
Data Dependency based Test Case Generation
for BPEL Unit Testing

チョイ コーイー † 石尾 隆 † 松下 誠 † 井上 克郎 †

四野見 秀明 ‡ 湯浦 克彦 ‡

† 大阪大学 大学院情報科学研究科
〒 560-8531 大阪府豊中市待兼山町 1-3

‡ 株式会社日立コンサルティング
〒 108-0075 東京都港区港南 2-16-4

ウェブサービスビジネスプロセス実行言語WS-BPELで書かれたプロセスを対象とした単体テストのた
めのテストケースを作成する際，開発者はテスト対象に入力として送信するデータとテスト対象からの
出力を検証する検証式を手作業で用意しなければならない．しかし，ウェブサービスが送受信するXML
データは一般に複雑なため，これらのテストデータを作成するのは困難である．また，作成したテスト
ケースが十分なのかを判断することも難しい．本稿では，テストケースの作成を支援するために，入出力
データ間での依存関係を用いたテストケース生成手法を提案する．提案手法では，開発者はまず XPath
式でテスト対象の入出力データ間での依存関係を記述する．次に，システムは記述された依存関係情報と
WSDL文書から取得できるデータ型の情報を用いて一貫性を持つテストデータを生成する．最後に，生
成されたテストデータを用いてテストケースを作成する．また，本稿では，プラットフォーム非依存な実
行履歴記録手法についても述べる．BPELプロセスの実行履歴は，テストケースが十分かどうかを開発者
が判断する際に有用である．提案手法を実装したシステムを実際に運用してもらい，評価実験を行った．

Data Dependency based Test Case Generation
for BPEL Unit Testing

Kho Yee CHOY† Takashi ISHIO† Makoto MATSUSHITA† Katsuro INOUE†

Hideaki SHINOMI‡ Katsuhiko YUURA‡

† Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

‡ Hitachi Consulting Co., Ltd.
2-16-4 Konan Minato-ku Tokyo 108-0075, Japan

To create test cases for the unit testing of business process written in Web Services Business Process
Execution Language (WS-BPEL or BPEL), developers have to prepare input data for the BPEL
process under test (PUT) and verification conditions for output data from the PUT. This prepa-
ration of test data can be a tedious task due to the complexity of XML data used by the PUT.
Furthermore, it is difficult for developers to decide whether the created test cases are sufficient for
testing the PUT. In this paper, we propose a data dependency based test case generation approach.
In this approach, developers first define data dependencies using XPath expression. Type definitions
in WSDL documents are then leveraged to automatically generate independent data which, together
with the specified data dependencies, are then used to generate coherent test data. Finally, test
cases are composed using these data. Besides, a platform independent method to collect execution
information of the PUT is also presented. This can provide developers useful information for eval-
uating the adequacy of generated test cases. Experiments were carried out to verify that this tool
indeed helps in the creation of test cases for BPEL unit testing.

- 1 -

1 Introduction

Web Services Business Process Execution Lan-
guage (WS-BPEL or BPEL) [8] is an XML-based
language designed to compose Web services [2]
in realizing Service-Oriented Architecture (SOA).
BPELUnit is a unit testing framework imple-
mented by Mayer et al. [6] to facilitate unit test-
ing of these Web service compositions. Never-
theless, BPELUnit does not provide much sup-
port in test case creation and the monitoring of
the process under test (PUT). Developers have
to manually prepare large amount of coherent
XML data and XPath expression to compose a
test case. This is a painstaking task considering
the complex structure of involved XML data.

In this paper, we propose a data depen-
dency based approach to generate test cases for
BPELUnit while preserving data coherency. De-
velopers are required to describe the data de-
pendencies in XML Path Language (XPath) [4].
Based on type information specified in Web Ser-
vices Description Language (WSDL) [3] docu-
ments, independent data are randomly gener-
ated, while dependent data are generated accord-
ing to data dependencies specified by develop-
ers. We also propose a method to capture execu-
tion information of the PUT using only standard
BPEL functions to help developers determine the
adequacy of generated test cases.

We implemented the approach as a tool and
evaluated its usefulness through experiment.
Four graduate students actually used the imple-
mented tool to create test cases for sample BPEL
processes. From the result, we found that the
proposed method is indeed effective in solving ex-
isting problems.

