by keywords; information that is associated
with the keyword could be found.

(4) Navigate development histories web; information
structures are shown as it is, and tracking infor-
mation easily just like web navigation.

(5) Search additional information again using search
results.

2.1. Knowledge

We define the word “knowledge” that is develop-
ment information accumulated to the repositories, such
as revision control system CVS, email archive, and bug-
tracking system GNATS. The knowledge consists of
“intention” (the reason why such development is oc-
curred), “task” (actual processes of development), and
“entity” (knowledge attributes for identification).

The “knowledge” is extracted from the archive con-
tents; “intension” comes from each CVS commitlog,
each email subject and body, and each GNATS entry’s
attributes (category, type of bug, etc), “Task” comes
from each CVS code delta, and each GNATS revision
histories and PR status, and “entity” comes from each
CVS filename, revision number and date, each email
message-ID and date, and each GNATS filename, bug-
ID and date.

Developer A

Developer C

Developer B

Subsystem A

Subsystem A

Subsystem A

1

2

3

4

Developer A

Developer tree

Subsystem A

Subsystem A

3.1

3.2

Developer B

Developer C

A

B

C

C A

B

Developer group

Subsystem A

A,B,C

Figure 1. development process on subsystem
A

2.2. Repositories Analysis

In this section, we explain how to design new sup-
porting system extending CoxR.

We define three analysis patterns as follows. We
have realized to extract “developer history” of former
development in the CoxR. We use these history infor-
mation to analyze former development.

Process Analysis. We analyze the tree of developer
history. Does the group of developers develop the sys-
tem in similar development process?

• Building up developer tree
We analyze who are often development group to-
gether from development history. We assume same
development member develop together in some
project. We analyze on a root directory-to-root di-
rectory basis. Then, we consider the groups form
tree of the developers. an example shows fig.1.
Three developers develop subsystem A in the order
as indicated fig.1. Then, developer tree and group
became as indicated. And, we assign developers to
past development by past development history.

• Predicting future process
We predict future development process statisti-
cally, then using the prediction data, we know who
develops in a special project.

Topic Analysis. We analyze E-mail and commit log.
Who send the topic about “discussion X” ? What does
“developer Y” write in the mail and Commit log?

• Automatic classification
We decide keyword sets at each topics. We sort
keywords into each topics. Then, we analyze who
transmitted what topics. we sort developer groups
by each topic.

• Extract discusser
We call graph of mails among developers “thread”.
We search E-mail archive by using some anima-
tor of a discussion’s E-mail address in same mail-
thread. Developers often develop in special field.
So, we think that developers which discussed ac-
tivity have a high probability that they have related
discussion previously. Therefore, we think user
can get related topics by such develop discusser.

Role Analysis. How do developers develop the sys-
tem? How do they share system development?

• Using bug tracking system
When we analyze the tree of developer history, we
use Bug tracking system in addition to CVS and
E-mail archive. Bug tracking system keep track of
individual request for changes. To analyze request,
we know who completed the modification request?
and What the developer modified ?

• Using analysis results
Using described previously analysis method, we
consider developer role in each project history.

2.3. System Structure

CoxR consists of CoDS module, SPxR mod-
ule and main module.(fig.2) User can use query
word as input data.In CoDS module, User can search
similar source code.(1) In SPxR module, user can
search useful history information from CVS and E-mail
archive.(2),(3),(4) And, CoxR main is interface which
connects previously cited modules and developer. User
use search results as next query word.(5)

CoxR(Web Server)CoxR user

Related Files /Data

E-mail ArchiveCVS Repository

Query Word

Search Result

SPxRCoDS

Sender name

Time

Topics

Source code search

Query Word = Source code

Keyword, Time

Commit log

File name

Developer name

File name

Keyword

Developer name

Time

Commit log

Fusion info Create tool

Lexical analysis tool

Token compare tool

CVS Info DB Fusion info DB E-mail Info DB

CVS info Create tool E-mail info Create toolDB Create toolCode DB

CGI-Main

Source code

Search result

Token

Similarity

Developer name

Time

File name

Data Display Record System

Search Result

File name

Developer name

Time

Figure 2. CoxR overview

3. CoxR Implementation

3.1. Design Policy

Web interface It is most effective approach that creat-
ing our proprietary tool.

