
Feature-level Phase Detection for Execution Trace
Using Object Cache

Yui Watanabe Takashi Ishio Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
{wtnb-y, ishio, inoue} @ist.osaka-u.ac.jp

ABSTRACT
Visualizing collaborations of objects is important for devel-
opers understanding and debugging an object-oriented pro-
gram. Many techniques and tools are proposed to visualize
dynamic collaborations involved in an execution trace of a
system, however, an execution trace may be too large to be
transformed into a single diagram. In this paper, we propose
a novel approach to efficiently detecting phases, or high-level
behavioral units described in a use-case scenario. Our idea
is based on the nature of object-oriented programming; a
phase starts with preparing objects for the phase and ends
with destroying temporary objects. Our technique uses a
LRU cache for observing a working set of objects, and in-
terprets a sharp rise in the frequency of the cache update
as a phase transition. We have applied our approach to
two industrial applications and found that our approach is
promising to visualize a phase corresponding to a feature as
a sequence diagram.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Tracing

General Terms
Algorithm, Experimentation

Keywords
phase detection, dynamic analysis, execution trace, Java
program, sequence diagram

1. INTRODUCTION
Visualizing collaborations of objects is important for de-

velopers understanding and debugging an object-oriented
program. This is because understanding the behavior of
an object-oriented system is more difficult than understand-
ing its structure [1, 24], and because collaborations of ob-
jects provide a larger unit of understanding than classes [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA – Workshop on Dynamic Analysis, July 21, 2008
Copyright 2008 ACM 978-1-60558-054-8/08/07 ...$5.00.

Many techniques and tools are proposed to visualize dy-
namic collaborations involved in an execution trace [1, 4, 6,
11, 20, 21].

An important issue in this research area is how to handle
a huge amount of events included in an execution trace. One
approach is summarizing an execution trace [6, 12]. Another
approach is visualizing an overview of a trace using zoom-
in/out functionality [11] or a new viewer named Circular
Bundle View [3]. The third approach is visualizing only
events of interest to developers using a query-based interface
provided by JIVE [4] and Shimba [20].

We propose a phase detection approach to dividing a long
execution trace into several phases before such summariza-
tion and visualization. A phase relates to what the program
is doing at a high level, e.g. reading input, processing a
command, accessing a database, waiting for a connection,
or computing some set of values [13]. Our method identifies
a phase as a consecutive sequence of run-time events. Some
phase corresponds to a feature, which is a realized func-
tional requirement of a system [5, 16]. Some other phase
may represent a minor phase, or one of the tasks to achieve
a feature.

Detecting phases from an execution trace helps developers
focus on a small portion of the execution trace. For example,
a bug report such as “this program crashed during the login
phase” indicates a good clue for developers. Furthermore,
developers can visualize only the login phase as a sequence
diagram and investigate its detailed behavior.

We propose a novel approach to detecting phases involved
in execution traces. Our technique is based on the nature
of object-oriented programs; many objects are created to
achieve a task and most of the objects are destroyed after
the task [8, 22]. We employ a LRU cache for observing
objects that are working for the current phase; when the
cache is frequently updated, we recognize that a new phase
is beginning and preparing objects for the new phase. This
lightweight approach is suitable to analyze a large number
of events and objects. For example, our prototype without
any optimization techniques took only 30 seconds to process
an execution trace involving a million events.

As a case study, we have analyzed several use case sce-
narios on an industrial system. We found that if we di-
vided an execution trace into 10 phases, 8 of 10 detected
phases are correct on average; they cover 93% of feature-
level phases and 48% of minor phases in features. The de-
tected phases are good clues for developers to investigate
the execution trace. We have also analyzed five programs
implementing the same specification developed in a training

8

program of software development. We found that the phases
detected from an implementation are similar to the phases
detected from another implementation. The result shows
our approach is insensitive to the implementation detail of
a system.

We integrated the approach into Amida, our sequence di-
agram visualization tool [21]. Amida automatically detects
phases in an execution trace and visualizes each phase as a
sequence diagram. Amida also implements several rules to
detect loops and recursive calls in execution traces so that
a phase is visualized as a compact diagram. Developers can
read a sequence diagram corresponding to a feature.

The rest of this paper describes the detail of our phase
detection approach. Section 2 describes the background of
the research and the definition of phase. Our phase detection
algorithm is presented in Section 3. Section 4 shows the case
study on industrial applications. In Section 5, we describe
the conclusion and future work.