The rest of this paper is organized as follows:
Section 2 further explains the related technologies
of this research. Section 3 presents the details of
our proposed approach and Section 4 covers the
implementation. Section 5 presents the experi-
ment and its result. Section 6 states the stance
of this research with regard to other related work.
Finally, Section 7 concludes the paper with con-
clusion and future work.

loan amount < 10000

loan amount >= 10000

risk = ’low’risk = ’high’

(receive)

(invoke)

(invoke)

(assign)

(reply)

ReceiveCustomerRequestforLoanAmt

InvokeLoanAssessor

InvokeLoanApprover AssignYestoAccept

AcceptMessageToCustomer

Figure 1: The Loan Approval Process

2 Background Technologies
2.1 BPEL

Web Services Business Process Execution Lan-
guage (WS-BPEL or BPEL) is an XML-based
language for Web service composition. BPEL
uses existing XML specifications such as WSDL,
XPath and XML Schema. It uses WSDL docu-
ments for Web service composition and handles
XML Schema based data with XPath expression.
We use the following terms in this paper:
• A BPEL process is a process written in BPEL.
• A partner Web service is the Web service in-

voked by a BPEL process.
• A client is an application or Web service that

invokes the BPEL process.
Figure 1 shows the loan approval process pro-

vided as example in the BPEL specification [8].
This process will be used as example through-
out the paper. This process first receives loan
request from the client. If both the loan amount
and the risk assessment result of the individual
are low, approval is automatically granted. How-
ever, if the loan amount or the individual’s risk
is high, then further investigation is needed. The
process invokes partner services to assess individ-
ual’s risk level and to conduct further investiga-
tion. The two invoke activities indicates these
invocations. Finally, the loan approval process
replies the client with either approval or rejec-
tion.

A BPEL process is built up by basic activi-
ties and structured activities. The above exam-
ple uses four basic activities: receive, invoke,

- 2 -

Partner Track:
LoanApprover

Partner Track:
LoanAssessor

PUTClient Track

verify

verify

verify

Prepared
Data

Prepared
Data

Prepared
Data

Figure 2: BPEL Unit Testing of the Loan Ap-
proval Process

assign and reply. On the other hand, struc-
tured activities such as sequence, if, while,
forEach, etc. are used to express more complex
controls on how basic activities are executed. For
example, a sequence structure is used to execute
activities contained within it sequentially. Be-
sides, scope can be used to hold related activities
together.

XML Path Language (XPath) is the standard
query and expression language used in BPEL to
handle data in the assign activity. XPath is used
to find nodes and extract information from XML
documents.

2.2 BPELUnit Testing Framework

In BPELUnit, the PUT is deployed on server
while the client and other partner Web services
are simulated by the framework as client track
and partner tracks. All tracks run as indepen-
dent processes simultaneously when the test be-
gins. Activities are added into these tracks to
represent invocations of operations in the tracks.
In the client track, an activity corresponds to the
operation of the PUT. Figure 2 shows an example
of the invocations of operations in a BPELUnit
test case when the loan amount is low but the
individual’s risk is high.

Test case creation in BPELUnit involves two
steps. Developers first select a set of involved
operations in the test case and add them to cor-
responding tracks as activities. For each of these
activities, developers then prepare the XML data
that are to be sent to the PUT and verification
conditions used to verify the data received from
the PUT. A verification condition is a pair of an
XPath expression to be executed inside the re-
ceived data and a value which the result of the

<creditInfo>
 <id>12345</id>
 <name>BPEL</name>
 <amount>5000</amount>
</creditInfo>

<condition>
 <expression>./creditInfo/amount</expression>
 <value>’5000’</value>
</condition>

Input for the PUT:

Verification condition to check PUT’s output in
LoanAssessor track:

Figure 3: Example of Test Data

XPath expression must match. Here, we call the
XML data and verification condition test data.
Example of test data is shown in Figure 3.

Test case is then run inside the BPELUnit
framework. At the beginning of the test, the sim-
ulated client initiates the test by sending the pre-
pared data to the PUT. The PUT then invokes
the operations of its simulated partners as neces-
sary along the test. These partners receive data
from the PUT and verify them according to the
given verification conditions. If everything is fine,
the invoked partners return the prepared data to
the PUT for further processing. If an error occurs
along the way, the test is terminated immediately
and the error is reported.