Depend on the user Every user may want different
knowledge or task. We can’t decide analyzing re-
sult to each user. So, our system gives dynamic re-
sult from each knowledge and each task which user
wants, and user must judge dynamic result which
user wants.

3.2. System Structure

the system consists of three modules. the mod-
ules are “Analysis”, ”Database” and “System Control”
as follows.

• Analysis module
We handle each analysis in this module. We an-
alyzes about developer history information, using
CoxR database and Bug tracking system database.

• Database module
After described three analysis, we store result data.

Database consists “Process database”, “Topic
database’ and “Role database’. Process database
is stored “what group developed what product?”,
Topic database is stored “who have what knowl-
edge?”, and Developer database is stored “Who
has what role in each project?”. these database re-
turn the search result to database query of system
control module.

• System control module
We implemented system control by GUI interface,
and accept search requests from user. This mod-
ule passes search requests to Database module as
database query. After database search, GUI indi-
cates Search result from database. User can use
the result as next search request.

3.3. Search strategy

We can use this system to break the ice of devel-
opment problem. First, To search CoxR, we can sight
valuable development history about problem which user
face. Secondly, to use search result of CoxR to this
system, we think user can understand detailed knowl-
edge and task about the development. User can choice
every search results of CoxR as next query word to
this system. To use such information, user can obtain
knowledge and task of development group from vari-
ous sources, and topic about similar development which
same development and developer involved in.

4. Example

 if (i != 0)
 error("Permission denied, please try again.");
 password = read_passphrase(prompt, 0);
 packet_start(SSH_CMSG_AUTH_PASSWORD);
 packet_put_string(password, strlen(password));
 memset(password, 0, strlen(password));
 xfree(password); ¡¡ ¡¡
 packet_send();
 packet_write_wait();

Figure 3. Input Source Code

Make password attacks based on traffic
analysis harder by requiring that"non-
echoed" characters are still echoed
back in a null packet, as well as pad
passwords sent to not give hints to the
 length otherwise.

Figure 4. Commit Log

This section shows usage example of CoxR.

 error("Permission denied, please try again.");
 password = read_passphrase(prompt, 0);
 packet_start(SSH_CMSG_AUTH_PASSWORD);
 ssh_put_password(response);
 * memset(password, 0, strlen(password));
 xfree(password); ¡¡ ¡¡
 packet_send();
 packet_write_wait();

Figure 5. Similar source code

4.1. Using FreeBSD as an example data

We gather the development data from FreeBSD,
and create pseudo software development environment.
Actually, following FreeBSD’s data is used:

• CVS repository
Fully duplicate FreeBSD CVS repository (51379
files, total 511054 revisions).

• Email archive
Duplicate email archives as of year 2001, that in-
cludes 49736 emails.

4.2. Searching Data

Assume that a developer maintains OpenSSH that
is bundled with FreeBSD core system. At some time,
a vulnerability is found that while password is sent via
socket, password length is also sent; if attacker tried to
sneak, it is easily unveiled the actual password length.
The developer tried to fix the vulnerability with CoxR
— the starting point is a code fragment that may have a
vulnerability, shown as figure 3.

A developer uses CoxR to search similar code
in repositories. Figure 6 is a search result. There are
several candidates to look, but it seems that the file ssh-
connection.1 revision 1.8 (figure 5, and its commitlog
is figure 4) is a good candidate for further investigation
since its commit log denotes “pad passwords sent to
not give hints to the length.” and it is very similar to
current problem. However, the deltas for this revision
only suggests that yet another function should be used
(packet_put_string(response_stren(response)
to ssh_put_password(response))
but no description about the new function
ssh_put_password().

So next will be a related information search. There
are several approaches for that:

• by developers name (here, “green”)

• by time (here “2001/03/20 02:06:40)

• by email related to the revision (here, revision 1.8)

• by keyword “openssh”

Figure 6. Search result

It would be easy to search all four search, just clicking
a link associated with a name, time, revision, and put a
keyword to the textbox. In this case, searching by time
makes a good result; sshconnection.c is modified by the
same time (see figure 9 and 10), and it has the function
ssh_put_password()’s body (figure 8).