2. BACKGROUND
Visualizing collaborations of objects is important for de-

velopers understanding and debugging an object-oriented
program. In general, object-oriented programs are difficult
to maintain because of dynamic binding of method calls [24].
While collaborations of objects provide a larger unit of un-
derstanding than classes [14], reverse engineering and under-
standing the behavior of an object-oriented system is more
difficult than understanding its structure [1].

To support understanding the dynamic behavior of a pro-
gram, many tools are proposed to visualize dynamic col-
laborations in a program [1, 4, 6, 11, 20, 21]. An important
issue in this research area is how to handle a huge amount of
events included in an execution trace. We categorize related
work into three approaches.

One approach is summarizing a whole execution trace.
Hamou-Lhadj proposed a utilityhood function to filtering out
utility-like method calls that are less important in general
[6]. Reiss proposes to compress an execution trace into a
compact representation [12]. Several visualization tools vi-
sualize repeated method calls in a compact style [1, 11, 21].

Another approach is visualizing an overview of a trace.
Pauw uses zoom-in/out functionality [11]. Cornelissen pro-
poses a new viewer named Circular Bundle View [3]. These
views allow developers to investigate a trace in a top-down
style.

The third approach is visualizing only method calls of in-
terest to developers. DRT, a design recovery tool, supports
automatic selection of method calls related to a user action
in graphical user interface [2]. Shimba [20] and JIVE [4] pro-
vide a query-based interface for visualizing events of interest
to developers. Sharp proposes an interactive exploration of
UML sequence diagram using both zooming and various fil-
tering facilities [17]. Briand developed a tool to visualize
only method calls related to Remote Method Invocation in
a distributed system [1].

Our phase detection technique divides a long execution
trace into several phases before such summarization and vi-
sualization described above. Our technique is involved in
the third approach; it enables developers to visualize and
investigate only a small portion of an execution trace that
corresponds to a feature of interest to the developers. A
key difference is that the output of our technique is a se-
quence of events corresponding to a particular feature. Our

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000

o
b
je

c
t

methodcall timestamp

Caller/Callee objects

 Login

Listing items

Showing an item

Updating the item

 Logout

Figure 1: Caller/Callee Objects in a use-case sce-
nario of an industrial system. The execution trace
comprises five feature-level phases: login, three
steps to update a database record and logout.

technique can collaborate with the previous approaches for
visualization, for example, we have integrated the technique
to Amida, our sequence diagram visualization tool [21].

We define a phase as a consecutive sequence of run-time
events. Some phase corresponds to a feature, which is a
realized functional requirement of a system [5, 16]. Some
other phase may represent a minor phase, or one of the tasks
to achieve a feature.

In this paper, a feature-level phase denotes a phase cor-
responding to an execution of a feature. A minor phase
denotes a phase that is one of the tasks to achieve a fea-
ture. When we execute a program according to a use case
scenario that is a sequence of features, we get an execution
trace including the corresponding feature-level phases. Each
feature-level phase involves a sequence of minor phases. Al-
though a minor phase may involve its sub-phases, our main
goal is to extract feature-level phases and minor phases de-
scribed in use-case scenarios.

The phased behavior of a system is easily visualized with
a zoom-out view [11]. Figure 1 is an example trace of the
phased behavior in an industrial system we have used in the
case study. The x-axis of the figure represents a sequence
of events. The y-axis plots object IDs of method caller and
callee for each method call events. The execution trace in
the figure comprises five steps in terms of features: login,
listing items in a database, editing a selected item, updating
the database and logout. Developers can find the features as
phases in the figure because different objects are working for
each feature. However, it is difficult to manually divide the
trace to phases and visualize one of them as a feature-specific
sequence diagram. Our phase detection approach enables
developers to investigate a small portion of an execution
trace corresponding to an interesting feature.

Our phase definition is to map a use-case scenario to an
execution trace. Another phase definition based on syntactic
structure is proposed by Wang [23]. The definition provides
hierarchical phases for developers to investigate the detail
of a fault using an execution trace. However, it is hard to
handle a method contributing to one or more features with
our approach.