3 Approach
3.1 Data Dependency Based Test Case

Generation
Data dependencies exist amongst the input and

output data of the PUT. Figure 4 shows an ex-
ample of data dependency that exists in the loan
approval process in which data are simply copied
from message to message. We believe that these
data dependencies are simple because BPEL only
provides minimum functions needed to perform
data manipulation for business processes [5]. We
deploy this simplicity of data dependency and
propose a data dependency based test case gen-
eration method.

In our method, developers first need to un-
derstand the specification of the PUT. This is
a safe assumption as BPELUnit is designed for
white box testing purpose. Then, developers se-
lect a set of operations to be invoked in the test
case. For this operation set, developers list out

- 3 -

Client Loan Approval Process LoanAssessor

<creditInfo>
 <id>12345</id>
 <name>BPEL</name>
 <amount>5000</amount>
</creditInfo>

Client Request Message

<assessment>low</assessment>

LoanAssessor Response Message

LoanAssessor Request Message

<creditInfo>
 <id>12345</id>
 <name>BPEL</name>
 <amount>5000</amount>
</creditInfo>

<approval>yes</approval>
LoanApproval
Response Message

depends on

Figure 4: Example of Data Dependency

data dependencies of its input and output data.
Note that the number of times an operation is
invoked might depend on data, too. In order to
process these data dependencies, they must be
specified in a machine-processable format. We
found XPath convenient in the specification of
data dependency since it is the standard query
and expression language in BPEL.

Test-related data are then generated based on
the data dependencies specified earlier. For the
example in Figure 4, independent data in the
client request message are first generated ran-
domly. Verification conditions can then be added
automatically to the corresponding activity in the
LoanAssessor track to verify that the dependent
data indeed have the same values as the data they
depend on. These test data are later used to gen-
erate test case. Number of activities in a track,
i.e. the number of invocations of an operation
might depend on data, too. This dependency
is handled appropriately during test case genera-
tion.

3.1.1 Data Dependency Specification

We use XPath expression to specify data de-
pendencies in our work. Location path is used
to specify the dependent node in an XML data
while XPath expression is used to return the
value this dependent node should have. An ex-
ample is shown below. This example shows the
pair of XPath expressions to specify one of the
dependencies between the client request message
(CMSG) and the LoanAssessor request message
(LMSG) in Figure 4.
Dependent node: (LMSG) creditInfo/id

Value : (CMSG) creditInfo/id

Note that (LMSG) and (CMSG) are inserted to

clarify which message the XPath expressions op-
erate on and not part of the XPath expressions.

Besides, data might affect the number of in-
vocations of an operation. For example, for n
results returned by a search engine, an operation
have to be invoked n times in a loop. In this case,
the dependency consists of an identifier of the op-
eration and the XPath expression which specify
the number of times it is invoked.
3.1.2 Test Data Generation

Independent input data are input data to the
PUT which do not rely on other data, thus can
be generated freely. An example of independent
input data is the client request message shown
in Figure 4. The generation of a set of coherent
test data starts with generating independent in-
put data randomly within the constraints set by
XML Schema facets.

Dependent input data are input data to the
PUT which rely on other data. For example,
partner Web services might copy part of the re-
quest message that they have received from the
PUT into their own response messages. Depen-
dent input data can be generated according to
their relationship with other data specified in
XPath expression.

Independent output data come out from the
PUT and do not rely on previous data. The
corresponding verification conditions have to be
independently specified. This includes statically
defined data in the PUT. For example, partner
Web service often requires special access key to
identify the caller, the key is often embedded in-
side the PUT and do not depend on other data.

Dependent output data are output data from
the PUT which rely on other data. An exam-
ple of dependent output data is the LoanAsses-
sor request message shown in Figure 4. To verify
dependent output data, the location path to the
element which is to be verified is specified during
dependency specification and the expected value
is generated according to the specified XPath ex-
pression.
3.1.3 Test Case Generation

The set of client track and partner tracks as
well as activities within them are created from the
operation set specified by developers. Test data

- 4 -

Original PUT

Augmented PUT

Basic activity

Invoke activity for

logging purpose

A sequence structure

Figure 5: Augmentation of the PUT

generated in the previous stage are then filled into
these activities accordingly to generate complete
test case.

