
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Token Comparison Approach to Detect Code Clone-related Bugs

YongLee YII†, Yasuhiro HAYASE†, Makoto MATSUSHITA†, and Katsuro INOUE†

† Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
E-mail: †{yii,y-hayase,matusita,inoue}@ist.osaka-u.ac.jp

Abstract Large software tends to have a significant amount of similar code, commonly known as code clones.

Often the code clones are introduced through copy-and-paste process for code reuse purpose where the pasted code

usually will go through some modifications such as renaming of identifiers and changing of parameters. In this paper,

we propose a method using token comparison approach to detect bugs caused by abovementioned modifications.

Our method tokenizes detected clones and performs a comparison to find out inconsistencies between them. The

inconsistencies are then ranked based on predefined metrics to produce a bug candidate list. We implemented our

method and tested on open source software. Our tool has found real bugs from the test subject. We believe our

tool is suitable to serve the purpose of detecting code clone-related bugs in large software.

Key words Software Maintenance, Inconsistent Change, Code Clone-related Bug

1. Introduction

Recent studies [8] [9] show that large software systems con-

tain a significant amount of similar code, commonly known

as code clones or simply clones (hereafter we use them in-

terchangeably). A pair of similar code fragments is called a

clone pair. An equivalence set of a clone relation is called a

clone set.

In many cases, code clones are introduced to the program

through copy-and-paste process. While this practice can

greatly reduce programming effort by reusing code in fast

and easy way, it is prone to create bugs.

During code cloning, developer often modifies the pasted

code in order to implement the desired functionality, but

sometimes bugs are introduced. One of such modifications

is to rename all instances of an identifier in pasted code.

When this modification is done manually, there is possibility

that the renaming is not completely applied to all relevant

instances by mistake, therefore introducing unintended in-

consistency which is considered as bug to the system.

Figure 1 shows an example of bug caused by inconsistent

renaming of identifier. Code fragments consist of line 1486-

1503 and line 1563-1579 are detected as a pair of code clones.

This clone pair could be the result of copy-and-paste process.

All variables named rc in pasted code fragment (line 1563-

1579) have to be changed to retval but the one in line 1575

was left out. In consequence, the system displays wrong er-

ror code. This bug cannot be detected by compiler since the

variable rc in pasted code fragment is still within the valid

scope, thus produce no warning or syntax error.

According to [2] [3], unintended inconsistencies similar to

abovementioned example are actually happened in produc-

tion systems. In fact, the inconsistency shown in Figure 1 is

detected by our proposed method (which will be described

in detail later in this paper) in Linux version 2.6.6. This in-

consistency was rectified in later version of Linux; therefore

we can confirm that it is a genuine bug.

Although manual inspection is an effective method to find

out bugs in programs, it would be too time-consuming and

impractical for large software system. Jablonski et al. [4] pro-

posed a tool called CReN, which is implemented as a plug-in

to the integrated development environment (IDE) to track

copy-and-paste activities and to ensure consistent renaming

of identifiers. However, CReN is only applicable when coding

a new program or to add new code to an existing program.

In this paper, we propose a method to detect bugs caused

by inconsistent change of identifiers that exist in production

systems. Our method first finds out inconsistencies between

a pair of code clones based on token comparison. The incon-

sistencies are then going through some metric calculations

to produce a list of potential bugs. In order to evaluate the

effectiveness of our method, we implemented a tool based on

proposed method and ran it on well-known large open source

software.

The rest of this paper is organized as follows. Section 2

describes the proposed method in detail, and Section 3 gives

the implementation details of our method. Section 4 ex-

plains the experiments that we performed and their results.

