
A Criterion for Filtering Code Clone Related Bugs

Yasuhiro Hayase† Yii Yong Lee Katsuro Inoue†
Graduate School of Information Science and Technology, Osaka University

†{y-hayase,inoue}@ist.osaka-u.ac.jp

ABSTRACT
Software reviews are time-consuming task especially for large soft-
ware systems. To reduce the efforts required, Liet al. developed
CP-Miner, a code clone detection tool that detects identifier naming
inconsistencies between code clones as bug candidates. However,
reviewers using CP-Miner still have to assess many inconsisten-
cies, since the tool also reports many false-positive candidates. To
reduce the false-positive candidates, we propose a criterion for fil-
tering the candidates. In our experiments, filtering with the pro-
posed criterion removed 30% of the false-positive candidates and
no true-positive candidates. This result shows that the proposed
criterion helps the review task by effectively reducing the number
of bug candidates.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Code in-
spections and walk-throughs; D.2.8 [Software Engineering]: Met-
rics

General Terms
Experimentation

Keywords
Code Clone, Defect Mining

1. INTRODUCTION
Large software systems tend to have a significant amount of sim-

ilar code fragments. These code fragments are called code clones.
Often the code clones are introduced through copy-and-paste ac-
tions for the purpose of code reuse, and the pasted code usually
will go through some modifications.

Bellon et al. classified clones into three types according to the
modifications of the clones [1]: type 1 clones are exact copies,
type 2 clone are syntactically identical copies except for identifier
names, and type 3 clones are further modified copies.

However, when the modifications are done manually, there is the
possibility that bugs are introduced by inconsistent modifications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’08,July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07 ...$5.00.

Clone
Detector

(CCFinder)
Inconsistency

Detector
Metric

Calculator
User

Interface

Figure 1: Overview of the inconsistency detection tool

Li et al. developed CP-Miner, a code clone detection tool that can
also detect such bugs [3]. CP-Miner operates by analyzing the type
2 clones in a software system, and reporting code clone with incon-
sistent identifier re-naming as possible bug.

However, with CP-Miner, the ratio of false-positive in the re-
ported bug candidate is large; consequently, for large-scale sys-
tems, separating true bugs from false ones is a demanding task.
Consequently, filtering the inconsistencies may reduce the effort
required to perform such separation.

In this paper, we propose a criterion for filtering the name in-
consistencies in code clones. Moreover, we build a tool for finding
naming inconsistencies that uses CCFinder [2] and implement the
proposed criterion. The effectiveness of the criterion is evaluated
through an experiment.

The rest of this paper is structured as follows. Section 2 presents
the implemented tool, and describes the details of the filtering crite-
rion. Section 3 illustrates the experiment performed for evaluating
the filtering criterion. Finally, section 4 concludes this paper with
some final remarks and future works.

2. INCONSISTENCY DETECTION TOOL
This section describes the inconsistency detection tool that we

developed, and the criterion used for filtering inconsistencies.

2.1 Overview of the Tool
Figure 1 shows the overview of the tool.
In the first step, CCFinder [2] detects theclone pairs(pairs of

code clones) in a software system.
Then, as described in [3], Inconsistency Detector finds one-to-

many mappings of identifiers for each clone pair. For each clone
pair, mappings are computed based on the assumption that each
code clone is copied from the other. Table 1 shows an example
of such identifier mapping; in this table, it is assumed thatclone
2 has been copied fromclone 1. The first column lists the identi-
fiers appearing inclone 1. The second column lists the identifiers
appearing inclone 2and at the same position of the corresponding
identifier in the left column. The third column shows how many
times the identifier in the second column appears in the code clone.
The remaining columns will be described later. In this example,
p andx in clone 1are considered inconsistently renamed because

there is no univocal mapping to identifiers inclone 2.
Next, Metric Calculator calculates the metricUnchangedRatio

(as described in [3]) and the metricConflict, whose details will
be described in the next section. The last two columns of table 1
show the values ofUnchangedRatioandConflict respectively for
the considered example.

Finally, the inconsistencies are displayed with a graphical tool.
The tool allows filtering the inconsistencies easily based on values
of UnchangedRatioor Conflictor both.

2.2 Filtering Criterion
CP-Miner filters the inconsistencies using theUnchangedRatio.

With regards to the example of table 1, CP-Miner guesses that the
multiple renaming ofx is more likely to be a bug than the multiple
renaming ofp because the lowerUnchangedRatiovalue implies
unintentionally change. However, from another perspective,x is
considered to be intentionally renamed becausex is renamed to
two identifiers:y andz .

To distinguish these inconsistencies, we propose a criterionCon-
flict, a boolean measure for an inconsistency. For an identifier,Con-
flict is true if the identifier is renamed to two or more identifiers that
are not the original identifier, otherwise it is false. In table 1, the
values ofConflict for p andx arefalseandtrue respectively.

3. EVALUATION
To evaluate the effectiveness ofConflict, we applied the tool to

thearch module of the Linux kernel version 2.6.6, which is also
used in [3]. According to Liet al., the inconsistencies whoseUn-
changedRatiovalue is equal to or less than 0.4 are used for evalu-
ation. The inconsistencies are reviewed in order of increasingUn-
changedRatiovalue.

Figure 2 shows the evaluation result. The horizontal axis shows
the number of reviewed inconsistencies; the vertical axis show the
accumulated number of bugs found. UsingConflict to filter the
results removed 36 of the 127 reported inconsistencies, and the re-
moved inconsistencies contained no bugs. Without the filtering, the
last bug was the 62nd inconsistency. With the filtering, it was the
42nd inconsistency.

This result shows how filtering usingConflicteffectively removes
false-positive inconsistencies.

4. CONCLUSION REMARKS AND FUTURE
WORKS

This paper presents a criterion for filtering renaming inconsisten-
cies in code clones. The criterion detects intentionally renamed in-
consistencies using mapping of the identifier. We also implemented
the filter using the criterion on a bug detection tool. The evaluation
experiment was shown that the filter effectively removes false can-
didates.

Table 1: Example of identifier mapping
Clone 1 Clone 2 cnt UnchangedRatio Conflict

a a 2
b c 2
p p 1 0.25 false

q 3
x x 1 0.2 true

y 2
z 2

0
1
2
3
4
5
6
7
8

0 50 100 150

o
f F

ou
nd

 Bu
gs

of Reviewed Inconsistencies
Without Conflict Filtering With Conflict Filtering

Figure 2: Result ofConflict Filtering

In future, we will conduct more experiments on production qual-
ity software and perform a comprehensive analysis on the results.
Also, we are considering to improve our tool in order to detect more
bugs caused bytype 3clones.

Acknowledgment
This work was supported by Japan Society for the Promotion of
Science under Grant-in-Aid for Scientific Research (A) (17200001).
And the work is being conducted as a part of Stage Project, the
Development of Next Generation IT Infrastructure, supported by
Ministry of Education, Culture, Sports, Science and Technology.

5. REFERENCES
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.

Comparison and evaluation of clone detection tools.IEEE
Trans. Softw. Eng., 33(9):577–591, 2007.

[2] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code.IEEE Trans. Softw. Eng.,
28(7):654–670, 2002.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding
copy-paste and related bugs in large-scale software code.
IEEE Trans. Softw. Eng., 32(3):176–192, 2006.

