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ABSTRACT
When we encounter a defect in one part of a program, it
is very important to find other parts of the program that
may contain similar defects. In this paper, we propose a
novel system to find similar defects in the large collection
of source code. This system takes a code fragment contain-
ing a defect as the query input, and returns code fragments
containing the same or synonymous identifiers which appear
in the input fragment. Case studies with two open source
systems and their defect data show the advantages of the
proposed retrieval system, compared to the code-clone based
retrievals.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids and diagnostics; D.2.4 [Software Engi-
neering]: Software/Program Verification—Statistical meth-
ods

General Terms
Algorithms, Experimentation

Keywords
Code Retrieval, Natural Language Processing, Defect De-
tection

1. INTRODUCTION
In the early morning of October 12th, 2007, more than

4,000 automatic gate machines at Tokyo’s 662 railway sta-
tions were unable to start up correctly [20]. Those gate
machines, made by a Japanese vendor, failed to download
daily data from a central data server during their boot-up
process, and this failure caused system crashes. The vendor
tried to resolve this failure immediately, but it took more
than a half day to locate and fix a single-line defect in the
source code, because of its complex logical structure. This
failure inconvenienced approximately 2.6 million passengers.

ir_debug( Dmsg(10, "ProcWideReq7 start!!\n") );

// buffer overflow check is missing!
buf += HEADER_SIZE;
Request.type7.context = S2TOS(buf);
buf += SIZEOFSHORT;
Request.type7.number = S2TOS(buf);
buf += SIZEOFSHORT;
Request.type7.yomilen =(short)S2TOS(buf);

(a) Example of code fragment containing a buffer overflow
defect

ir_debug( Dmsg(10, "ProcWideReq14 start!!\n") );

// buffer overflow check is missing!
buf += HEADER_SIZE;
Request.type14.mode = L4TOL(buf);
buf += SIZEOFINT;
Request.type14.context = S2TOS(buf);
buf += SIZEOFSHORT;
Request.type14.yomi = (Ushort *)buf;

(b) Example of code fragment which is slightly different from
Figure 1(a) and also contains a buffer overflow defect

Figure 1: Similar defects in Canna 3.6 [3]

Six days after this incident, a second incidence occurred.
Similar boot-up time failure happened at more than 100 fair
adjustment machines in Tokyo’s 65 stations, and about 400
passengers were troubled. Those machines, also made by the
same vendor, share a similar boot-up process as the auto-
matic gate machines, but they used a different data format,
causing failure on a different day. Just after the first inci-
dent, the vendor investigated other programs which relate
to the automatic gate machines, but the vendor could not
find the similar defect which would have prevent the second
incident.

These incidents indicate the importance and also diffi-
culty of finding similar defects in software product collec-
tions. There are various literatures discussing the creation
and removal of similar defect code [14, 15, 22]. We are inter-
ested in finding similar code fragment in a large collection
of source code, to effectively locate similar code defects.

To specify our focus of similar defects, we give an example
in Figure 1, which presents two code fragments of an open
source Japanese input system Canna Ver. 3.6 [3]. These
two fragments involve several buffer input operations (e.g.,
buf += HEADER SIZE; . . . = S2TOS(buf);), but there are no
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buffer boundary checks, resulting in implicit buffer overflow
defects. Suppose that we first recognize that code fragment
Figure 1(a) contains the buffer overflow defect. To prevent
the same buffer overflow failures, we need to find and fix
all the similar code fragments such as shown in Figure 1(b),
which is slightly different from Figure 1(a) but which shares
same variables and macros. The research question we are
interested in here is how effectively we can locate code frag-
ments like Figure 1(b) in a large-scale source code collection
when a reference code fragment like Figure 1(a) is given.

A straightforward approach to this issue, which is widely
used in the practice, would be using search tools such as grep
[8]. However, it is not easy for the developers to choose an
appropriate identifier as the search keyword [21]. In general,
there are many candidate identifiers in the reference code
fragment and the choice of the identifiers heavily affects the
search results. For example, in the case of Figure 1(a), we
may choose a variable name buf as the search identifier; how-
ever, it will produce many unwanted retrieval results since
buf is widely used in many parts of the system. We probably
need to combine several identifiers as the search keys, but it
is a generally difficult task.