Our approach is a kind of feature location [5] while con-
ventional phase detection techniques proposed in program
optimization area also detect phases in the trace. These
conventional techniques for program optimization typically
use a fixed-length interval (e.g. 10 milliseconds [13]) since

9

:
@1 19 void LoginForm(5).<init>(){
@1 }
@1 20 boolean index_jsp(3).

_jspx_meth_html_text_0(Tag,PageContext){
@1 21 String LoginForm(5).getShimeiNo(){
@1 }
@1 }
@1 22 boolean index_jsp(3).

_jspx_meth_html_password_0(Tag,PageContext){
@1 23 String LoginForm(5).getPassword(){

:

Figure 2: A fragment of an execution trace.

performance optimization techniques are applied indepen-
dently of software features. Some optimization technique
recognizes a phase transition between two phases, that is an
unstable interval and hard to optimize [10]. Such a model is
different from our phase detection.

3. AUTOMATIC PHASE DETECTION
We propose an automatic phase detection technique using

a LRU cache for observing working objects. Our approach is
based on two basic hypotheses in object-oriented program-
ming:

• Many objects are created to achieve a task and most
of them are destroyed after the task [8, 22]. At the be-
ginning of each phase, new objects are created for the
new phase and some objects come from the previous
phase [9].

• The beginning and the end of a phase correspond to
a method call and a method return event, respectively.
For example, a login phase may start with main method
call and end with a return from processPassword. A
phase transition is between a method return and a call,
therefore, the depth of the call stack become local-
minimum at the beginning of a phase.

We have chosen LRU cache rather than other algorithm since
LRU is effectively capture local objects working in a short
period [19].

Our detection method takes as input an execution trace
E = [e1, . . . , en] where ek corresponds to a method call
event. ek knows its caller object, callee object and the depth
of the call stack at the event. The method outputs phases
as a list of timestamps P = [t1, t2, ..., tp] where tk indicates
the beginning of each phase.

3.1 Recording Execution Trace
Our detection method takes as input an execution trace

that is a sequence of method call events. Each event has the
following attributes.

timestamp represents the sequential order of events. All
threads share a common timestamp generator in order
to serialize all method call events.

calleeID denotes which object is called.

callerID denotes an object which calls a method.

threadID indicates a thread in which the event occurs.

callstack indicates the depth of the call stack for the thread.

procedure DetectPhases(

in E = [e1, e2, · · · elast];

in c, w, m : integer; threshold : double;

out P : set of timestamp

(1) C = new LRUCache(c);P ← φ

(2) for t in [1 . . . last]

(3) updated[t] = update(C, et.caller, et.callee)

(4) if frequency(t, w) ≥ threshold

(5) P ← IdentifyPhaseHead(t, m)

(6) end if

(7) end for

function update(in C, callerID, calleeID): integer

1) b1 ← C.update(callerID) – b1, b2 = true if

2) b2 ← C.update(calleeID) – C did not contain the ID

3) if b1 ∨ b2 then return 1 else return 0

function IdentifyPhaseHead(in t, m) : integer

1) min = x = max(t−m + 1, 1)

2) while x ≤ t

3) if emin.callstack ≥ ex.callstack then min = x

4) inc(x)

5) end while

6) return min

Figure 3: Phase detection procedure.

To extract these attributes from a Java program, we are
using Amida profiler [21], an implementation of Java Virtual
Machine Tool Interface (JVMTI). Figure 2 is a fragment of
an execution trace in a textual format that is a part of the
trace shown in Figure 1. Each line represents a method call
or return event. A call event comprises a thread ID , a
timestamp, a method signature, an object ID and a symbol
of a method call ({). A return event comprises a thread ID
and a symbol of a method return (}). For example, the first
line of Figure 2 is a method call event in Thread @1 whose
timestamp is 19. The event calls <init> (a constructor) of
the LoginForm object whose ID is 5.

3.2 Phase Detection Algorithm
Our phase detection algorithm is defined as the procedure

DetectPhases in Figure 3. The procedure takes as input
an execution trace E, parameters c, w, m and threshold de-
scribed later.

An output P = [t1, t2, ..., tp] is a list of timestamps indi-
cating phases in the trace.

The procedure works as follows:

1. Observe the working set of objects using a Least-Recently-
Used (LRU) cache. The LRU cache C keeps a set of ob-
ject IDs. For each method call event, the cache C is up-
dated by update function that calls C.update(objID).

