A Metric-based Approach for Reconstructing Methods in
Object-Oriented Systems

Tatsuya Miyake

Yoshiki Higo

Katsuro Inoue

Graduate School of Information Science and Technology, Osaka University
{t-miyake,higo,inoue}@ist.osaka-u.ac.jp

ABSTRACT

Refactoring is an important activity to improve software quality,
which tends to become worse through repetitive bug fixes and func-
tion additions. Unfortunately, it is difficult to perform appropriate
refactorings because a refactoring needs certain costs, and its ef-
fects should be greater than the costs. This paper describes an ap-
proach for appropriate refactorings. The approach identifies spots
to berefactored and it suggests how they should beimproved. More-
over, the approach estimates the effects of the refactorings. The ap-
proach requires a lightweight source code analysis for measuring
several metrics, so that it can be applied to middle- or large-scale
software system. The approach can make the refactoring process
more effective and efficient one.

Categories and Subject Descriptors

D.2.8 [SOFTWARE ENGINEERING]: Metrics—Product met-
rics, Complexity measures

General Terms
Design, Measurement

Keywords

Refactoring, Software maintenance, Source code analysis

1. INTRODUCTION

Quiality of a software system is akey factor whether its devel op-
ment and maintenance succeed or not. Regrettably, software qual-
ity grows worse by project creep, repetitive bug fixes, function ad-
ditionsand so on. Itisnot realistic that quality of asoftware system
doesn’t become worse through its life cycle.

Refactoring is an activity to improve the internal structure of a
software system without changing the external behavior of it [5],
and it can regain software quality. A refactoring itself requires cer-
tain costs, and the effects should be greater than the costs. But the
effects is ambiguous before performing it, so that we can say that it
is difficult to perform appropriate refactorings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

In this paper, we propose an approach for performing appropri-
ate refactorings. The approach focuses on the internal structures
of methods in object-oriented systems. Firstly, the approach iden-
tifies spots to be refactored, and then it suggests how they should
be improved. Moreover, the approach estimates the effects of the
refactorings that it suggested. The approach is metric-based, and it
reguires alightweight source code analysis, so that it can be applied
middle- or large-scale software systems.

As of now, we are implementing a software tool which realizes
the approach. This paper describes the details of the approach and
acase study with the partially implemented tool. After the software
tool is completed, we will do more case studies.

2. REFACTORING

Refactoring is a set of operations to improve maintainability, un-
derstandability, extendability or other attributes of software sys-
tems without changing the external behavior of it [5], and it is get-
ting much attention recently. Usualy, refactoring is performed on
the following process [7]:

STEP1 : ldentifies spots that should be bottlenecks of develop-
ment or maintenance of the software system. For example,
too long methods, complicated control structures, or dupli-
cated code should be refactored [5].

STEP2 : Determines how the spots should be improved. Before
now, many refactoring patterns have been proposed [2, 5].

STEP3 : Estimates the costs and the effects of the refactoring de-
termined in STEP2. If the effects will be greater than the
costs, the refactoring should be really performed.

STEP4 : Changes the source code based on the refactoring deter-
mined in STEP2. Recently, IDEs(e.g., Eclipse [4], NetBeans
[1]) have functions changing source code automatically.

STEP5 : Conducts regression test to ensure that the refactoring
didn’t change the external behavior of the software system.

A problem of refactoring is that STEP1 and STEP2 need rich
knowledge and experiences to identify spots to be refactored and
to determine how the spots are improved. In practice, there are
many developers having limited knowledge and low experiences,
so that they spend too much time in STEP1 and STEP2. Another
problemisthat it is difficult to estimates the effects of arefactoring
before performing it. Developers don’t tend to be aware that the
refactoring has side-effects before they actually perform it. Thus
inappropriate refactorings often may be performed.

In this paper, we propose an approach to support STEP1, STEP2,
and STEP4 of the refactoring process. By using the approach, the
users can perform appropriate refactorings efficiently.

3. APPROACH

This section describes the proposed approach. In the approach,
Refactoring meansthat structural blocksin methods of object-oriented
systems are extracted as new methods in the same class or another
class. For example, in the case of Java language, there are 8 types
of strucutral blocks (do, if, for, switch, synchronized, simple-block
{}), try, while).

Section 3.1 describes how the method identifies spots to be im-
proved, and Section 3.2 mentions how the spots to be refactored.
Finally, Section 3.3 presents the effects estimation of the approach.