Another approach would be to employ more sophisticated
retrieving tools such as code clone detection tool [1, 10, 11,
12]. However, most code clone detection tools permit only
minor changes between clones, since they basically depend
on string or tree matching algorithms after the input se-
quence normalization, tokenization, and/or tree construc-
tion. In the case of Figure 1, there two fragments are not
reported as a code clone pair by a popular code clone tool,
CCFinder significant differences in the last line.

In this paper, we will explore a novel approach which is
simpler and more effective in locating similar fault code frag-
ments than existing methods and tools. We propose a syn-
onymous identifier retrieval method. This approach has the
following characteristics.

• A whole code fragment is used as the input to the
query. This allows developers to perform retrieval with-
out careful choice of the query identifiers.

• We employ a code fragment retrieval method based
on the occurrence of similar identifiers in the query
and target code fragments. This approach is more ro-
bust to syntactic differences of code fragments than
sequential or structural matching methods such as the
token-based code clone detection tools.

• The retrieval is made using extracted identifiers. A
pair of identifiers frequently co-existing in close prox-
imity are considered as the same identifier, and are
treated as if they where synonyms of each other. The
retrieval is made using extracted identifiers and their
synonyms.

We have developed SC-Retriever (Synonymous Code Re-
triever) implementing the proposed method. SC-Retriever
has been applied to find defects in two software systems,
Canna and SPARS-J [19]. We have confirmed the advantages
of our approach, compared with CCFinder [11].

In Section 2 we present our retrieval method. Section 3
gives results derived from using this method. In Section
4, several related works and discussions will be presented.
Finally, we will conclude our paper with a few remarks in
Section 5.

2. PROPOSED METHOD
As shown in Figure 2, the proposed method accepts a

code fragment as a query, and then identifies similar code
fragments in a target source files. The process comprises
three steps as follows.

Identifier Extraction We extract identifiers from both query
code fragment and target source files, and apply sev-
eral normalization rules to extracted identifiers. We
may call these normalized identifiers simply identifiers
if there is no confusion.

Synonymous Identifier Determination Synonyms of each
identifier are determined by a method commonly used
in natural language processing [4].

Retrieval with Query Code Fragment Code fragments
are extracted as similar code fragments from the tar-
get source files, if those code fragments have the same
synonymous identifiers as the query identifiers.

We will explain each step in detail through following sub-
sections.

2.1 Identifier Extraction
At first, identifiers are extracted from both query code

fragment and target source files. To each extracted identi-
fier, several normalization rules are applied (e.g. dividing
at underscore, number elimination), producing a set of nor-
malized identifiers.

Next, we create a matrix named identifier matrix, which
represents the occurrence of identifiers in each structural unit
of the target source files. A structural unit is a source code
fragment obtained by a systematic partition of the target
source files. A module, a function, or a structural block
would be examples of structural units. We employ functions
as the structural unit hereafter in this paper.

Figure 3 illustrates an example of functions involving iden-
tifiers. There are three functions f0, f1 and f2 and they
involve five identifiers ia, ib, ic, id and ie. In the identi-
fier extraction, those five identifiers are extracted from three
functions as shown in Figure 3.

Figure 4 is the identifier matrix created from the func-
tions in Figure 3. The matrix represents the occurrences of
identifiers ia, ib, ic, id and ie in functions f0, f1 and f2.

2.2 Synonymous Identifier Determination
In the synonymous identifier determination, we perform

clustering of the identifiers based on Dagan’s model [4]. The
clustering procedure is as follows.

Step1: Co-occurrence Matrix Creation.
First, a co-occurrence matrix is created from the identi-

fier matrix. Let N denote the number of different identi-
fiers. The co-occurrence matrix is represented as an N ×N
symmetrical matrix. Each element (ix, iy) is the number
of functions (i.e, structural units) in which ix and iy co-
occur. Figure 5 is the co-occurrence matrix created from
the identifier matrix in Figure 4. Since ic and ie occur twice
in functions f0 and f2, then (ic, ie) and (ie, ic) become 2.
Diagonal elements are not used in our method, so they are
filled with symbol “−”.
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Figure 2: An overview of proposed method
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Figure 3: Example of functions involving identifiers

0
@

ia ib ic id ie

f0 0 2 1 0 0
f1 1 0 2 3 0
f2 0 0 2 0 2

1
A

Figure 4: Example of identifier matrix (created from
Figure 3)

0
BBB@

ia ib ic id ie

ia − 0 1 1 0
ib 0 − 1 0 0
ic 1 1 − 1 1
id 1 0 1 − 0
ie 0 0 1 0 −

1
CCCA

Figure 5: Example of co-occurrence matrix (created
from Figure 4)

