
Toward Efficient Code Clone Detection on Grid Environment

Yuki Manabe† Yoshiki Higo† Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{y-manabe, higo, inoue}@ist.osaka-u.ac.jp

Abstract

Code clone detection technique originally was devel-
oped for investigating duplicated code in a single soft-
ware system or between two or three ones. If it can
be applied to a large amount set of software systems,
we should identify useful duplicate in it. This paper
describes how we are going to scale up code clone de-
tection technique for handling many software systems.

1 Introduction and Motivation

Recently, code clone detection technique attracts
much attention. A code clone is a code fragment having
code fragments identical or similar to it in the source
code. It is widely accepted that automated code clone
detection can help software development and mainte-
nance. For example, in the debugging process, code
clone detection prevents us from overlooking some of
code fragments simultaneously.

In offshore developments, different teams tend to
create similar libraries independently because of the
lack of inter-team communication. For efficient offshore
development, developers in different teams should
share these libraries. Duplicated functions (Code
clones) between existing software systems will be re-
quired by software systems under development or ones
developed in the future. In other words, Code clones
between existing software systems should be useful li-
braries for future developments.

However, there is a big problem in applying code
clone detection technique to a large set of software
systems; the scalability of code clone detection is not
enough. Since, code clone detection technique was orig-
inally developed for investigating duplicated code in a
single software system, or catching plagiarism between
two or three software systems. We need to handle hun-
dreds of software systems (billions lines of code) all

together.
In order to satisfy this requirement, we are trying

to applying existing code clone detection technique in
grid environment. We have already implemented D-
CCFinder, which is a code clone detection system in a
distributed environment [4], and have conducted case
studies on a large set of software systems [3]. But, we
believe that grid-based CCFinder can achieve further
usability, portability, and scalability.

2 Code Clone Detection on Grid Envi-
ronment

This section describes our prototype of a code clone
detection system on grid environment. Our system
comprises a single master node and many slave nodes
working on OurGrid [1], which is one of the popular
grid middleware systems. Fig 1 shows the relation be-
tween the master node and slave nodes.

The following describes the code clone detection pro-
cess of our system. The numbers in the process boxes
of Fig 1 correspond to the following items.

1. The master node receives target source files, and
divides them into groups that include a specified
number of the source files. Fig 2 illustrates the
relation between source files, software and groups.

2. The master node sends a pair of the groups to an
idle slave node.

3. A slave node detects code clones from the assigned
pair using CCFinder [2].

4. The slave node returns the detection result to the
master node.

5. After detecting code clones all the pair of the
groups, the master node merges the detection re-
sults as a single detection result.



Master Node
Slave Nodes

clones in target filestarget files 

groups
1. divide 5. merge

process: data: data flow:

clones in the groups
2. send 4. collect

3. CCFindera pair ofgroups clones in the groups

Figure 1. Relation between the master node
and slave nodes

1 2 i j
A B

groups
software Nsource files

input
a pair of groups 

outputCCFindergroup igroup j clones in the groups
n

Figure 2. Relation between source files, soft-
ware and groups

In order to detect code clones in a large file set
quickly, we need a method to merge slave node’s de-
tection results efficiently.

3 Applications

At present, we are developing a system running on
the grid environment, and so have no case study. The
remainder of this section describes some assumed ap-
plications of our developing tool.

3.1 Creating useful libraries

It may be possible that a single software develop-
ment department in different projects or software de-
velop departments in a same project develop the same

kinds of functions. If we could identify duplicated func-
tions, the duplicated functions may be able to be useful
libraries. Creating useful libraries can prevent the de-
partment from writing the same kinds of code in the
future, and can reduce the development cost.

3.2 Catching licensing violations of source
code

Code clone detection from a large set of software
systems is able to catch license violations of source
code. For example, if we write source code based on
GPL’ed software, the source code must be licensed un-
der GPL. If many code clones are detected between
GPL’ed source code and non-GPL’ed source code, non-
GPL’ed source code may violate the GPL license.

4 Conclusion

In this paper, we describe code clone detection on
grid environment for handling a large set of software
systems and also discussed its applications.

Acknowledgements

This work is being conducted as a part of EASE
Project, Comprehensive Development of e-Society
Foundation Software Program, and Grant-in-Aid for
Exploratory Research(186500006), both supported by
Ministry of Education, Culture, Sports, Science and
Technology of Japan. Also it is being performed un-
der Grant-in-Aid for Scientific Research (A)(17200001)
supported by Japan Society for the Promotion of Sci-
ence.

References

[1] Ourgrid. http://www.ourgrid.org/.
[2] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A

multi-linguistic token-based code clone detection sys-
tem for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654–670, Jul 2002.

[3] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Anal-
ysis of the linux kernel evolution using code clone cover-
age. In Proc. of the 4th Workshop on Mining Software
Repositories, pages 22.1–22.4, May 2007.

[4] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-
large scale code clone analysis and visualization of open
source program using distributed ccfinder: D-ccfinder.
In Proc. of the 29th International Conference on Soft-
ware Engineering, pages 106–115, May 2007.