3.1 Identifies spotsto beimproved

The proposed approach investigates the internal structures of the
methods of a software system, or several metrics are measured on
structural blocks in the methods. Blocks having bad metrics values
are the targets to be refactored. The following describes metrics
used in the approach.

Cyclomatic complexity: Cyclomatic complexity isthe number of
linearly independent paths from the start node to the end one
of agraph [6]. In the case of source code, Cyclomatic com-
plexity can be represented by the number of conditional ex-
pressions plus 1. It is widely accepted that high value of
cyclomatic complexity of a method implies that it includes
complicated control logics and it is hard to understand and to
conduct enough tests. The proposed approach measures cy-
clomatic complexity of structural blocks in addition to meth-
ods in the target software system.

We assume that there are n expressions in block B, metric
CC(B) can be represented as follows.

CC(B)(CyclomaticCompl exity) = n+1

LOC (LinesOf Code): LOC isthe smplest and the most widely-
used metric to measure module size in a software system.
The proposed approach measures LOC of structral blocks
and methods of the target software system.
Additionally, in the case of a structural block, the approach
calculates its occupancy rate for the method including it. The
occupancy rate of astructural block can be aindicator whether
the structural block should be refactored or not.

We assume that the LOC of block B is LOC(B) and the LOC
of method M including the block is LOC(M), metric OR(B)
can be represented as follows.

LOC(B)

LOC(M)

OR(B)(OccupancyRate) =

For example, there are two methods, A and B: method A
consists of 100 lines of code and it includes a50 LOC block;
method B consists of 60 lines of code and it includes a 50
LOC block; the both blocks have 50 LOC whereas the occu-
pancy rate of Ais 2% = 0.5, and Biis 23 = 0.83; in the case
of A, by extracting the block as a new method, A is divided
into two reasonabl e size methods; in the case of B, extracting
the block means almost all of code of B is moved to the new
method. The refactoring of B should not be appropriate.

Number of Available Variables: In object oriented systems, at-
tributes of classes shouldn’'t be able to access outside the
class. If we want to uses an attribute of a class in another
class, we use accessor method for the attribute. Attribute
encapsulation can reduce the number of available attributes,
and it can make the source code more robust.

public void sample () {

inti=0;

String str; 6 variables (i, str, j, b,
intj=0; str2, k) are available.
boolean b;

String str2;

i while(hoge())'{
' intk = bar();
P jar(str);
i foo(i, k);

3 variables (j, b, str2) are
not used in this block.

(a) Before refactoring

public void sample () {

inti=0;

String st{ Invokes new method with
intj=0;(_ needful variables (i, str).
boolean b;

String str2;

neWMethod(i, str);

3 variables (i, str, k) are availa@

i while(hoge()) {
i int k = bar();
i jar(str);
i foo(i, k);

(b) After refactoring

Figure 1: Refactoring example reduce the number of available
local variables

Here, we propose local variable encapsulation, which isthe
same concept as attribute encapsulation. If we encapsulate
local variables that are not used in some spots of the method,
the maintainability of the method should be improved. Lo-
cal variable encapsulation can prevents encapsulated local
variables from being accessed accidentally by changing the
source code. Table 1 illustrates a summary of attribute en-
capsulation and local variable encapsulation.

We defined anew metric ALV (B) as follows.
ALV (B) (Available Local Variable) is the number of local

variables that are defined outside block B and that can
be accessed in the block.

We think that, spots to be refactored have higher value of the
number of available local variables than spots not to have to

Table 1. Attribute encapsulation and local variable capsulation

Name Attributes encapsulation

Local variable encapsulation

Summary from being accessed from other classes.

Encapsul ates attributes for preventing them | Encapsulates local variables for preventing them

from being accessed from other spots in the method.

Attributes are defined as private.

Implementation If necessary, accessors of them are defined.

A spot of amethod is extracted as a new method.
If necessary, argument and return variable are used.

public void sample () {
inti=0;

make(str); '

P System.out.printin(i); |

bar(); |
make(str); '

(a) Source code of amethod

vertical coupling

(b) Tree structure of the method

Figure2: Horizontal Coupling and vertical Coupling

be refactored. Figure 1 illustrates a sample refactoring re-
ducing the number of available local variables. Before refac-
toring, there are 6 available local variables (i, str, j, b, str2,
k) in the hatching part. But 3 local variables (j, b, str2) of
them are not used in the part. If the part were changed be-
cause of bug fix or function addition, these 3 variables might
be used carelessly and some new bugs may be yielded. In
this situation, extracting the part as anew method like Figure
1(b) can prevents these local variables from being accessed