0
BBB@

ia ib ic id ie

ia − 0.30 0.43 0 0.43
ib 0.30 − 0.67 0.30 0.17
ic 0.43 0.67 − 0.43 0.30
id 0 0.30 0.43 − 0.67
ie 0.43 0.17 0.30 0.67 −

1
CCCA

Figure 6: Example of distance matrix

Step2: Distance Calculation.
Distance between each identifier pair is computed by using

Jensen-Shannon divergence method [17]. The computation
is based on the measurement of probability distribution of
two vectors extracted from the co-occurrence matrix. Figure
6 is an example of distance matrix. Each element is non-
negative real number, and it represents the distance of two
identifiers, where 0 means no distance.

Jensen-Shannon divergence between two identifiers is in-
tuitively calculated as a difference of two vectors of the co-
occurrence matrix. For example, the distance between the
identifiers id and ie is represented by the difference between
two vectors [(ia, id), (ib, id), (ic, id)] and [(ia, ie), (ib, ie), (ic, ie)]
(i.e, the difference between [1, 0, 1] and [0, 0, 2]). If such dif-
ference is relatively large, the value of the corresponding
element in the distance matrix is also relatively large.

Step3: Performing Clustering.
We perform clustering of identifiers based on the distance

of identifiers. Initially, a set of identifiers with distances
between them is given and a threshold for terminating the
clustering is determined by the user. The clustering is per-
formed as the following steps.

(a) Initial clusters are created for each identifier.

(b) For each pair of clusters, a distance value is calculated
by group average method1, then the closest clusters
(i.e., the cluster pairs which have the minimum dis-
tance value) are merged into a single one.

(c) The above step(b) is repeated until the minimum dis-
tance value between any two clusters falls larger than
the user-determined threshold or all of clusters are
merged into a single one.

After the clustering, an identifier involved in a resulting
cluster is called a synonym of other identifiers in the same
cluster.

Figure 7 shows the clustering process for the distance
matrix in Figure 6. In this example, we assume that the
clustering threshold value is 0.30. At first, the initial clus-
ters are created for each identifier (Figure7(a)). Then, the

1When two identifier-clusters are given, the group average
method obtains the distance value by calculating the average
distance between each pairing of identifiers across the two
clusters.
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Figure 7: Identifier Clustering

closest pair (Clustera, Clusterd) is merged into Clusterad

(Figure7(b)). Next, the closest pair (Clusterb, Clustere) is
merged into Clusterbe (Figure7(c)). Here, since the smallest
distance between any two clusters is 0.43 and is larger than
the clustering threshold 0.30, so the clustering is terminated.
As a result, we determine that ia and id are synonyms each
other, and also ib and ie are synonyms each other.

2.3 Retrieval with Query Code Fragment
In this section, we describe similar code fragment obtained

by the retrieval.
First, we introduce correspondence of identifier as follows.

Definition 2.1 (Identifier Correspondence) When two
identifiers ix and iy are given, if iy is identical or synony-
mous to ix, we say that iy corresponds to ix (and vice versa).

Now, we define similar code fragment as follows.

Definition 2.2 (Similar Code Fragment) We assume that
a query code fragment Q and a target code fragment T in-
volve at least one identifier, respectively. Here, if each iden-
tifier in Q corresponds to at least one identifier in T , then
T is said similar code fragment to Q.

Figure 8 illustrates an example of comparing the identifier
list

ˆ
host, alloc, add, host

˜
derived from a query code frag-

ment and the identifier list
ˆ
node, . . . , alloc, add, . . . , node

˜
derived from a target code fragment. The edge is drawn
when two identifiers correspond, i.e, they are identical or
they are in synonym relations. In this case, each identi-
fier in the query code fragment corresponds to at least one
synonymous identifier in the target code fragment. There-
fore, we say that the target code fragment is a similar code
fragment to the query code fragment (and vice versa).

2.4 Implementation of SC-Retriever
We have developed SC-Retriever (Similar Code Retriever)

implementing the proposed method.

SC-Retriever performs the detection of C-language func-
tion as the code fragment. That is, it retrieves similar func-
tions that are similar to a query code fragment. The advan-
tage of function-wise detection is that developers can easily
spot the defective code portion, and also that partitioning
the target source files into functions is quite easy.

Also, in order to fit function-wise detection, we employ
functions as the structural units described in Section 2.1.

