
Very-Large Scale Code Clone Analysis and Visualization of Open Source
Programs Using Distributed CCFinder: D-CCFinder

Simone Livieri† Yoshiki Higo† Makoto Matushita† Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {simone, y-higo, matusita, inoue}@ist.osaka-u.ac.jp

Abstract

The increasing performance-price ratio of computer
hardware makes possible to explore a distributed approach
at code clone analysis. This paper presents D-CCFinder,
a distributed approach at large-scale code clone analysis.
D-CCFinder has been implemented with 80 PC worksta-
tions in our student laboratory, and a vast collection of
open source software with about 400 million lines in total
has been analyzed with it in about 2 days. The result has
been visualized as a scatter plot, which showed the pres-
ence of frequently used code as easy recognizable patterns.
Also, D-CCFinder has been used to analyze a single soft-
ware system against the whole collection in order to explore
the presence of code imported from open source software.

1. Introduction

Code clone analysis is an interesting and emerging topic
in software engineering research[13, 19]. Through code
clone analysis, we can identify not only simple code shares,
but also various characteristics of software systems such as
code evolution[14, 22].

We are interested in applying code clone analysis to a
large set of source code consisting of many software sys-
tems in order to see the relationships between them. In
these days, many open source systems are being devel-
oped, and parts of those systems are commonly used by
other systems[5]. We think that this kind of interaction
between software systems can be identified and viewed by
code clone analysis.

In order to achieve this goal, we need to resolve the
scalability issue of current code clone detection systems.
Many approaches and tools for code clone detection[1, 2,
7, 12, 15, 16, 17, 18] have been proposed and, among
them, one tool offering good scalability and ease of use is
CCFinder[12], a token-based code clone analysis tool that

can analyze, in the ideal case, up to 5.2 million of lines of C
code in about 18 minutes on a PC-based workstation (Intel
Xeon 2.8GHz CPU with 2 GB memory).

In this paper, we have chosen, as the analysis target,
the collection of open source software used for FreeBSD
(hereinafter called “the FreeBSD target”), which consists
of about 400 million lines in C and is about 10.8 G bytes
in total. This is theoretically 80 times larger than the in-
put size limit of CCFinder. In order to be analyzed with
CCFinder, the target must be partitioned into small pieces,
and each piece has to be analyzed with CCFinder. This
would ideally require about 3200 single runs of CCFinder
and it would take about 40 days on a single PC-based work-
station.

We will reduce the required time by introducing a dis-
tributed computing system named Distributed CCFinder
(D-CCFinder for short). In our experiments D-CCFinder
performed the same task in about 2 days when ran on 80 PC
workstations in our department’s student laboratory. In this
paper, we discuss the computational model and implemen-
tation of D-CCFinder.

D-CCFinder has been applied to the FreeBSD target,
and we have obtained a global view of the code clones
among many open source systems. Also, D-CCFinder is
used to investigate the possible presence of imported code
from the FressBSD target in one of our internal projects.
We believe that this approach can be very useful in aiding
the detection of illegal or unintentional use of copyright-
protected source code.

Contributions of this paper are as follows:

• we will propose an approach to scale a code clone anal-
ysis tool using a distributed environment; the over-
all computational model and implementation of D-
CCFinder will be discussed;

• we will show a global view of the code clones for a
collection of many open source systems, which, to the
knowledge of the authors of this paper, has not yet been



target

gedit vim

・・・ ・・・・・・・・・・・・

apache

・・・・・・・・・・・・・・・

zip emacs

editorsarchivers www’s

1 i - 1 i + 1 n

project

category

unit

file

unit j

u
n
it
 
i

piece

CCFinder

input

ji

target

gedit vim

・・・ ・・・・・・・・・・・・

apache

・・・・・・・・・・・・・・・

zip emacs

editorsarchivers www’s

1 i - 1 i + 1 n

project

category

unit

file

unit junit j

u
n
it
 
i

u
n
it
 
i

piece

CCFinder

input

ji

Figure 1. Relation between project, category, target and unit

presented before;

• application of D-CCFinder to software copyright vi-
olation detection will be explored; this will be per-
formed by analyzing the code clones between a single
project and a collection of many open source projects.