Before refactoring After refactoring
public void sample () { public void sample () {
{ while(hoge()) { i newMethod();
i inti=0; i .
i String str = “string”; !
i foo(i); : }
L1 - ; S —]
: \ iprivate void newMethod () { |
: i while(hoge()) { i
} i inti=0; :
H String str = “string”; |
P foo(i); i
Extracts without change i} } i
(8) Week coupling
Before refactoring After refactoring
public void sample () { public void sample () {
inti=0; inti=0;
boolean bool ; boolean bool ;
String str; String str;
! while(hoge()){ | str = newMethod(i, bool);
i str ="“string”; : :
i foo(i); : :
i bar(bool); g return str;
i} ; }
5 private String newMethod ~
return str; \ (int i, boolean bool) {
} String str;
while(hoge()) {
str = “string”;
. foo(i);
Extracts with arguments bar(bool);
and return value 1
return str;
).
(b) Strong coupling
Figure 3: Extraction based on vertical coupling
accidentally.

The metrics described above are used to identify spotsto beim-
proved. Because this study isin progress, we have not known rea-
sonable thresholds of these metrics yet.

3.2 Determineshow the spotsto berefactored

In this process, couplings of blocks with their surrounding code
are measured. The coupling metrics are used to determine how to
refactor the blocks.

Vertical coupling : Vertical coupling means a coupling of a block

public void sample () {
inti=0;
String str;

str = “string”;

public void sample () {
inti=0;
String str;

str'= newMethod1(i);

13 newMethod2(i, str)

ipublic String newMethod1 (int i) {
: String str;

' while(hoge()) {
: str = “string”;
i foo(i);

public void sample () {
inti=0;

newMethod3(i);

}

public String newMethod3(int J) {
String str;

hile(hoge()) {

- str = “string”;

i while() {
bar(i);
make(str);

................ 5 data flow

(a) Before refactoring

(b) Extracted as different methods

(c) Extracted as a single method

Figure 4: Refactoring example based on horizontal coupling

with its outer block. This coupling is measured based on
how the block uses local variables that are defined outside it.
Henceforth, we call such variables outer variables.

When ablock is extracted as anew method,

o if ablock refersto outer variables, their values have to
be passed to the new method as arguments,

e if a block assigns some values to outer variables, the
new methods returns the variables as return value.

Figure 3 presents two examples: one is a case that the target
block has week coupling with its outer block; the other is a
case that the target block has strong coupling. In the case of
Figure 3(a), the target block uses no outer variable, so that
the block can be extracted as a new method simply. On the
other hand, in the case of Figure 3(b), the target block refers
to and assigns a value to outer variables, so that extracting
the block requires to add arguments and areturn statement to
the new method.

Two metrics NRV (B) and NAV (B) can be defined as follows.

NRV(B) (Number of Referred Variables) of block B is a
number of outer variables that are referred to in the
block.

NAV (B) (Number of Assigned Variables) of block B is a
number of outer variables that are assigned to in the
block.

Horizontal coupling : Horizontal coupling means a coupling of

two blocks in the same scope. If the coupling is strong, the
blocks should be extracted as a new method. Otherwise the
blocks should be extracted as different new methods. The
metric HC(Bs, Bt) can be defined as follows.

HC(Bs,Bt) (Horizontal Coupling) isthe number of outer vari-
ables referenced/assigned in both block Bs and By.

Figure 4 represents a sample refactoring based on horizon-
tal coupling. Before refactoring (Figure 4(a)), there are two
blocksin the method and these blocks have a certain horizon-
tal coupling because there are two data flows between them.
If these blocks are extracted as different methods (Figure
4(b)), they have to have complicated signature (arguments
and return value) because the data have to be passed through
the new methods. On the other hand, if the blocks are ex-
tracted as a single method (Figure 4(c)), the signature of the
new method become simple because the data flows are com-
pleted within the new method.

But, from the view point of the modularity, Figure 4(b) may
be better than Figure 4(c) because each functionality is di-
vided into different methods. Thisis very sensitive problem,
so that we cannot say which is the best solution. However,
we believe that the horizontal metric should be a indicator
how blocks should be refactored.

In the current definition of metric HC, we don't differentiate
assignment from reference. For more precisely representing
how blocks can be refactored, it is vital to distinguish be-
tween assignment and reference. Moreover, other techniques
of source code analysis like program slicing should be used.
In the current definition of horizontal coupling, thefollowing
coupling cannot be grasped.

e Firstly, in block B, avalueis assigned to variable V;.

e Then, avalue is calculated using variable Vi, and it is
assigned to variable V, (these operation are performed
outside By).