3.2 Platform Independent Execution
Logging

It is important to know whether generated test
cases are adequate to test the PUT. Here, we pro-
pose a method to capture execution information
of the PUT by weaving standard BPEL activi-
ties which invoke an external logging service into
the PUT. From the log, execution information is
retrieved and analyzed to present useful informa-
tion to developers.

The PUT is first augmented with invoke ac-
tivities, with one attached before and another one
after each basic activity in the PUT. This aug-
mentation process is shown in Figure 5. These
invoke activities invoke an external logger Web
service to notify that the activity to which it is
attached is going to be, or has been executed.

The attachment of the pair of invoke activi-
ties to a basic activity is done by grouping the
basic activity and the surrounding invoke activ-
ities inside a sequence structured activity. In
Figure 5, this grouping is shown as boxes sur-
rounding the tuples of basic activity and invoke
activities. The sequence activity guarantees that
corresponding invoke activities is executed right
before and after the activity they are attached
to.

WSDL
Input

BPEL Data
Dependency Editor

creates

Test Case
Generator

Input

BPEL Data
Dependency Description

Test Case Generation

Test
Cases

generates

BPEL Engine

BPEL Process
Augmenter

Logger
Web Service

BPELUnit

BPELUnit Runner
Editor

Developer

Platform Independent Execution Logging

Input

retrieves execution informationfeedback

generates deployed tests

invokes

runs

calls

calls

Figure 6: System Overview

4 Implementation

Figure 6 shows the system overview of the im-
plemented test case generation system. A dotted-
line box represents a subsystem. There are two
subsystems in the tool, one is the test case gener-
ation subsystem and the other one is the platform
independent execution logging subsystem.

The test case generation subsystem comprises
three components. The BPEL Data Dependency
Editor is an Eclipse plug-in which enables devel-
opers to group relevant operations into operation
sets and then specify data dependencies for each
set. This editor gets XML data type information
from the WSDL files of involved Web services. It
provides a graphical interface shown in Figure 7
to help developers create the BPEL Data Depen-
dency Description document, which is an XML
document used to record data dependency infor-
mation. The Test Case Generator takes as input
the BPEL Data Dependency Description docu-
ment and the WSDL files and output test cases
for BPELUnit.

The platform independent execution logging
subsystem comprises three components. The
BPEL Process Augmenter takes in a BPEL pro-
cess and augment it with additional invoke ac-
tivities. Developers then deploys the augmented
BPEL process on the BPEL engine as usual. Test
cases generated previously are then run on the
BPELUnit framework and these invoke activi-
ties get called and they send log requests to the
logger Web Service. The BPELUnit Runner Ed-

- 5 -

PUT Section Partner WSDL
Section

Dependency
Specification
Section

Dependency
List Section

Figure 7: BPEL Data Dependency Editor

PUT
Augmentation
Section

BPELUnit
Test Suite
Runner Section

Execution
Information
Display Section

Figure 8: BPELUnit Runner Editor

itor shown in Figure 8 is a graphical front end
provided to access all these components. After
running the test cases, it invokes the Logger Web
Service to retrieve execution information. Com-
parison is made between the original BPEL pro-
cess and the retrieved information to produce the
final report which shows the list of activities that
have been successfully run, failed or not been run
at all.

5 Evaluation

An experiment is conducted to find out how the
implemented tool benefits developers compared
to the existing tool in creating BPELUnit test
cases. We compared the following points:
• Test case characteristics. Is there any dif-

ference in the characteristics of test cases cre-
ated with the different tools?

• Common mistakes. What are the common
mistakes made by the subjects in the experi-
ment? Does this depend on tool being used?

5.1 Experiment Setup

Subjects. Subjects of the experiment were
first year master students majoring in software
engineering and have little or no experience in
Web services and related technologies.

Software environment. We used Eclipse
version 3.2 with BPELUnit version 1.0 plug-in
and the BPEL Data Dependency Editor plug-in
to create test cases. The software was prepared
by the experimenter and distributed to the sub-
jects at the beginning of the experiment.