In Section 2, the computational model of D-CCFinder
is defined, and the implementation of D-CCFinder is pre-
sented in Section 3. In Section 4, we show the experiments
performed using D-CCFinder, and in Section 5, some dis-
cussions and related works are presented. Finally, we con-
clude our paper with a few remarks in Section 6.

2. D-CCFinder Model

In this section, we will describe D-CCFinder, which is
an analysis system for the target input.

2.1. Target input

A collection of source files which are needed to build
a software system is called project, and each project has
its unique project name: ZIP, emacs, apache, and win-
dowmaker are examples of project names (see Figure 1).
To simplify our discussion, we will limit our analysis to
projects written only in C language.

A collection of projects sharing a specific feature is
called category. For example emacs, vim, and gedit are
projects in the editors category.

The input of D-CCFinder is called target which is com-
posed of multiple unique categories. We assume that there
are no duplicated categories or projects in the target.

Another dimension by which the target can be parti-
tioned is the unit. A unit is a collection of source files of
a single or multiple projects. The total size of those files
must be less than or equal to the unit size, decided by the
user in advance.

A computational element specified by two units is called
piece, and it will be the input of a distributed process. The
upper part of Figure 1 illustrates the relation between these
terms.

2.2. Prospective Output

The objective of D-CCFinder is to find clones among
projects in the target. With clone we intend a pair of code
fragments which are exactly the same except comments,
white spaces, or carriage returns, or which differ only on
user-defined identifiers. The former clones are called type 1
and the latter ones are called type 2 in [3]. We expect both
type 1 and 2 clones existing in the target to be present in the
output of D-CCFinder.

Because of the large size of the target, a considerable



(i,j)

(j,i)

1 2 3 i j n-1 n・・・・・ ・・・・・ ・・・・・

target

1

2

3

i

j

n
-
1

n

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

t
a
r
g
e
t

unit

computed pieces

non-computed pieces

same 

clones

piece

→ task

・

・

・

・

・

・

・

・

・

(i,j)(i,j)

(j,i)(j,i)

1 2 3 i j n-1 n・・・・・ ・・・・・ ・・・・・

target

1 2 3 i j n-1 n・・・・・ ・・・・・ ・・・・・

target

1

2

3

i

j

n
-
1

n

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

t
a
r
g
e
t

1

2

3

i

j

n
-
1

n

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

t
a
r
g
e
t

unit

computed pieces

non-computed pieces

same 

clones

same 

clones

piece

→ task

piece

→ task

・

・

・

・

・

・

・

・

・

Figure 2. Computational Model of D-CCFinder

number of clones is expected to be detected1, thus we need
some abstraction of the output in order to grasp the overall
characteristics.

The output format of D-CCFinder is a list of code clone
sets, where each set is composed of a number of unique
code fragments. This information should be abstracted
into project or category level information, for example by
computing the code clone coverage between each pair of
projects or categories. Also, we might simply want to see
the existence of any clones in each project or category. We
will do this kind of work in the post processing of the output
of D-CCFinder.

2.3. Computational Model of D-CCFinder

By default, CCFinder finds clones among all the files
indicated in an input list. Since all the files need to be loaded
into memory space, the execution of CCFinder is aborted
if the target is large and there is not enough memory space.

For resolving this issue, we partition the target into not-
intersecting pieces whose size is acceptable to CCFinder.
By giving an option, CCFinder can take two lists of input
files, and produce clone lists only between the listed files.
The execution of CCFinder over a piece of the target is
called task. The outputs of each task are virtually merged
so that we can obtain all the clones in the target.

The computation of each task is independent in the sense
that intermediate and final result of each task does not af-

1It is reported that about 5-20% of total lines are clones in [20].

fect the computation of other tasks; therefore the problem
of segmenting the code-clone analysis becomes an embar-
rassingly parallel problem[21].