3. CASE STUDIES
We have conducted case studies with two tools: (1) SC-

Retriever, (2) a code clone detection tool CCFinder. Using
these tools, we have retrieved defective functions in two soft-
ware systems with their defect data, and efficiency of the
retrieval has been compared.

CCFinder is a fast and scalable code clone detection tool
[11]. It generally gets a collection of source code as the
input and generate the report of the locations of code clone
fragments. CCFinder can also report the locations of code
fragments for a specific query code fragments [9]. In the
case study, we use the latter feature to locate the defective
functions.

3.1 Experiment

3.1.1 Measures of Retrieval Efficiency
We used precision, recall and F-measure as the measures

of retrieval efficiency. Let D denote the set of defective code
fragments determined by the bug records of the software
system. Also, R denotes the set of retrieved code fragments
by any of the tools. We define the precision, recall and F-
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Identifiers list  from a target code fragment 
with the normalization and synonym extension

(Identifiers in the bracket are 
synonyms of identifiers from the query)

(node)(node) alloc add

Identifiers list from a query code fragment host alloc add host

Identifiers list  from a target code fragment 
with the normalization and synonym extension

(Identifiers in the bracket are 
synonyms of identifiers from the query)

(node)(node) alloc add

Identifiers list from a query code fragment host alloc add host

Figure 8: Comparison between a query code fragment and a target code fragment (The arrow is drawn from
each identifier to its corresponding identifiers.)

Table 1: Statistics of target programs

LOC
# of # of defective # of

functions functions defects
Canna 90K 2361 18 19

SPARS-J 36K 859 50 75

measure as follows.

Precision =
|D ∩R|
|R| (1)

Recall =
|D ∩R|
|D| (2)

F =
2 · Precision ·Recall

Precision + Recall
(3)

3.1.2 Experimental Step
Our case studies are composed of the following steps.

1. We choose defective code fragments from target source
files, based on the criteria described later.

2. Using SC-Retriever, and CCFinder, we retrieve func-
tions in the target source files. In the case of SC-
Retriever, we give the chosen code fragment as the
query. Also, in the case of CCFinder, we detect the
code clones for the chosen code fragments. The gran-
ularity of the code fragments as the output of those
retrieval is set to function level here due to the imple-
mentation constraint mentioned in Section 2.4.

3. We calculate the precision, recall and F-measure with
the retrieved results and the bug records.

3.1.3 Target Software Systems
We applied SC-Retriever, and CCFinder to o two different

software systems. Table 1 gives statistics relating to these
two systems.

Canna [3] is an open source client-server Japanese charac-
ter input system. Canna Ver. 3.6 involves 19 buffer overflow
defects, and those defects exist in 18 functions.

SPARS-J is Java component retrieval system [19]. The tar-
get version of SPARS-J involves 75 defects caused by missing
typecast operations2, and those defects exist in 50 functions.
2In the source files implementing the process of software
component registration, there are 75 defects caused by lack
of typecasting from the internal data types into the types
supported by the relational database of SPARS-J.

buf += HEADER_SIZE;
Request.type2.context = S2TOS(buf);

(a) Query Code fragment CA (small code fragment)

buf += HEADER_SIZE;
Request.type18.context = S2TOS(buf);
buf += SIZEOFSHORT;
Request.type18.data = (char *)buf;
buf += Request.type18.datalen - SIZEOFSHORT * 2;
Request.type18.size = S2TOS(buf);

(b) Query Code fragment CB (large code fragment)

buf += SIZEOFINT;
Request.type10.kouho = (short *)buf;
for (i = 0; i < Request.type10.number; i++) {

Request.type10.kouho[i] = S2TOS(buf);
buf += SIZEOFSHORT;
ir_debug(Dmsg(10, "req->kouho =%d\n",
Request.type10.kouho[i]));

}

(c) Query Code fragment CC (complicated code fragment)

Figure 9: Query code fragments for Canna 3.6

3.1.4 Query Code Fragments
From these defects reported by the bug records, we have

selected three types of the query code fragments:

A. Small code fragments (CA for Canna, and SA for SPARS-
J)

B. Large code fragments (CB for Canna, and SB for SPARS-
J)

C. Complicated code fragments (CC for Canna, and SC for
SPARS-J)

Figure 9 and Figure 10 show the selected query code frag-
ments for the case studies of Canna and SPARS-J, respec-
tively.