Table 2: Thetarget systems

Name | Version | #Files| LOC | AnalysisTime
JHotDraw 5.4b2 289 | 40,986 3.7 secs
Ant 1.65 674 | 166,295 12.6 secs
Antlr 3.01 142 | 44,032 4.1 secs

e Finaly, in the block B,1, variable V; is referenced.

Moreover, in this process, the approach suggests where the refac-
tored blocks should moved to. The suggestion is based on attribute
usages and method invocations in the target blocks.

o |f the blocks mainly use attributes and methods of its own
class, the blocks are extracted in the same class.

o |f the blocks use members of only its super class, the blocks
are extracted and moved to the super class.

o If the blocks use members of other classes, the blocks are
extracted and moved to the class whose members are used
by the blocks or utility class.

3.3 Estimatesthe effects of therefactoring

The method estimates the effects of the refactoring by using met-
ricsdescribed in Section 3.1 and 3.2. The metricsvalues after refac-
toring can be estimated from the source code of before refactoring
and refactoring operations. The estimated effects can be used for
checking whether the refactoring lead to side-effects or not.

4. CASE STUDY

We have conducted simple case studies on open source software
systems with the partially implemented tool. The target systems
are JHotDraw, Ant, and Antlr, which are implemented in Java lan-
guages. Table 2 represents the names, the versions, the numbers of
source files, and LOCs of the target software systems.

As you can see in the table, the tool could complete the source
code analysis at short times despite the targets are middle-scale
software systems®. The current implementation doesn’'t include
program dlicing. If we implement a program dlicing function in
the tool, the detection speed becomes much lower. Applying pro-
gram slicing is one of the future works. Section 5.1 describes about
it.

For the reason of the partial implementation of the tool, we can-
not conduct afully quantitative eval uation of the proposed approach
at present time. In the following of this section describes two case
examples detected in Ant and Antlr. We would like you to under-
stand that we cannot describes the results of vertical coupling due
to limitations of space.

4.1 A case of week horizontal coupling

Figure 5(a) illustrates a case example of week horizontal cou-
pling identified in Ant. The method in the figure includes two
blocks, oneisif-block (if1) and the other is while-block (whilel).

In (ifl), an externally defined variable dir Setsis referenced once.
On the other hand, in (whilel), 4 externally defined variables e,
addedPackages, pn, and sp are referenced. Thus, the coupling be-
tween (if1) and (whilel) isweek, they can be extracted as different
methods simply. By extracting (if1) as a new method, 3 variables

1Blocks By and B, arein the same scope in a method.
2Thetool was executed on the PC workstation with 3.00 GHz CPU
and 2.00 GB Memory.

01:
02:

00:private void parsePackages(Vector pn, Path sp) {

Vector addedPackages = new Vector();
Vector dirSets = (Vector) packageSets.clone();

- J>08:

32:

37:
38:
39:

41:

Enumeration e = dirSets.elements();

42:

49:

60:

while (e.hasMoreElements()) {

if (laddedPackages.contains(packageName)) {
addedPackages.addElement(packageName);
pn.addElement(packageName);
}
}
}
if (containsPackages) {
sp.createPathElement().setLocation(baseDir);
}else {

(8) A case of week horizontal coupling in Ant

00:protected void extractAttribute(String decl) {

04: boolean inID = false;
05: intstart=-1;
06: int rightEdgeOfDeclarator = decl.length()-1;
07: __int equalsindex = decl.indexOf('=");
i08: if (equalsindex>0) {
if1 3

11: rightEdge OfDeclarator = equalsindex-1;
12: }
14: for (int i=rightEdgeOfDeclarator, i>=0; i--) {
15: if (linID && Character.isLetterOrDigit(decl.charAt(i))) {
16: inID = true;
17: } else if (inID && !(Character.isLetterOr «===----

O
22: start = i+1;
23: break;
24 }
251}
26 7if ("starf<0 && iniDy {

72 R

i28: }
134: for (int i=start; i<=rightEdgeOfDeclarator; i++) {

@3
142 if (i==rightEdgeOfDeclarator) {
143 stop = i+1;
144: }
45}
60:}

(b) A case of strong horizontal coupling in Antlr

Figure5: Examplesidenfified in thetarget systems

pn, sp, and addedPackage become invisible in it. We can say that
the source code will become more simple and more robust.