— 1 —

File: Linux−2.6.6/drivers/pci/hotplug/shpchp_ctrl.c

1486: rc = p_slot−>hpc_ops−>slot_enable(p_slot);
1487:
1488: if (rc) {
1489: err("%s: Issue of Slot Enable command failed\n", __FUNCTION__);
1490: /* Done with exclusive hardware access */
1491: up(&ctrl−>crit_sect);
1492: return rc;
1493: }
1494: /* Wait for the command to complete */
1495: wait_for_ctrl_irq (ctrl);
1496:
1497: rc = p_slot−>hpc_ops−>check_cmd_status(ctrl);
1498: if (rc) {
1499: err("%s: Failed to enable slot, error code(%d)\n", __FUNCTION__, rc);
1500: /* Done with exclusive hardware access */
1501: up(&ctrl−>crit_sect);
1502: return rc;
1503: }

1563: retval = p_slot−>hpc_ops−>slot_disable(p_slot);
1564: if (retval) {
1565: err("%s: Issue of Slot Enable command failed\n", __FUNCTION__);
1566: /* Done with exclusive hardware access */
1567: up(&ctrl−>crit_sect);
1568: return retval;
1569: }
1570: /* Wait for the command to complete */
1571: wait_for_ctrl_irq (ctrl);
1572:
1573: retval = p_slot−>hpc_ops−>check_cmd_status(ctrl);
1574: if (retval) {
1575: err("%s: Failed to disable slot, error code(%d)\n", __FUNCTION__, rc);
1576: /* Done with exclusive hardware access */
1577: up(&ctrl−>crit_sect);
1578: return retval;
1579: }

should be changed to
retval

Figure 1 Bug Caused by Inconsistent Renaming of Identifier

Section 5 discusses issues related to our method and some

related work. Finally in Section 6, we offer our conclusions

and recommendations for future work.

2. Methodology

In this section, we will describe our approach aimed to

detect bugs caused by inconsistent change of identifiers in

detail.

Figure 3 gives an overview of our approach. The initial

input to the approach is source files and the final output will

be a bug candidate list which gives the details such as lo-

cation of potential bugs. The approach is generally divided

into clone detection phase and inconsistency detection phase.

The inconsistency detection phase can be further divided into

3 steps, namely lexical analysis, mapping analysis and result

filtering.

We use a token-based clone detection tool, CCFinder [1]

in clone detection phase. The reasons of choosing CCFinder

and other details of clone detection phase will be given in

section 3. We explain the 3 steps in inconsistency detection

phase below.

2. 1 Lexical Analysis

The general goal of lexical analysis in our approach is to

transform the code clones detected in clone detection phase

into structure that afterward fed into the mapping analysis

127: o_count = v_count;
128: o_var = varse;
129: o_names = v_names;
130:
131: v_count += STORE_INCR;
132: varse = (char **) malloc (v_count*sizeof(char *));
133: v_names = (char **) malloc (v_count*sizeof(char *));
134:
135: for (indx = 3; indx < o_count; indx++)
135: varse[indx] = o_var[indx];
137:
138: for (; indx < v_count; indx++)
139: varse[indx] = NULL;

161: o_count = a_count;
162: o_ary = arrays;
163: o_names = a_names;
164:
165: a_count += STORE_INCR;
166: arrays = (char **) malloc (a_count*sizeof(char *));
167: a_names = (char **) malloc (a_count*sizeof(char *));
168:
169: for (indx = 1; indx < o_count; indx++)
170: varse[indx] = o_ary[indx];
171:
172: for (; indx < v_count; indx++)
173: lists[indx] = NULL;

Figure 2 Example of Code Clones

step. Code clones that exist in target software are divided

into tokens according to lexical rules of the programming

language and each of these code clones will form a token se-

quence. While lexical analyzer scans through the code clones,

it tokenizes them and identifies tokens made up by identifier.

Comments and white spaces are eliminated, giving a normal-

ized token sequence.

In a clone pair, if one code fragment is an exact copy with-

out modification of another, or only variable, type or func-

tion identifiers were changed, the resulting normalized token

sequences will have the same number of tokens with identi-

fier at the same position (i.e. same token index). Tokenized

clone pairs that fulfill this criteria will be selected for further

processing in next step.

2. 2 Mapping Analysis

In this step, mapping of identifiers in each clone pair is

carried out. The clone pairs are in the form of token se-

quences which are the output of lexical analysis step. Each

identifier in a code fragment is mapped to the identifier at

the same position in another code fragment within a pair of

code clones.

If the instances of an identifier in one code fragment are

renamed to more than one identifier names, or not all in-

stances of an identifier is renamed, inconsistencies are said

to be occurred. For each unique identifier in a code fragment,

the mapping is performed and its result is stored.