As shown in Figure 2, assume that the target size is
nu where n is the number of the partition, and u is the
size of one unit. Each piece is indexed by (i, j) where
1 ≤ i, j ≤ n. Because the code clones of piece (i, j) are
the same of piece (j, i) we can reduce the number of tasks
to be performed almost to half. The total and exact number
N of tasks is given by:

N =
n(n + 1)

2

Through D-CCFinder, these tasks are distributed over a
multiple CPU environment where an ordinary CCFinder is
executed on each CPU. Since no interaction is needed, the
scheduling of the tasks becomes very simple: we will assign
any task to any idle CPU with appropriate input, and collect
the output.

3. Implementation of D-CCFinder

D-CCFinder is a distributed system for code clone anal-
ysis based on CCFinder. Architecturally it is a master-
slave application with single CCFinder jobs executed on
slave nodes. D-CCFinder has been implemented in the
Java language using Java RMI for message passing between
the nodes, while the source repository resided on a network
file-system, to which all the nodes had access.

D-CCFinder is integrated by a small set of utilities
for the pre-processing of the input source code, the post-
processing of the output data and image generation. A dia-
gram of the whole system can be seen in Figure 3.

Indexer. The target is examined and informations about
file size and number of lines of code, project name and
project’s category are stored in index files. Unit bound-
aries are also computed by the indexer. In the following
experiments, we used 15 MBytes as the unit size, a value
far smaller than the ideal case, because of the limitations of
the hardware in the student laboratory. We got a total of 734
units and 269,745 tasks for the FreeBSD target.

Master node. The master node creates the input files for
CCFinder and assigns tasks to the slave nodes. If a slave
node fails, the task is assigned to a different node. If the task
fails because of some CCFinder’s internal error the file list
of the task is kept for further investigation.

Slave node. We had 80 slave nodes executing CCFinder
on each piece of the target. The files are first copied to the
local node storage, and then analyzed. The text output of
CCFinder is processed in order to remove redundancy and
uninteresting clones consisting in simple repeated patterns:



Figure 3. Process Overview for Code Clone Analysis using D-CCFinder

Table 1. Characteristics of the Master and
Slave Nodes

Processor Pentium IV 3GHz
Memory 1 GBytes
Network Link Gigabit Ethernet connected

to 100Mbit/s network hubs
OS FreeBSD 5.3-STABLE
Local storage 40 ∼ 50 GBytes

the Repeated Token Ratio (RNR) metrics has been used
to perform the filtering[9] (in our experiments we set the
threshold value for RNR to 0.5). The final result is moved
to the shared network file-system.

CCFinder’s output consists of code fragment pairs. Each
code fragment contains the index of the file it belongs to,
and this index is unique with respect to the files processed.
In order to have indexes consistent across the whole target
code fragments re-indexed.

The characteristic of the the master and slave nodes are
shown in Table 1.

Clone Coverage analyzer: The output of D-CCFinder
is processed and data about the number of shared lines of
code is computed for each pair of project, file and category.
This data are used to generate three different types of graph:
scatter plots, heatmaps and bar charts.

Image generator. For the purpose of visualization the
user can choose between the generation of scatter plot or
heatmap, and bar chart. Heatmaps of any portion of the
target can be created at file level, while a global view is
generated at project and category level. The generation of a
heatmap at file level allows the user to specify a scale fac-
tor, reverting to the generation of a 2-color black-and-white
scatter plot if the scale value is greater than 1.

4. Experiments

We performed two experiments with D-CCFinder. In
the first experiment, we analyzed the whole FreeBSD tar-
get. In the second experiment, we used D-CCFinder to
find clones between our research system, and the FreeBSD
target.