From the view point of size, the method before refactoring has
79 LOC, whereas all of refactored methods have about 10, 30,
and 40 LOC. The refactoring divided the long method into three
reasonable-size methods.

4.2 A caseof strong horizontal coupling

Figure 5(b) represents a case example of strong horizontal cou-
pling identified in Antlr. The method in the figure includes four
blocks, two of them areif-blocks, (if1) and (if2), and the others are
for-blocks, (forl) and (for2).

In (if1), a value is assigned to variable rightEdgeOfDeclator,
and the variable isreferenced in (forl) and (for2). It is possible to
extract the three blocks as different methods with adding a return
statement to the method of (if1).

In(forl), variablesintl D and start are assigned valuesto, and the
both variables are referenced in (if2). Thus, it is difficult to extract
them as different methods, they has a strong horizontal coupling.
For extracting them as different methods, we haveto prepare aclass
that can store the both data. In this case, it is redistic that (forl)
and (if2) are extracted as a single method with adding an argument
for rightEdgeOfDeclarator to the method.

5. FUTURE WORK
5.1 Applying Program Slicing

The approach described in this paper iswork-in-progress and we
have many things to sophisticate it. The biggest problem is that,
we think, the approach cannot identify statements related with the
specified block. In the case of Figure 5(a), the statement in line
41 arerelated with both (if1) and (whilel). The statement refersto
variable DirSetswhichisassigned to in (if1), and it assigns avalue
to variable e which is referenced in (whilel).

We are going to apply program slicing technique to identify such
statements. Program dlicing is performed from the externally de-
fined variables in the specified block. The program dlicing can
identify statements related with the block. Figure 6 illustrates how
(if1) can be extracted with the current approach and the one with
program slicing. The example is an actua source code identified
in Ant, which is also represented as Figure 5(a). In the current
approach (Figure 6(a)), the definition of variable dirSets exists in
method parsePackage after extracting (if1). That means the vari-
able can be accessed in the method, and it may be used in the
method accidentally. In the future approach (Figure 6(b)), the defi-
nition of variable DirSets is moved to the extracted method. Thus,
the variable cannot be accessed in method parsePachages, which
can prevent the variable from begin used in the method acciden-
tally.

5.2 Correation with other metrics

In this paper, we proposed a new metric ALV (Available Local
Variable), which should be a indicator whether or not the block
should be refactored or not. We have to evaluate whether the met-
rics have a correlation with the number of bugs or other metrics.
We are going to evaluate correlations with CK metrics suite [3].

5.3 Interview

We are going to conduct interviews with developers of target
software systems. Interview will provide us information that can-
not be provided from the quantitative evaluation. The targets are
both commercia and open source systems, and we will get differ-
ent comments from the devel opers.

00:private void parsePackages(Vector pn, Path sp) {
. Vector addedPackages = new Vector();
Vector dirSets = getDirSets();

Enumeration e = dirSets.elements();

while (e.hasMoreElements()) {

(a) Current Extraction

00:private void parsePackages(Vector pn, Path sp) {
01: Vector addedPackages = new Vector();

40:

41: Enumeration e = getDirSetsEnumeration();

i42: while (e.hasMoreElements()) {
@1}
78)

:792}

(b) Future Extraction

Figure 6: Examplesof Current and Future Extraction

6. CONCLUSION

In this paper, we described an approach to reconstruct methodsin
object oriented systems. The approach performs source code anal-
ysisfor (1)identifying spots to be improved, (2)suggesting how the
spots to be improved, and (3)estimating the effects of the refactor-
ings. thisinformation is provided to the users automatically. The
users determines whether the refactoring should be performed or
not by themselves.

Acknowledgements

This research has been conducted as a part of Stage Project, the
Development of Next Generation IT Infrastructure, supported by
Ministry of Education, Culture, Sports, Science and Technology.

7. REFERENCES

[1] NetBeans. http://www.netbeans.org/

[2] Refactoring Home Page. http://www.refactoring.com/

[3] S. Chidamber and C. Kemerer. A Metric Suite for
Object-Oriented Design. | EEE Transactions on Software
Engineering, 25(5):476-493, Jun 1994.

[4] Ecilpse. http://www.eclipse.org/

[5] M. Fowlor. Refactoring: improving the design of existing
code, Addison Wesley, 1999.

[6] T.Macabe. A Complexity Measure. | EEE Transactions on
Software Engineering, 2(4):308-320, Dec 1976.

[7] T.Mensand T.Tourwe. A Survey of Software Refactoring.
|EEE Transactions on Software Engineering, 30(2):126-139,
Feb 2004.