Table 1 shows one of such mapping results using the exam-

ple shown in Figure 2. All identifiers exist in code fragment

— 2 —

Figure 3 Overview of Proposed Bug Detection Method

1 (line 127-139) are renamed consistently or remained the

same in code fragment 2 (line 161-173) except v count and

varse. There is one of the instances of v count (underlined

in Figure 2) is left unchanged in fragment 2. On the other

hand, instances of varse (italicized in Figure 2) are changed

to 2 different identifier names, arrays and lists, while one is

left unchanged. Inconsistencies are said to be occurred in

this 2 cases.

2. 3 Result Filtering

Inconsistencies detected from the identifier mapping re-

sult are not necessary the case of unintended inconsistency

resulted from developer’s careless mistakes. In other words,

these inconsistencies are not always bugs. Therefore, they

need to go through some filtering algorithm in order to pro-

duce a list of potential bugs with less false positives. In our

approach, we use 2 metrics to serve the filtering purpose.

The first metric is UnchangedRatio as proposed in [2]. It

is defined as

UnchangedRatio(v) =
NumOfUnchangedID(v)

TotalNumOfID(v)

For identifier v, NumOfUnchangedID is the number of oc-

currences of v in code fragment f2 where its name is remain

unchanged as compared to identifier at the same position

in code fragment f1. TotalNumOfID is the total number of

occurrences of v in f1. f1 and f2 form a clone pair.

When UnchangedRatio equals to 0, it means all instances

of an identifier are being renamed. In contrast, when Un-

changedRatio equals to 1, it means all instances of an identi-

fier are remained in the same name. It is believed that if an

identifier is renamed in most of its instances and only a few

of its instances are not renamed, there is high possibility that

developer forgets to change them. Therefore, the smaller the

value of UnchangedRatio (except zero), the higher the possi-

bility of the not renamed identifier to be a bug. Inconsisten-

cies with the value of UnchangedRatio above the threshold

Table 1 Identifier Mapping Result for Clone Pair in Figure 2

Identifiers in Identifiers in

Code Fragment 1 Code Fragment 2 Occurrence

(line 127-139) (line 161-173)

indx indx 8

malloc malloc 2

o count o count 2

o name o name 1

o var o ary 2

v count a count 4

v count 1

v name v name 2

varse arrays 2

lists 1

varse 1

STORE INCR STORE INCR 1

will be filtered out from bug candidate list. Since the orig-

inal code fragment in a clone pair cannot be determined,

UnchangedRatio has to be calculated in both directions.

Referring to Table 1, 4 instances of v count are changed to

a count in Fragment 2 while one instance is remained in the

same name, result in UnchangedRatio(v count) = 0.2. Sim-

ilarly, 3 instances of varse are changed to arrays and lists

while one instance is left unchanged, result in Unchange-

dRatio(varse) = 0.25.

We propose another metric called Conflict to complement

UnchangedRatio since UnchangedRatio does not provide any

information if the instances of an identifier is changed to mul-

tiple names. When the instances of an identifier is changed

to multiple names, Conflict is set to true. In Table 1, varse

is one of such examples. In this case, the possibility that the

instances of an identifier are changed to multiple names in-

tentionally to implement the functionality is high. We filter

out this kind of inconsistencies even though their Unchange-

dRatio are below threshold value.

— 3 —

3. Implementation

We have implemented a tool based on the proposed

method. The system takes raw source files as input and

produces a bug candidate list displayed on a graphical user

interface as output. This section gives the details related to

our implementation.

3. 1 Code Clone Detection and Filtering

Code clone detection is an important step since code clone

is the input to our approach. Therefore, the effectiveness of

clone detection affects the result. There are plenty of tools

that available for clone detection [1] [8] [10]. Among them, we

have chosen CCFinder to perform the clone detection task

in our approach. CCFinder is a token-based clone detection

tool which offer good scalability and execution time to cope

with large software. This tool is very effective in finding ex-

actly identical clones and clones with only modification in

identifiers.