C.update checks whether C contains objID or not.
If C does not contain objID, C adds objID to the
contents, removes the least-recently-used object, and
returns true. If C contains the object ID, C.update
updates the time-stamp for objID and returns false.

update function returns 1 if at least one of the caller
and callee objects is added to C. Otherwise, the func-
tion returns 0.

10

2. Detect a phase transition. We defined frequency of
the LRU cache as an indicator of a phase transition.

frequency(t, w) =
Σt

x=max(1,t−w+1)updated[x]

w

If the frequency(t,w) is higher than a given threshold
value, the procedure calls IdentifyPhaseHead function
to identify the beginning of a new phase.

3. Identify the head event of a phase. IdentifyPhaseHead

function goes back to a method call event that is likely
to trigger the new phase. The function identifies the
event who has the local-minimum depth of the call
stack (the latest one if tied) as the beginning of the
phase.

This algorithm has four parameters: cache size c, window
size w , threshold and phase search distance m .

Cache size c specifies the size of the LRU cache C used
by DetectPhases. The minimum value is 1 and the
maximum value equals the number of objects in the
input execution trace, respectively.

Window size w is used on computation of frequency(t, w).
The minimum value is 1 and the maximum value is
the size of the execution trace (last in the procedure
DetectPhases), respectively.

Frequency threshold threshold is compared with
frequency(t, w) to detect a phase transition. The min-
imum value is 0 and the maximum value is 1, respec-
tively. Other three parameters are integer, but thresh-
old is real. A smaller value is more sensitive.

Phase search distance m specifies how many events prior
to a phase transition point are investigated as candi-
dates of the beginning of the phase.

The computational complexity is O(mn) where n is the
size of an execution trace and m is a parameter of the al-
gorithm, respectively. This algorithm needs memory only
for a cache whose size is specified by the parameter c and
a window whose size is max(m,w) to keep the events. The
algorithm is efficient since c, w and m are much smaller than
n.

This algorithm can handle a multi-threaded trace in two
ways. The one is applying the algorithm for each thread.
This is natural if developers would like to investigate a par-
ticular thread of control. The other one is using a common
LRU cache for all threads and regarding the sum of the
depth of all call stacks used in the program as the depth of
a virtual single call stack. In the case study of this paper,
we took the latter approach.

4. EXPERIMENT
We have compared phases detected by our approach with

phases manually identified by developers.

4.1 Settings
We have analyzed two Java applications as follows:

Table 1: Execution traces and number of phases
manually detected by developers in those traces.

traceID #events #objects #f #m

T-1 32416 546 5 18
T-2 30494 524 6 19
T-3 26603 438 4 14
T-4 15909 237 3 10
L-1 3573 261 15 52
L-2 3371 272 15 51
L-3 3797 286 15 51
L-4 3862 300 15 51
L-5 4506 341 15 64

• Tool Management System is a web application devel-
oped by a software industry. This system uses a back-
ground thread for managing server resources and three
threads for processing HTTP request. We recorded
four execution traces corresponding to four use-case
scenarios (T-1, T-2, T-3 and T-4 in Table 1). Those
scenarios are different from each other, but involve sev-
eral common features such as login.

• Book Management System is a material for a train-
ing course of programming used in an industry. This
system is also multi-threaded; a thread manages a
database in the background while a user operates the
system. There are five programs implementing the
same specification. We have executed the same sce-
nario on each implementation, and got five traces (L-1
to L-5 in Table 1).

We excluded Java SDK library from the traces, since phases
are characterized by application-specific objects rather than
generic objects. This filtering may affect the result, however,
recording all objects is impractical according to its run-time
overhead. The execution of a feature in a trace may not be
identical with the execution of the same feature in another
trace because of the different runtime conditions.

After the execution of the scenarios, we have asked devel-
opers of the systems to manually identify phases that repre-
sent features in these execution traces. We also asked them
to divide a feature-level phase into minor phases that corre-
spond to tasks to achieve the feature. Table 1 shows all exe-
cution traces we analyzed; the number of method call events
(#events), the number of objects (#objects), the number of
manually identified feature-level phases and minor phases
(#f and #m) involved in each trace. The use-case of the
trace T-1 shown in Figure 1 includes 5 features. The 5 fea-
tures are divided into 18 minor phases. For example, login
phase is achieved by 4 minor phases; showing a login prompt,
checking user-name and password, retrieves a list of user’s
data from database and showing a main interface.