These code fragments would be considered typical in that
they contain sufficient code related to the faulty operations
while avoiding inclusion of code not related to the faulty
operations. We are interested in the distinction of fragment
sizes which might affect the retrieval efficiency, and also we
are interested in the effect of the code complexity. We will
further discuss the requirement and characteristics of the
query code fragment in Section 4.
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package_name_length = p - class_name;
//should be: = (int)(p - class_name);

(a) Query Code fragment SA (small code fragment)

ret->mm_attachments =
mime_parsemultipart(bdlc + 1,
len - (bdlc + 1 - msg),
//should be: (int) (len - (bdlc + 1 - msg),
bd, &ret->mm_nattachments,
&pos, crlfpair);

(b) Query Code fragment SB (large code fragment)

pos +=
(((char *)((i = memchr(map + pos,

// should be: (int) (((char *)((i = memchr(...
’$’, len - pos - 1))
? i : map + len))
- ((char *)map + pos));

(c) Query Code fragment SC (complicated code fragment)

Figure 10: Query code fragments for SPARS-J

buf += HEADER_SIZE;
Request.type17.dicname = (char *)buf;
Request.type17.mode =
(char)*(buf + Request.type17.datalen
- SIZEOFCHAR) ;
Request.type17.datalen - SIZEOFCHAR) ;

Figure 11: Defective code fragment that SC-Retriever
was unable to find in Canna

3.1.5 Clustering Threshold
As described before, the identifier clustering is repeated

until the distance of any two clusters becomes greater than
the threshold value thv. Since the distances of two clusters
changes case by case, then it is fairly difficult to determine
a prefixed thv used for any purpose. Instead, we introduce
the threshold ratio thr which defines thv from the maximum
distance dmax of any two identifiers in the target source files,
as follows.

thv = thr · dmax (4)

By introducing the threshold ratio, the effect of the distribu-
tion of identification distances is complemented. We will use
three threshold ratios thr = 0.05, thr = 0.10, thr = 0.15,
and see the distinction of resulting synonyms.

3.2 Experimental Results of Canna
Table 2 shows the result of Canna’s case study. We present

the result with thr = 0.1 for SC-Retriever here. We would
say that SC-Retriever shows better F-values than CCFinder
for most cases. SC-Retriever has fairly high precision 0.63
for all the cases of CA, CB , and CC , and also has near
perfect recall, 0.94 for all the cases. The only defective code
fragment that SC-Retriever was unable to find is presented
in Figure 11. In this case, S2TOS is the key identifier of
the mismatch, which occurs in all of CA, CB , and CC , but
S2TOS and its synonyms (e.g., L4TOL) do not occur in the
fragment of Figure 11 at all.

CCFinder shows very good precision and recall for CA.
This means that all the faulty code fragments contain similar

statements to the query fragments. However, it presents
very low recalls for CB and CC . Since the retrieval results
are very sensitive to the query code fragments, we have to
choose them very carefully.

Table 2 shows also the effectiveness of the retrieve for three
difference threshold ratios. As you see, thr = 0.10 generally
shows better F-values than thr = 0.05 and thr = 0.15. If
we would choosing thr = 0.05, the F-value for CA is better,
but for cases CB and CC , we get very low F-values. Also,
we would get very low F-value 0.20 for all the cases with
thr = 0.15. Therefore, we think that using thr = 0.10 would
be a reasonable choice.

3.3 Experimental Results of SPARS-J
Table 3 shows the results of SPARS-J’s case study. We

also present the result with thr = 0.10 for SC-Retriever here.
In most cases, the precision and recall values in the results

of SPARS-J were worse than those values in the results of
Canna. We believe that the primary cause is that the defects
(missing typecast operations) spread across various kinds of
implementations in the system. In fact, various identifiers
are used in the code fragments sharing such defects.

CCFinder shows very good precision and recall for CA.
This means that all the faulty code fragments contain similar
statements to the query fragments. However, it presents
very low recalls for CB and CC . Since the retrieval results
are very sensitive to the query code fragments, we have to
choose them very carefully.

Table 3 shows also the results of SPARS-J with three
threshold ratios. We would think that both threshold ra-
tios thr = 0.10 and thr = 0.15 are promising. If developers
emphasize the precision, an appropriate ratio is thr = 0.10.
Conversely, if developers emphasize the recall, an appropri-
ate ratio is thr = 0.15.

When we set the threshold ratio to thr = 0.05, the re-
trieval results include almost only the function involving the
query code fragment.