We define code clone coverage (CoverageM0M1 and
CoverageM0 ) to measure the percentage of clones between
two files, projects or categories as follows:

CoverageM0M1 = LOC(CC(M0,M1))
LOC(M0)+LOC(M1)

× 100

CoverageM0 = LOC(CC(M0,M1)∩M0)
LOC(M0)

× 100

with:
M0,M1: a pair of files, projects or categories;
CC(M0,M1): segments of the code clones between M0

and M1;
LOC(x): the total number of lines of code in x.
CoverageM0M1 : the ratio of code clone fragments against
the total of M0 and M1;
CoverageM0 : the ratio of code clone fragments between
M0 and M1 contained in M0 against M0.

4.1. The FreeBSD Target

There are many collections of open source projects,
such as SourceForge (http://sourceforge.net/) or Gnu
(http://www.gnu.org/). Among them we have chosen the
“Packages and Ports Collection” of FreeBSD as the target,
since it is well maintained and it is already partitioned into
categories.

The size characteristic of the FreeBSD target and its cat-
egory names are shown in Table 2 and Table 3 respectively.

The FreeBSD target sometimes includes several versions
of the same project, for example versions 1.3, 2.0, 2.1, 2.2
of the Apache web server. This is because the older sys-
tems are sometimes needed by the users or other systems for



Table 2. Characteristics of the FreeBSD target

Number of categories 45
Number of projects 6,658
Number of .c files 754,552
Total lines of code 403,625,067
Total size 10.8 GBytes

Figure 5. Diagonal Pattern from Area E of Fig-
ure 4

backward compatibility. In such cases, many code clones
across the versions are expected to be found.

4.2. Inter-Project Analysis for FreeBSD
Target

We ran D-CCFinder and all associated tools, with a de-
tectable minimum token length of 50 tokens. Since we
chose a unit size of 15MBytes the number of tasks to be
executed was 269,745. Figure 4 shows the resulting scatter
plot. This figure has been generated using a scale factor of
200, hence each dot corresponds to a unit of 200x200 files.
To accelerate the image generation process a dot is painted
black if at least one pair of files shares one or more code
portion, i.e., if D-CCFinder detected at least one code clone
pair between those two files. This visualization method pro-
duces a fairly exaggerated view of the code clones present
in the target. However, since the average CoverageM0M1

for the target is about 4%, we would get an almost-white
scatter plot without using such a method.

The most peculiar feature of the diagram in Figure 4 is

Table 3. Categories in the FreeBSD target
Index Name Index Name

1 accessibility 24 math
2 arabic 25 mbone
3 archivers 26 misc
4 astro 27 multimedia
5 audio 28 net-im
6 benchmarks 29 net-mgmt
7 biology 30 net-p2p
8 cad 31 net
9 comms 32 news

10 converters 33 palm
11 databases 34 polish
12 deskutils 35 print
13 devel 36 science
14 dns 37 security
15 editors 38 shells
16 emulators 39 sysutils
17 finance 40 textproc
18 ftp 41 www
19 graphics 42 x11-clocks
20 irc 43 x11-fm
21 java 44 x11-fonts
22 lang 45 x11
23 mail

the presence of distinguishable artifacts: A, B, C and D are
some examples.

A closer examination of the marked areas put in evidence
a common repeated pattern; one example of this pattern is
Area E, and it is closely shown in Figure 5, and manual in-
vestigation of the source code exposed the presence of sets
of files that appear unchanged in multiple projects. This is
due to the particular structure of the FreeBSD’s port col-
lection: different but related projects (for example plug-ins
for the multimedia framework gstreamer) contains iden-
tical copies of a common set of source files. Being more
specific:

Area A. Stripes contained in this area show how the source
trees of php4 and php5 are used in various projects and in
different categories.

Ares B. Enclosed in this area are four categories containing
what the FreeBSD port maintainers have classified as x11-
related software. Multiple copies of the core source tree of
the X Window System are found in these categories.