We have applied our method to the execution traces with
various parameter settings. Cache size c and window size w
affect the granularity of detected phases. To detect phases
from traces of Tool Management System, we varied cache
size c from 10 to the number of objects by 10. And we var-
ied window size w from 10 to 200 by 10 since a large window
(w > 200) did not affect the result. To detect phases from
traces of Library Management System, we varied cache size
c from 10 to 350 by 10 since the traces involve at most 350

11

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000

ca
ch

e s
ize

methodcall timestamp

feature

minor phases

output (detected phases transition)

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000 30000 35000

wi
nd

ow
 si

ze

methodcall timestamp

feature

minor phases

output (detected phases transition)

Figure 4: Detected phases in the trace T-1. Window
size is fixed (w = 50) in the top figure, cache size is
fixed (c = 300) in the bottom figure.

objects. And we varied window size w from 10 to 300 by
10. We experimentally determined other two parameters:
threshold = 0.1 and m = 700. We took less than five min-
utes to compute all combination of parameter settings and
execution traces on a workstation whose CPU is Xeon 3.0
GHz.

We have compared the detected phases with the manu-
ally identified phases. The evaluation is based on recall and
precision calculated as follows:

precision[%] =
|P ∩ Manual|

|P | , recall[%] =
|P ∩ Manual|
|Manual|

P is a set of output phases detected by our method, and
Manual is a set of phases manually identified by developers,
respectively.

4.2 Result

4.2.1 The Number of Output Phases
Figure 4 shows effect of cache size c and window size w

in the case of T-1. The top figure shows the result from
various cache size c and the fixed window size w = 50. We
plot an x-mark at (x, y) to indicate that the xth method call
in the trace is identified as a phase transition when the cache
size is y. Similarly, the bottom figure shows the result from
various window size w and the fixed cache size c = 300.
A gray bar denotes a feature-level phase transition event
that is automatically detected by our method and manually
specified by developers. A gray rectangle denotes a minor
phase transition event that is also is detected by both of our
method and developers. The other x-marks include false
positives of our method and phases that are not recognized
by developers.

A smaller cache size leads frequent cache update, there-
fore, our procedure outputs smaller (shorter) phases. A
smaller window size also outputs smaller phases since a small

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

%

the number of output phases

Precision(All)
Recall(Feature)

Recall(All)

Figure 5: Average recall and precision for various
parameter configurations that result in the same
number of phases in the trace T-1.

Table 2: Average recall and precision for various pa-
rameter configurations that detect the same number
of phases.

Tool Management System
#phases Recall(Feature) Recall(All) Precision

5 0.56 0.39 0.93
10 0.90 0.48 0.80

Library Management System
#phases Recall(Feature) Recall(All) Precision

10 0.24 0.20 0.99
15 0.53 0.29 0.98
20 0.45 0.38 0.96

window size value regards a small number of new objects as
a phase transition. We would like to note that the result
of our phase detection is stable. If we kept one parameter
as a constant value and decreased another parameter, the
change always divided a phase to two sub-phases. We found
that our approach become unstable when a parameter is ex-
tremely small (e.g. cache size c ≤ 20).

4.2.2 Recall and Precision
Figure 5 shows the average recall and precision for all pos-

sible parameter settings that result in the same number of
phases in the trace T-1. The x-axis represents the number of
phases detected by our approach. “Precision(All)” indicates
the average precision of all parameter settings that result
in the same number of output phases. Our approach shows
high precision when the number of output phases is smaller.

“Recall(Feature)” indicates how much feature-level phases
are detected. “Recall(All)” is calculated for minor phases.
Both increase with the number of output phases. The maxi-
mum “Recall(Feature)” is 80% . Our method never detected
the logout phase in the trace T-1 with any parameter set-
tings. This is because the logout phase comprises an ex-
tremely small number of objects and method call events. In
other case, we also found that it is hard to detect a minor
phase which is extremely small, e.g. an initialization phase
of the feature with our approach.

12

Table 2 shows the average recall and precision for all pos-
sible parameter configurations except for extremely small
parameters, that results in 5 or 10 phases from four traces of
Tool Management System, and result in 10, 15 or 20 phases
from five traces of Library Management System.