4.3. Discussion

In the example above, a developer is easily retrieve
a key function to fix the vulnerability, starting with just
a code fragment. Even though there are some try-and-
error processes, it is simple and no worries what should
search next.

However, there are some problems (maybe an open
problem) in CoxR. For example, “keyword search” ap-
proach is highly depends on the contents of commit-
log and email, it may not work iff S/N ratio is too low.
Search results may have some noises (not the all infor-
mation developer wants), so searching iteration process
may lead developers to the wrong direction, and they
will get no result. There are some rooms to improve
keyword retrieval from the archive.

Figure 7. Code delta

void
 ssh_put_password(char *password)
 {
 int size;
 char *padded;

 size = roundup(strlen(password) + 1, 32);
 padded = xmalloc(size);
 memset(padded, 0, size);
 strlcpy(padded, password, size);
 packet_put_string(padded, size);
 memset(padded, 0, size);
 xfree(padded);
 }

Figure 8. Function ssh put password

5. Related Works

5.1. Repository Analysis

Mockus[8] analyse the aim of the change, and its
time/size based on word appearance frequency of de-
velopment log-file. Harald[5] extracts logical coupling
among classes, files, and functions, and provide infor-
mation to the users.

5.2. Development Community Analysis

Hipicat[2] is known as a community analysis sys-
tem. In the Hipicat, “group memory” based on the re-
lationship between CVS, BTS, and email information
is extracted. Also they propose group memory to use
future user’s works. However, this system presents pre-
extracted relationships to users; different users must get

Figure 9. Search by date

the same results. Since searching something is maybe
a creative work so it must have flexibility for users to
choice yet another option.

6. Conclusion

In this paper, we have explained software develop-
ment supporting system CoxR’s overview which we es-
tablished. Then, we have proposed the implementation
design of Supporting Dynamic Communications with
development histories by extending CoxR.

The major characteristics of this system is that the
analysis of developer history of CoxR. Any more, We
will implement system based on a detailed design, and
We will verify about the system validity to use the sys-
tem actually .

References

[1] Agrawal, H., DeMillo, R.A., and Spafford, E.H.: “An
execution backtracking approach to program debug-
ging”, IEEE Software, pp.21–26(1991).

[2] Cubranic, D. and Murphy, G.C., “Hipikat: Recommend-
ing pertinent software development artifacts”, In Pro-
ceedings of the 25th International Conference on Soft-
ware Engineering (ICSE 2003), pp.408–419 (2003).

[3] Feiler, P.H., “Configuration Management Models in
Commercial Environments”, CMU/SEI-91-TR-7 ESD-
9-TR-7 (1991).

[4] Fogel, K., “Open Source Development with CVS”, The
Coriolis Group (2000).

Figure 10. Search by ssh put password

[5] Gall, H., Jazayeri, M., and Krajewski, J.: “cvs release
history data for detecting logical couplings”, in Inter-
national Workshop on Principles of Software Evolution
(IWPSE 2003), pp.13–23, Helsinki, Finland (2003).

[6] Gusfield, D., “Algorithms on Strings, Trees, and Se-
quences”, Cambridge University Press (1997).

[7] Ishikawa, T., Yamamoto, T., Matsushita, M., and In-
oue, K.: “Design of Communication Supporting system
with Revision Contorol System”, IPSJ Technical Report,
2001-SE-133, pp.23–30 (2001).

[8] Mockus, A. and Votta, L.G., “Identifying reasons for
software changes using historic databases”, In Proceed-
ings of International Conference on Software Mainte-
nance (ICSM 2000), pp.120–130 (2000).

[9] Sasaki, K., Matsushita, M., and Inoue, K.: “E-mail and
Source Code Revision Information Retrieval System for
Open Source Software Development”, IEICE Thechni-
cal Report, SS2003-9, pp.19–24 (2003).

[10] Smith, T. and Waterman, M., “Identification of Common
Molecular Subsequences”, J.Molecular Biology, 147,
pp.195–197 (1981).

[11] Tahara, Y., Matsushita, M., and Inoue, K.: “Supporting
Method for Source Code Modification with the Changes
of Existing Software”, IPSJ Technical Report, 2002-SE-
136, pp.57–64 (2002).