Area C. Imake is a make-like build tool that’s part of the
X Window System. It has been classified as a member of
the devel category and it’s clearly visible that this project’s
source code contains copies of the source code of Area B.



audio

x11

www
textproc

security

net

editors

lang

databases

devel

multimedia

mail

A

C B

D

x1
1

w
w

w
te

xt
pr

oc

au
di

o

da
ta

ba
se

s

de
ve

l

ed
ito

rs

ne
t

la
ng

graphics

gr
ap

hi
cs

m
ai

l

mbone

m
bo

ne
m

ul
tim

ed
ia

se
cu

ri
ty

E

php4/5

gstreamer

imake

Figure 4. Scatter Plot of Inter-Project Code Clone Coverage for the FreeBSD Target

Area D. Most of the devel category exhibits a marked di-
agonal pattern. It is mostly due to the presence of multiple
copies of the source code of the binutils software for differ-
ent architectures.

Area E. Category audio contains the source code of the
multimedia engine gstreamer’s plug-ins, and the main tree
of gstreamer is duplicated inside each project.

Most of the evident artifacts of Figure 4 are of the type
previously mentioned: a diagonal pattern showing a 100%
CoverageM0M1 . It is not easy to detect a uniquely existing
code share between only two projects by mere observation
because of the approximation of our visualization method.

A second run of D-CCFinder with a minimum de-
tectable token length of 200 tokens yielded a diagram pre-
senting almost the same main artifacts.

Figure 6 shows a heatmap of the CoverageM0M1 be-
tween the categories of the FreeBSD target. As expected

most of the highest CoverageM0M1 values lie on the di-
agonal, though values greater than 25% are not uncommon
between different categories. Some interesting parts of Fig-
ure 6 have been marked.

Area F. The databases category has a CoverageM0M1 of
41%. This value can be ascribed to two factors: the pres-
ence of different versions of the same software system, and
the presence of database drivers for languages as ruby and
php. In the former case a substantial number of code clones
is expected, in the latter, manual inspection, revealed the
presence of multiple copies of the same source tree.

Area G. The CoverageM0M1 value for the devel category
is 38%. The presence of different versions of the suite of
GNU binary utilities and compilers for different architec-
tures is the main reason of this high value.

Area H. Categories ftp and converters show a code clone



Figure 6. Color heatmap for the code clone
coverage of the FreeBSD target (category
view)

coverage of 37%. Manual inspection revealed that the pres-
ence of multiple copies of the php4 and php5 source tree
can be accounted of the high value.

Area I. The CoverageM0M1 value for the categories lang
and devel is 28%. This value can be ascribed to the de-
vel category containing multiple versions of the suite of
GNU compilers; and this code being mirrored inside cat-
egory lang.

Area J. Category x11-fonts presents the highest
CoverageM0M1 value: 46%. This is due to the rela-
tively small size of the category, and the presence of seven
copies of the source tree of the core of the X Window
System

4.3. Single Project Analysis of SPARS-J
and the FreeBSD Target

Recently, in parallel with the increased availability of
open source programs for a wide variety of purposes, the
probability of including, intentionally or not, part of their
source code into new systems also increased; consequently,
the risk of violating the terms of open sources licenses is
emerging.

We used D-CCFinder to detect the presence of open
source code fragments imported into the SPARS-J system

Table 4. Time elapsed
Indexer 22 minutes
D-CCFinder 51 hours

Scatter plot
Clone Coverage Analyzer 23 hours
Image Generator 4 hours

Heat map
Clone Coverage Analyzer 70 hours
Image Generator 2 minutes

which is a Java component analysis and search system de-
veloped at our laboratory[11]. SPARS-J is mostly written
in C and has about 47,000 lines of code. We have examined
how SPARS-J shares its code with the FreeBSD target. In
this case, a single piece executed as a task contained the
47,000 lines of code of SPARS-J plus 15 MBytes of the
FreeBSD target, and we had 734 tasks in total.

Figure 7 shows the result of the analysis as a bar
chart; each bar indicates the CoverageM0 value between
SPARS-J and a single project in the FreeBSD target, i.e.
the percentage of source code that SPARS-J shares with
that project.