If we got 5 phases with some parameters (arbitrary pair of
cache and window size) in one of the four execution traces of
Tool Management System, 93% of them are meaningful for
developers (7% are false positives); they cover 56% of the
features and 39% of the minor phases. 10 phases involve 8
correct phases and 2 false positives on average.

This result shows that developers can apply our phase
detection approach without the knowledge on a parameter
configuration. On the other hand, developers have to es-
timate the number of phases in an execution trace. This
estimation could be done from the number of features in the
use-case scenario.

4.2.3 Comparing Different Implementation
We have compared the phases detected with the same pa-

rameter setting in five traces of the five implementation of
Library Management System(L-1 to L-5). Figure 6 shows
the phases detected with the same parameters: cache size c
= 150 and w = 150. Five vertical arrays of rectangles (L-1
to L-5) represent the execution traces. A rectangle indicates
a phase we have detected. The traces include 15 features;
horizontal lines indicate the beginning of each feature-level
phase manually identified by developers. If the top of a rect-
angle, or a detected phase, is one of the horizontal lines, the
phase precisely corresponds to the beginning of a feature.
Otherwise, the top of a rectangle points to a minor-level
phase (not a false positive), that is a meaningful step in the
use case scenario, in this figure.

It should be noted that the internal structure of these pro-
grams are different from each other, nevertheless, our tech-
nique detected the similar phases. This result shows that
our approach is insensitive to the implementation detail of a
system. This stability is an important property for develop-
ers who modify a program (e.g. in debugging process) since
it allows developers to compare traces recorded before and
after the modification.

4.3 Discussion

Threats to validity.
Our case study reflects the industrial environment. We

have used the industrial systems and use-case scenarios writ-
ten by the developers of the systems. The target domain is
limited to enterprise application that interacts with databases;
both systems are implemented as a multi-threaded program,
however, the use-case scenarios include no descriptions about
the concurrent user-interaction. Therefore, we need further
investigation of multi-threaded programs with concurrent in-
teraction scenarios and other programs in different domains.

Mapping features to phases.
Our approach outputs only a sequence of phases as a list

of timestamps. Developers have to manually map features
in a use-case scenario to phases in its execution trace. Based
on our experience, we believe this process is not so difficult
since the developers could find particular classes and meth-
ods indicating a feature. Automating this process is a chal-
lenge related to feature location and traceability recovery.

Koschke’s approach [7] extracting feature-specific methods
is a promising approach to extracting phase-specific meth-
ods. Rountev’s approach [15] extracting variable names for
objects may be effective to extract names of important ob-
jects representing a phase.

5. CONCLUSIONS
We proposed a novel approach to efficiently detecting phases,

or high-level behavioral units of interest to developers, us-
ing a LRU cache for observing a working set of objects. Our
algorithm enables developers to investigate a small portion
of an execution trace.

The approach is lightweight and easy to implement, but
effective to detect phases. We integrated the approach to
Amida, our sequence diagram visualization tool. We are
preparing to make Amida public in our website 1.

In future work, we would like to investigate a way to au-
tomatically map features in a scenario to phases in its ex-
ecution trace. We are also planning to investigate how the
algorithm works in concurrent systems other than enterprise
systems. While we are using a fixed-size LRU cache, we are
also interested in a cache adaptation approach that is pro-
posed to improve the performance of a system [18].

Acknowledgment
We thank Mr. Ken-ichi Maeda and Mr. Shigeo Hanabusa
of Hitachi Systems & Services, Ltd. for supporting our ex-
periment.

This research was supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Young Scientists (Start-
up) (No.19800021).

6. REFERENCES
[1] Briand, L. C., Labiche, Y. and Leduc, J.: Towards the

Reverse Engineering of UML Sequence Diagrams for
Distributed Java Software. IEEE TSE, Vol.32. No.9,
pp.642-663, 2006.

[2] Chan, K., Liang, Z. C. L. and Michail, A.: Design
Recovery of Interactive Graphical Applications. Proc.
of ICSE 2003, pp.114-124.

[3] Cornelissen, B., Holten, D., Zaidman, A., Moonen, L.,
van Wijk, J. J. and van Deursen, A.: Understanding
Execution Traces Using Massive Sequence and
Circular Bundle Views. Proc. of ICPC, pp.49-58, 2007.