Hardware environment. All subjects used
12-inch laptop computers with external mouse at-
tached during the experiment.

Procedure. Subjects were required to create
two sets of test cases for two different BPEL pro-
cesses, process A and process B, using different
tools. Specifications of these processes and the
involved partner services were provided in print.
Besides, samples of all XML data involved are
provided as clear text files. Test specifications
which describes which aspect of the processes
should be tested in each test case were provided
as well. Questions were allowed throughout the
experiment. The experiment was conducted in
the following steps.
(1) A brief tutorial on related technologies and

tool usage was given to the subjects.
(2) Subjects were given time to comprehend the

specifications of the services and test specifi-
cations.

(3) Subjects were required to create test cases for
the two processes individually in different or-
ders. The order in which they work was de-
cided randomly.
Target processes and test specifications.

Process A is the loan approval process used as
example in previous sections. Subjects were re-
quired to create seven test cases, with varied loan
amounts, risk levels and approval messages. On
the other hand, process B is the Meta Search
process presented in [7]. This process relays
search string from the client to two search en-
gines and returns search results after eliminating
duplicates. Subjects were required to create six
test cases corresponding to those presented in [7].
5.2 Result and Discussion
5.2.1 Test Case Characteristics

Table 1 shows the number of verification condi-
tions created by each subject using different tool
in the test cases for Process A. From Table 1,
we can see that numbers of verification condi-

- 6 -

tions created using BPEL Data Dependency Edi-
tor are in all cases higher than those created using
BPELUnit TestSuite Editor. By closer observa-
tion, test cases created using BPEL TestSuite Ed-
itor tend to skip some unimportant output data
from the PUT. On the other hand, test cases cre-
ated using the proposed BPEL Data Dependency
Editor tend to include these checks. This is be-
lieved to be the effect of showing the whole data
structure of relevant data to developers in the
implemented tool, making it easy to create con-
ditions to check those data. This is supported by
comments from the subjects that said the presen-
tation of data structure was useful.

5.2.2 Common Mistakes

Since all subjects had not much experience in
BPEL and related technologies, mistakes were
unavoidable.

For BPELUnit TestSuite Editor, many mis-
takes were made regarding XML namespace and
XPath expression in test data. These include syn-
tax errors, such as using multiple, undefined or
unnecessary namespace prefixes and omission of
the needed ones. Besides, skipping of elements
within XPath expression and spelling mistakes in
elements’ names were noticed as well. Moreover,
a mistake was made in which the loan approver
service was asked to send the result of the risk
assessor.

On the other hand, the above mistakes were al-
most non-existent when BPEL Data Dependency
Editor was used. This is believed to be the effect
of automatic insertion of location paths by the
tool. However, some necessary data dependen-
cies were left out, making the resulting test cases
incomplete. This is believed to be caused by in-
Table 1: Number of Verification Conditions Cre-
ated Based on Tool Being Used
Test Case Number of conditions created

Existing Tool Proposed Tool
Sub. 1 Sub. 4 Sub. 2 Sub. 3

1 2 1 4 4
2 3 3 7 8
3 3 3 7 8
4 2 2 4 5
5 2 2 4 5
6 2 2 4 5
7 2 2 4 5

sufficient understanding of the proposed method
and can be improved through practice.
5.3 Validity of Result
5.3.1 Strength of the Experiment Design

We randomly assigned tasks to four partici-
pants in order to avoid the influence of order and
human factors. Test cases for each process was
created twice using each tool so that the results
are less individual dependent. Then, enough time
to understand the specifications was given as that
is not related to the purpose of the experiment.
Questions were allowed throughout the experi-
ment to minimize the time taken in researching
about related technologies, which might nega-
tively influence experiment result. Considering
that simple XML data generation tools are freely
available, samples of involved XML data are pro-
vided in digital form to better imitate the real
development process.
5.3.2 Internal Validity Issues

Developers are expected to actually run the
created test cases while creating them in real
world environment. This was not possible in this
experiment since it was a burden for subjects to
learn yet another tool. Mistakes might be less if
they could run the test cases while creating them
in the experiment.
5.3.3 External Validity Issues

The subjects were all beginners and the group
was small. There is no firm evidence that the
results of this experiment can be generalized to
professional BPEL developers. Further studies
which involve subjects from the professional field
are needed to further evaluate the effectiveness of
the proposed approach.