Upon the inspection of some of the projects with which
SPARS-J shows the highest ratio of shared code we found
that most of the code clones were from a single file
(getopt.c) containing code for parsing command line op-
tions.

Further examination revealed a large number of projects
in the FreeBSD target making use of this file, thus, in or-
der to have a more readable and less dense diagram, these
projects have been removed from the bar chart. Figure 8 is
the resulting diagram. It is possible to see how SPARS-J
shares very little code with the projects in the FreeBSD tar-
get (except for the code in getopt.c), but there are a few
noteworthy cases, in which the CoverageM0 is greater tha
0.5%, that is, SPARS-J is sharing more than 200 lines of
code.

A complete analysis of those projects revealed that
SPARS-J uses code from two projects in the FreeBSD tar-
get for the handling of CGI requests, and that copies of the
previously mentioned library for the parsing of command
line options exist with different file names and in a special-
ized forms.

5. Discussion

The case studies presented show how D-CCFinder can
be used to detect similarities in a large source repository,
and between the whole repository and a single external
project.



0

0.5%

1%

1.5%

2%

cgiparse
mime

libspf2

Figure 7. Code Clone Coverage for Project SPARS-J (before filtering)

0

0.5%

1%

1.5%

2%

enca cvsnt

mime

mdk libspf2

cgiparse

Figure 8. Code Clone Coverage for Project SPARS-J (after filtering)

Experience with the FreeBSD target. We performed a
code clone analysis on the source code composing the
FreeBSD ports collection.

As listed in Table 4, it took about 51 hours to execute
the task with a cluster of 80 computers, a minimum to-
ken length of 50 tokens, and a unit size of 15 MBytes.
Clone Coverage Analyzer and Image Generator were
on a single 2.8 GHz Xeon PC-based workstation with 4 GB
of memory.

In the ideal case, the acceleration gain should be 80 and the
expected running time should be about 12 hours, but net-
work congestion, master-slave synchronization, and output
processing performed at each slave node increased the total
time. Nonetheless, our approach was 20 times faster (i.e.,
the actual acceleration ratio is 20) than it would using a sin-
gle workstation capable of analyzing the whole target. The

introduction of faster network equipments (for instance, Gi-
gabit hubs) in the student laboratory, would probably de-
crease the overhead and consequently increasing the accel-
eration gain.

The necessity to generate a scatter-plot of reasonable size
but still with visual clues about the distribution of the code
clones for a very large data set had us trading off accu-
racy for speed and space: the method used enhanced the
presence of artifacts, making the organization of the source
repository immediately visible, but at the same time it made
impossible to detect finer details and relationships between
small projects.

We need to explore other visualization methods for other
analysis objectives. In the current implementation, Clone
Coverage Analyzer requires a fairly long computation time.
This could be reduced using the same distributed compu-



tation model that D-CCFinder employs. We will need to
design an algorithm for this purpose.

SPARS-J and the FreeBSD target. Detecting the code
clones between SPARS-J, and the whole FreeBSD target
took about 40 minutes with a cluster of 80 computers. The
output have been visualized as a bar chart. After filtering
the obtained data we were able to effortlessly individuate a
small set of files containing duplicate code. We believe that
this use of D-CCFinder can be applied to the detection of
illegal or unintentional use of copyrighted source code in an
arbitrary software project.

Limitations. One limitation of the current implementation
of D-CCFinder is the inability to efficiently filter unneces-
sary or uninteresting clones, such as simply repeated files,
in order to reduce the data to be examined. While it would
be possible to realize this filtering running an additional pro-
cessing stage after the execution of CCFinder on each slave
node, we believe that performing it during the clone detec-
tion phase would be more efficient. In the near future we
are going to experiment other ways to perform code clone
detection, particularly fingerprint based analysis. We will
also parallelize both the post-processing phase and the im-
age generation task.

Another limitation is implicit in the method used to gener-
ate the scatter-plot: the employed algorithm degrades the
results to those obtainable with a mere file comparison. We
are addressing this issue researching new ways for visualiz-
ing the results.