One of the factors that affects the output of CCFinder is

the minimum length of code clone. The lower the number,

the more code clones will be found. In our experiments, we

set the minimum length of a code clone to 30 tokens. This

number was used in numerous previous researches [11] [12] on

CCFinder and gave positive results.

CCFinder identifies a large amount of code clones, which

some of them are deemed insignificant to our bug detection

method. Therefore, it is important to filter the raw output

of CCFinder and select only good candidate clones as the in-

put to our proposed method. We applied the following two

techniques to filter code clones detected by CCFinder and

conducted experiments (details in section 4. 2) to evaluate

their effectiveness.

（ 1） Removing Highly Repeated Code Sequence

Clones

There is a large portion of code clones detected by

CCFinder consists of consecutive variable declarations and

consecutive method invocations. These kinds of clones are

mainly due to the structure of programming language and

many of them are stereotyped code which is very stable. We

filter out these kinds of clones using a metric called RNR(S)

that represent the ratio of non-repeated code sequence in

clone set S [5].

Let clone set S consists of n fragments, f1, f2,…, fn.

LOSwhole(fi) represents the Length Of whole Sequence of

fragment fi, and LOSrepeated(fi) represents the Length Of

repeated Sequence of fragment fi, RNR(S) is defined as

RNR(S) = 1 −

n∑
i=1

LOSrepeated(fi)

n∑
i=1

LOSwhole(fi)

Figure 4 Snapshot of System’s Graphical Interface

Repeated code sequence is the repetition of its adjacent code

sequence and non-repeated code sequence is the other parts.

The lower the value of RNR(S), the more repeated code

sequences in clone set S. In our experiment, we set the RNR

value to 0.5, filtering out clone set with the value less than

0.5 from the input to our method. This is the value proposed

in [5].

（ 2） Removing Overlapping Clones

Among the clones detected by CCFinder, we discovered a

lot of overlapping clones where a portion of code fragments

in a clone pair overlap each other. Overlapping clones do

not represent the nature of copy-and-paste process and most

probably created coincidently. Since our method is based

on the assumption of copy-paste-modify mechanism, over-

lapping clones are deemed insignificant to our method and

need to be filtered out.

3. 2 Graphical User Interface

Since our proposed method will produce a list of poten-

tial bugs for inspection, it is important to provides necessary

information presented in decent way to ease the developers

carry out this job. We built a graphical user interface to

browse bug candidate list. A screen shot of the interface is

shown in Figure 4.

The top left frame of the interface is a bug candidate list

which can be sorted by the value of UnchangedRatio. One

can start the inspection by looking at the most suspicious

case (i.e identifiers with small value of UnchangedRatio).

When clicking on an item in bug candidate list, the mapping

result of selected identifier will be displayed on the bottom

left frame. At the same time, the 2 frames on the right will

display the related source files. Code clones where the se-

lected identifier resided in are highlighted in the source files.

4. Experiments

In this section, we will describe the details of experiments

that we have carried out with the tool implemented based

— 4 —

Table 2 Number of Code Clones in Linux 2.6.6

Module
Without # Filtered

Filtering with RNR

linux-2.6.6/arch 102,539 17,085

linux-2.6.6/drivers 159,764 44,881

on the proposed method. The main purpose of experiments

is to evaluate the effectiveness of our tool to detect real bugs

in software systems.

We have chosen Linux version 2.6.6, which consist of 6,491

files and 4,364,540 lines of code as our experiment subject.

We chose Linux because it is a well-known large scale pro-

duction system, therefore we can test the capability of our

tool to cope with large software system.

For the experiment results, we concentrate the discussion

on 2 of the largest modules of Linux, arch and drivers.

4. 1 Experiment Parameters

There are several parameters that will affect the experi-

ment results. The following describes each of them and the

value we set in our experiment.

（ 1） Threshold Value for UnchangedRatio

As mentioned in Section 2. 3, a non-zero or non-one value

for UnchangedRatio indicates inconsistent change of identi-

fiers. When using this metric to narrow down the bug candi-

dates, we are based on the idea that“the developer intents to

changed all instances of an identifier consistently to another

name but left out some of them”. As such, smaller value of

UnchangedRatio (except zero) better reveal a potential bug.

In our experiments, we set the value of UnchangedRatio to

0.4, same to the value used in [2].