[4] Czyz, J. K. and Jayaraman, B.: Declarative and
Visual Debugging in Eclipse. Eclipse Technology
Exchange, http://www.cs.mcgill.ca/~martin/
etx2007/papers/7.pdf , 2007.

[5] Eisenbarth, T., Koschke, R. and Simon, D.: Locating
Features in Source Code. IEEE Computer, Vol.29,
No.3, pp.210-224, 2003.

[6] Hamou-Lhadj, A. and Lethbridge, T.: Summarizing
the Content of Large Traces to Facilitate the
Understanding of the Behaviour of a Software System,
Proc. of ICSE, pp.181-190, 2006.

[7] Koschke, R. and Quante, J.: On Dynamic Feature
Location. Proc. of ASE, pp.86-95, 2005.

[8] Lieberman, H. and Hewitt, C.: A Real-Time Garbage
Collector Based on the Lifetimes of Objects.

1Amida http://sel.ist.osaka-u.ac.jp/~ishio/amida/

13

Communications of the ACM, Vol.26, No.6,
pp.419-429, 1983.

[9] Lienhard, A., Greevy, O. and Nierstrasz, O.: Tracking
Objects to Detect Feature Dependencies. Proc. of
ICPC, pp.59-68, 2007.

[10] Nagpurkar, P., Hind, M., Krintz, C., Sweeney, P. F.
and Rajan, V. T.: Online Phase Detection
Algorithms. Proc. of Code Generation and
Optimization 2006, pp.111-123.

[11] Pauw, W. D., Jensen, E., Mitchell, N. Sevitsky, G.,
Vlissides, J. M. and Yang, J.: Visualizing the
Execution of Java Programs. Revised Lectures on
Software Visualization, International Seminar,
pp.151-162, 2002.

[12] Reiss, S. P. and Renieris, M.: Encoding Program
Executions. Proc. of ICSE, pp.221-230, 2001.

[13] Reiss, S. P.: Dynamic Detection and Visualization of
Software Phases. Proc. of WODA, pp.50-55, 2005.

[14] Richner, T. and Ducasse, S.: Using Dynamic
Information for the Iterative Recovery of
Collaborations and Roles. Proc. of ICSM, pp.34-43,
2002.

[15] Rountev, A. and Connell, B. H.: Object Naming
Analysis for Reverse-Engineered Sequence Diagrams.
Proc. of ICSE, pp.254-263, 2005.

[16] Salah, M. and Mancoridis, S.: A Hierarchy of
Dynamic Software Views. From Object-Interactions to
Feature-Interactions. Proc. of ICSM, pp.72-81, 2004.

[17] Sharp, R. and Rountev, A.: Interactive Exploration of
UML Sequence Diagrams. Proc. of VISSOFT, pp.8-13,
2005

[18] Shen, X., Zhong, Y. and Ding, C.: Locality Phase
Prediction. Proc. of ASPLOS, pp.165-176, 2004.

[19] Shen, X., Shaw, J., Meeker, B. and Ding, C.: Locality
Approximation Using Time. Proc. of POPL, pp.55-61,
2007.

[20] Systä, T., Koskimies, K and Müller, H.: Shimba - an
Environment for Reverse Engineering Java Software
Systems. Software - Practice and Experience, Vol.31,
pp.371-394, 2001.

[21] Taniguchi, K., Ishio, T., Kamiya, T., Kusumoto, S.
and Inoue, K.: Extracting Sequence Diagram from
Execution Trace of Java Program. Proc. of IWPSE,
pp.148-151, 2005.

[22] Ungar, D.: Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm.
Proc. of the first ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software
Development Environments. pp.157-167, 1984.

[23] Wang, T. and Roychoudhury, A.: Hierarchical
Dynamic Slicing. Proc. of ISSTA, pp.228-238, 2007.

[24] Wilde, N. and Huitt, R.: Maintenance Support for
Object-Oriented Programs. IEEE TSE, Vol.18, No.12,
pp.1038-1044, 1992.

Feature L-1 L-2 L-5L-4L-3

Login

Showing mylist

Adding a new book

Registering a new book

Showing booklist

Searching books

Borrowing a book

Showing
the detail of a book

Returning a book

Marking a book

Unmarking a book

Showing browwinglist

Logout

Login as a new user

Logout

Figure 6: Detected phases in five traces of Library
Management Systems with the same parameters.

14