6. Related work

The concept of very-large size code clone analysis re-
lates to the notion of Mega Software Engineering[10].
Mega Software Engineering refers to a collection of soft-
ware engineering technologies that, supporting the large
scale analysis of data from many projects, enables pro-
cess improvement at organization level, rather than at single
project level. With the decreasing cost of computer hard-
ware, and its concurrent increment of performance, the no-
tion of Mega Software Engineering becomes very impor-
tant, and it is expected to see more frequent applications of
its techniques, methodologies and practices in the field of
software engineering research.

Given the total size of the source code to be analyzed, the
only viable option was the parallelization of the task. The
availability of the computers of our department’s student
laboratory lead us to organize a network connected clus-
ter in order to solve the problem. Because the input and the
output of the tasks are generally large and the computational
model is trivial, we opted for a straightforward master-slave
implementation using a shared network file-system, rather

than embracing more sophisticated approaches at parallel
computing, such as grids[8].

Various approaches to code clone analysis have been
proposed: Baxter et al. illustrate a method for detect-
ing code clones through the use of abstract syntax tree[2];
Ducasse et al. propose string matching[7]; Kamiya et al.
suggest the use of prefix tree[12]; Krinke uses program de-
pendence graphs[16].

Our familiarity with CCFinder[12] and its immediate
availability, made us prefer this tool over others with simi-
lar characteristics of performance and scalability. We don’t
think that CCFinder is the only tool usable for this kind
of analysis, on the contrary we believe that a finger-print
based approach[17] can be very efficient if we want to per-
form some fine level filtering of the source code in order to
remove unwanted code clones.

Previous works on the analysis of open source software
have been done[6, 20] and various characteristics of open
source software have been presented; however, those tech-
niques lack the scalability our approach has, and they aren’t
able to show the inter-project analysis we proposed in this
paper.

Blackduck Software’s protexIP/development[4] Soft-
ware Compliance Management system uses file and code
snippet analysis to identify the use of code from third-party
and open-source projects and detect licence conflicts.

D-CCFinder is being also used by the authors to per-
form a study of the evolution of the Linux kernel.

7. Conclusion

We have proposed a novel approach to distributed large
scale code clone analysis. This approach has been imple-
mented in our prototype D-CCFinder, and it has been ap-
plied to a vast collection of open source programs. We ob-
tained a global overview of code clones among these pro-
grams, and the use of the same source code in multiple
projects was visible as easy recognizable artifacts. We also
analyzed a single project against the same collection, and it
was possible to effortlessly individuate the use of code from
software in the collection.

One of the objectives of this paper was the exploration
of the application of a distributed approach at software en-
gineering in the context of Mega Software Engineering. We
believe that D-CCFinder illustrates a fairly cheap and prac-
tical method for large scale code clone analysis employing
commodity hardware, freely available software, an already
existing network infrastructure, and a trivial but efficient
implementation.

D-CCFinder is our first experiment at large scale code
clone analysis, hence it is incomplete and shows many weak
points. In the near future we will explore the use of finger-
printing and data mining algorithm for the purpose of code



clone analysis. We believe that this alternative approach
could offer an improvement of performance.

Acknowledgements

The authors would like to thanks Toshihiro Kamiya in
the National Institute of Advanced Industrial Science and
Technology for his comments on the use CCFinder, and
Shigeto Tajima and Fumihiro Koizumi of the Osaka Univer-
sity Information Science and Technology Department for
the help and support provided with the implementation of
D-CCFinder at the student laboratory. This work has been
conducted as a part of EASE Project, Comprehensive De-
velopment of e-Society Foundation Software Program, and
Grant-in-Aid for Exploratory Research(186500006), both
supported by Ministry of Education, Culture, Sports, Sci-
ence and Technology of Japan. Also it has been performed
under Grant-in-Aid for Scientific Research (A)(17200001)
supported by Japan Society for the Promotion of Science.