（ 2） Conflict Setting

We can specify the degree we tolerate inconsistency by

determine how many different names an identifier can be

changed to. In our experiment, if an identifier is changed to

2 different names or above, Conflict is set to true and it will

be filtered out.　

4. 2 Code Clones Filtering

Table 2 shows the difference of the number of code clones

detected by CCFinder from our test subject, Linux 2.6.6 be-

fore and after applying RNR filtering method. On the other

hand, Table 3 gives the number of clone pairs after we took

out the overlapped clones. The difference becomes obvious

after we applied the RNR filtering.

The filtering can be set to on or off in the experiment.

We have conducted experiments both with and without the

filtering and we found that the filtering techniques greatly re-

duce our investigation effort by reducing the number of bug

candidates created by insignificant clones. Therefore, we ap-

plied these filtering techniques when running our experiment

with Linux 2.6.6.

Table 4 Number of Bug Candidates in Linux 2.6.6

Module # File

Total # Bug Total LOC

LOC Candi- Suspicous

date Clones

linux-2.6.6/arch 2,355 724,858 87 1,615

linux-2.6.6/drivers 2,323 2,344,594 120 3,637

Table 5 Genuine Bugs Found in Linux 2.6.6

File Path
File

Identifier
Line

../arch/m68k/mac/iop.c 264 IOP NUM SCC

../arch/sparc/prom/memory.c 159 prom phys total

../arch/sparc64/prom/memory.c 117 prom phys total

../drivers/pci/hotplug/shpchp ctrl.c 1575 rc

4. 3 Bugs Detection

The number of bug candidates found in Linux 2.6.6 is

shown in Table 4. We have detected 87 bug candidates in

arch module and 120 in drivers module.

If a clone pair contains a bug candidate, we call it suspi-

cious clone pair. Adding up the lines of code (LOC) of all

suspicious clone pairs gives total LOC of suspicious clones.

Sometimes a clone pair can contain more than 1 bug candi-

date. In that case, we only add once when calculating the

total LOC of suspicious clones. In both arch and drivers

modules, the total LOC of suspicious clones occupies less

than 0.1% of the total LOC. This gives a rough figure on

the total number of lines that we need to review. In reality,

we might need to review more code in order to verify a bug

candidate, but it serve as a good start especially to detect

bugs in a millions-line-of-code software.

One of the major tasks in our result analysis is to verify

the bug candidates detected by our tool. We have inspected

the bug candidates in arch and drivers modules. Some of

the bug candidates are in high possibility. We checked them

against Linux change log and later version of Linux. As a

result, we were able to verify some of them to be the genuine

bugs. Table 5 gives some instances of verified bug.

5. Discussion and Related Work

5. 1 Limitation of Tool

Our tool currently cannot handle gapped clone that is cre-

ated when a copy-and-paste code fragment gone through

modifications such as insertion and deletion of statements.

Gapped clones should be inspected as well since they also

have the possibility of containing inconsistent renaming bugs.

The greatest barrier for our current implementation to han-

dle gapped clones is on the mapping analysis. Our method

still lack of comprehensive algorithm to correctly map the

identifiers in gapped clone. This gives a space for our tool to

be improved.

— 5 —

Table 3 Number of Clone Pairs in Linux 2.6.6

Module Before RNR Filtering After RNR Filtering

With Overlapping Clone Without Overlapping Clone With Overlapping Clone Without Overlapping Clone

linux-2.6.6/arch 16,740,180 14,977,660 23,599 19,273

linux-2.6.6/drivers 8,325,367 7,888,115 60,706 56,260

5. 2 Related Work

Li et al. [2] have developed a tool called CP-Miner to de-

tect copy-and-paste related bugs. CP-Miner uses data min-

ing techniques to identify code clones and the bug detection

is implemented as part of the tool. Before passing to bug de-

tection process, code clones detected gone through a series

of pruning procedures. CP-Miner has the ability to handle

clone that is not exactly the same.

Recently, Jiang et al. [3] developed a tool to detect bugs

in code clones and their surrounding code, called context.

The clone detection component of the tool is based on

DECKARD [13], a clone detection tool developed by them.