6 Related Work
In the work of Yan et al. [9] and Yuan et

al. [10], a BPEL process is first analyzed and
translated into extended control flow graphs from
which test paths are extracted. Test data are
then generated using constraint solving tools or
methods. While this might help creating test
cases that cover more paths, constraint solving is
known to be hard and not applicable at all time.
However, test paths extracted with this method
can be used to identify operation sets which can

- 7 -

then be used with BPEL Data Dependency Edi-
tor to generate test cases which cover more parts
of the process.

In [6], the use of a common API across BPEL
engine vendors was suggested to provide execu-
tion information to developers. While this sug-
gestion sounds feasible, it might need tedious
work in the creation of such API. Therefore, in
this research this problem is tackled from another
aspect, which involves only standard BPEL fea-
tures. We have benefited from the work of Baresi
et al. [1], which proposed a non intrusive way of
adding assertions as comments into BPEL pro-
cesses for process monitoring purposes.

7 Conclusion

This paper presented a data dependency based
approach to alleviate the effort needed in gener-
ating test cases with coherent input and output
data for BPEL unit testing. A platform inde-
pendent method to obtain execution information
using only standard BPEL features was also pro-
posed. We implemented our approach as a test
case generation tool for BPEL unit testing and
a tool to run generated test cases while collect-
ing execution information. We evaluated the test
case generation tool and found that it is useful in
minimizing common mistakes made when exist-
ing tool is used.

In the future, we would like to improve the user
interface of the implemented tool to be more in-
tuitive. Also, we plan to leverage methods pro-
posed by Yan et al. [9] and Yuan et al. [10]
so that operation sets can be extracted from the
PUT automatically.

Acknowledgments

This research was supported by Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-
Aid for Young Scientists (B) (No.18700027).

References

[1] Luciano Baresi, Carlo Ghezzi and Sam
Guinea, Smart Monitors for Composed Ser-
vices. In Proceedings of the 2nd International
Conference on Service Oriented Computing
(ICSOC’04), pages 193-202, November 15-19,
2004.

[2] David Booth, Hugo Haas, Francis McCabe,
Eric Newcomer, Michael Champion, Chris
Ferris and David Orchard, Web Services Ar-
chitecture, 11 February 2004. Available at
http://www.w3.org/TR/ws-arch.

[3] Erik Christensen, Francisco Curbera,
Greg Meredith and Sanjiva Weerawarana,
Web Services Description Language
(WSDL) 1.1, 15 March 2001. Available
at http://www.w3.org/TR/wsdl.

[4] James Clark and Steve DeRose, XML
Path Language (XPath) Version 1.0,
16 November 1999. Available at
http://www.w3.org/TR/xpath.

[5] Frank Leymann, Dieter Roller and Satish
Thatte, Goals of the BPEL4WS Specification.

[6] Philip Mayer and Daniel Lübke, Towards a
BPEL unit testing framework. In Proceedings
of the 2006 workshop on Testing, analysis,
and verification of web services and applica-
tions (TAV-WEB’06), pages 33-42, July 17,
2006.

[7] Philip Mayer, Design and Implementation of
a Framework for Testing BPEL Composi-
tions, September 11, 2006.

[8] OASIS WSBPEL Technical Committee, Web
Services Business Process Execution Lan-
guage Version 2.0, 11 April 2007.

[9] Jun Yan, Zhongjie Li, Yuan Yuan, Wei Sun
and Jian Zhang, BPEL4WS Unit Testing:
Test Case Generation Using a Concurrent
Path Analysis Approach. 17th International
Symposium on Software Reliability Engineer-
ing (ISSRE’06), pages 75-84, 2006.

[10] Yuan Yuan, Zhingjie Lie and Wei Sun, A
Graph-search Based Approach to BPEL4WS
Test Generation. In Proceedings of the Inter-
national Conference on Software Engineering
Advances (ICSEA’06), page 14, 2006.

- 8 - ⌋