References

[1] B. S. Baker. A program for identifying duplicated code.
Computing Science and Statistics, 24:49–57, 1992.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proc. of In-
ternational Conference on Software Maintenance ’98, pages
368–377, Bethesda, Maryland, March 1998.

[3] S. Bellon and R. Koschke. A comparison of au-
tomatic techniques for the detection of duplicated
code. Technical report, Institute for Software Tech-
nology, University of Stuttgart, 2003. available at
http://www.bauhaus-stuttgart.de/clones.

[4] Blackduck Software. ProtexIP/development:
Software compliance management system.
http://www.blackducksoftware.com
/products/ protexip.html.

[5] A. W. Brown and G. Booch. Reusing open-source soft-
ware and practices: The impact of open-source on commer-
cial vendors. In Proc. of the 7th International Conference
on Software Reuse, volume 2319 of Lecture Notes in Com-
puter Science, pages 123–136, Austin, Texas, April 2002.
Springer.

[6] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. D.
Penta. Identifying clones in the linux kernel. In Proc. of the
First IEEE International Workshop on Source Code Analy-
sis and Manipulation, pages 92–100, Florence, Italy, 2001.
IEEE Computer Society Press.

[7] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Proc. of
the International Conference on Software Maintenance ’99,
pages 109–118, Oxford, England, August 1999.

[8] I. Foster. What is the grid? a three point checklist, July 2002.
available at http://www-fp.mcs.anl.gov/
∼foster/Articles/WhatIsTheGrid.pdf.

[9] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method
and implementation for investigating code clones in a soft-
ware system. Submitted to Information and Software Tech-
nology.

[10] K. Inoue, P. Garg, H. Iida, K. Matsumoto, and K. Torii.
Mega software engineering. In Proc. of the 6th International
PROFES (Product Focused Software Process Improvement)
Conference, pages 399–413, Oulu, Finland, 2005.

[11] K. Inoue, R. Yokomori, T. Yamamoto, M. Matusita, and
S. Kusumoto. Ranking significance of software components
based on relations. IEEE Transaction on Software Engineer-
ing, 31(3):213–225, April 2005.

[12] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engi-
neering, 28(7):654–670, July 2002.

[13] C. Kapser and M. Godfrey. Improved tool support for the
investigation of duplication in software. In Proc. of the 21st
International Conference on Software Maintenance, pages
25–30, Budapest, Hungary, September 2005.

[14] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An
empirical study of code clone genealogies. In Proc. of the
10th European software engineering conference, pages 187–
196, Lisbon, Portugal, 2005.

[15] R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. In Proc. of the 8th International
Symposium on Static Analysis, pages 40–56, Paris, France,
July 2001.

[16] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proc. of the 8th Working Conference on Re-
verse Engineering, pages 301–309, Suttgart, Germany, Oc-
tober 2001.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Transaction on Software Engineering, 32(3):176–192,
March 2006.

[18] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proc. of the International Conference on
Software Maintenance ’96, pages 244–253, Monterey, Cali-
fornia, November 1996.

[19] D. C. Rajapakse and S. Jarzabek. An investigation of cloning
in web applications. In Proc. of the 5th International Con-
ference on Web Engineering (ICWE 2005), Lecture Notes in
Computer Science, pages 252–262, Sydney, Australia, 2005.
Springer.

[20] S. Uchida, A. Monden, N. Ohsugi, T. Kamiya, K. Mat-
sumoto, and H. Kudo. Software analysis by code clones in
open source software. The Journal of Computer Information
Systems, XLV(3):1–11, April 2005.

[21] B. Wilkinson, M. Allen, and C. M. Allen. Parallel Pro-
gramming: Techniques and Applications Using Networked
Workstations and Parallel Computers. Prentice Hall, 2004.

[22] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue.
Measuring similarity of large software systems based on
source code correspondence. In Proc. of the 6th Inter-
national PROFES (Product Focused Software Process Im-
provement) Conference, pages 530–544, Oulu, Finland,
2005.