Bug caused by renaming inconsistency is called a type-3 in-

consistency in their work. The tool counts the number of

unique identifiers in each code fragment within a pair of

clones. Different number of unique identifiers is deemed as

likely to be a bug.

6. Conclusion

In this paper, we introduced a method to detect bugs

caused by inconsistent change of identifiers. We have also

conducted experiments using Linux kernel in order to eval-

uate the effectiveness of our proposed method. As a result,

we were able to discover bugs on this system. Therefore, we

believe that our tool is effective for detecting bugs in large

software systems.

In future, we would like to conduct more experiments on

production software and perform a comprehensive analysis

on the results. Also, we would like to improve our tool to

handle gapped clones.

Acknowledgments

This work has been conducted as a part of EASE Project,

Comprehensive Development of e-Society Foundation Soft-

ware Program, supported by Ministry of Education, Culture,

Sports, Science and Technology of Japan. The work was also

supported by Japan Society for the Promotion of Science un-

der Grant-in-Aid for Scientific Research (A)(17200001).

References

[1] T. Kamiya, S. Kusumoto, and K. Inoue,“CCFinder: A

Multilinguistic Token-Based Code Clone Detection System

for Large Scale Source Code,”IEEE Transactions on Soft-

ware Engineering, vol. 28, no. 7, pp. 654-670, July 2002.

[2] Z. Li, S. Lu, S. Myagmar, and Y. Zhou,“CP-Miner: Find-

ing Copy-Paste and Related Bugs in Large-Scale Software

Code,”IEEE Transactions on Software Engineering, vol.

32, no. 3, pp. 176-192, March 2006.

[3] L. Jiang, Z. Su, and E.Chiu,“Context-Based Detection of

Clone-Related Bugs,”Proceedings of the 6th joint meeting

of the European Software Engineering Conference and the

ACM SIGSOFT Symposium of the Foundations of Software

Engineering, pp. 55-64, September 2007.

[4] P. Jablonski, and D. Hou,“CReN: A Tool for Track-

ing Copy-and-Paste Code Clones and Renaming Identi-

fiers Consistently in the IDE,”Proceedings of the OOPSLA

Workshop on Eclipse Technology Exchange, pp. 16-20, Oc-

tober 2007.

[5] Y. Higo, T. Kamiya, S. Kusumoto and K. Inoue,“Mehtod

and Implementation for Investigating Code Clones in a Soft-

ware System,”Information and Software Technology, vol.

49, pp. 985-998, September 2007.

[6] G. Klein, JFlex User’s Manual, November 2004.

Available at http://jflex.de/manual.html.

[7] J. Krinke,“A Study of Consistent and Inconsistent Changes

to Code Clones,”Proceedings of the 14th Working Confer-

ence on Reverse Engineering, 2007.

[8] B.S. Baker,“On Finding Duplication and Near-Duplication

in Large Software Systems,”Proceedings of the Second

Working Conference on Reverse Engineering, pp. 86-95,

July 1995.

[9] C. Kapser and M.W. Godfrey,“Toward a Taxonomy of

Clones in Source Code: A Case Study,”Evolution of Large-

scale Industrial Software Applications, September 2003.

[10] S. Ducasse, M. Reiger, and S. Demeyer,“A Language In-

dependent Approach for Detecting Duplicated Code,”Pro-

ceedings of the IEEE International Conference on Software

Maintenance, pp. 109-118, August 1999.

[11] C. Kapser, and M. Godfrey,“ Supporting the Analysis of

Clones in Software Systems: A Case Study,”Journal of Soft-

ware Maintenance and Evolution: Research and Practice,

Vol.18, pp. 61-82, 2006.

[12] M. Kim, V. Sazawal, D. Notkin, and G. Murphy,“An Em-

pirical Study of Code Clone Genealogies,”Proceedings of the

European Software Engineering Conference and ACM SIG-

SOFT Symposium Foundation of Software Engineering, pp.

187-196, Sept. 2005.

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,“DECKARD:

Scalable and Accurate Tree-based Detection of Code

Clones,”Proceedings of 29th International Conference on

Software Engineering, pp. 96-105, May 2007.

— 6 —