4. DISCUSSION AND RELATED WORKS

4.1 Effectiveness of SC-Retriever
According to Table 2 and Table 3, SC-Retriever shows rel-

atively better F-values than CCFinder for most cases. In the
cases of small code fragments CA and SA, CCFinder shows
better F-values than SC-Retriever. However, it presents very
low recalls for both large and complicated code fragments.

Current implementation of SC-Retriever is a prototype sys-
tem, and we did not consider its performance seriously. It
takes about 40 minutes on a PC workstation for the whole
process of Canna’s case. Most part of this execution time
is for the clustering process, which can be performed only
once before any retrieval. The resulting synonym informa-
tion can be repeatedly used for later retrievals. We consider
that this clustering process would be further optimized and
parallelized for the better performance. For the retrieval
process, we have employed a simple matching algorithm. Its
performance can be also improved greatly if we would use a
hash method such as Locality Sensitive Hashing (LSH) [5].
These implementation techniques will further strengthen the
advantages of our approach.

4.2 Comparison with CCFinder
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Table 2: Results of Canna
SC-Retriever w/thr = 0.05 SC-Retriever w/thr = 0.10 SC-Retriever w/thr = 0.15 CCFinder
precision recall F-value precision recall F-value precision recall F-value precision recall F-value

CA 1.00 0.94 0.97 0.63 0.94 0.75 0.11 0.94 0.20 1.00 0.94 0.97
CB 1.00 0.06 0.11 0.63 0.94 0.75 0.11 0.94 0.20 1.00 0.06 0.11
CC 1.00 0.06 0.11 0.63 0.94 0.75 0.11 0.94 0.20 1.00 0.06 0.11

Table 3: Results of SPARS-J
SC-Retriever w/thr = 0.05 SC-Retriever w/thr = 0.10 SC-Retriever w/thr = 0.15 CCFinder
precision recall F-value precision recall F-value precision recall F-value precision recall F-value

SA 0.66 0.04 0.08 0.10 0.18 0.13 0.09 0.30 0.14 0.46 0.12 0.19
SB 1.00 0.02 0.04 0.44 0.08 0.14 0.08 0.38 0.13 1.00 0.02 0.04
SC 1.00 0.02 0.04 0.66 0.04 0.08 0.50 0.04 0.07 1.00 0.02 0.04

SC-Retriever showed the better efficiency than CCFinder in
many cases, but for the small code fragment cases, CCFinder
outperforms SC-Retriever. This suggests that when we need
to retrieve code fragments with some a specific code pattern,
CCFinder is a better choice. On the other hand, if we are
unsure of the defective code pattern, SC-Retriever will be the
first choice.

As we will discuss in Section 4.4.1, we would use other
code clone tools with difference clone detection algorithms.
Some of those tools may allow more flexibility of code struc-
ture distinction, but such flexibility would not be much as
given by SC-Retriever.

4.3 Threshold and Fragment
For the determination of the clustering termination, we

have used the threshold value and threshold ratio. We have
investigates several threshold ratios and found that thresh-
old ratio 0.10 would be appropriate for our case studies. We
have to further investigate the better threshold ratios which
can be used for various cases. Also, we would explore other
methods to terminate the cluster merging process, such as
ones using cluster sizes or so.

Granularity of code fragments in the retrieval is an im-
portant factor in our approach. We have used a C-language
function as the structured unit of the synonym determina-
tion process. We can consider other granularity for this pur-
pose, such as a block. If the single structured unit becomes
smaller, the probability of co-occurring two identifiers in the
same structured unit generally decreases, generating fewer
synonyms for each identifier. This would increase the preci-
sion, but reduce the recall greatly. We think that the current
choice would be a practical compromise.

Also, we have used a function for the retrieved code frag-
ments as the outputs. This simplified the implementation
of SC-Retriever greatly. We would consider other granulari-
ties such as a block as the output, which would reduce the
overhead of focusing defective code portions in a function.
However, without using such fine-grained retrieval methods,
we are able to locate the defective portions effectively if the
identifiers corresponding to the query identifiers are high-
lighted in the SC-Retriever output. We will improve SC-
Retriever in this way.

In the case studies, we have used three types of query
code fragments from the bug records of the systems. Choos-

ing different code fragments for the query would affect the
retrieve results. However, as mentioned in Section 3.1.4, we
have chosen code fragments to intend that all bug-related
statements are covered and non-related statements are ex-
cluded as much. We guess that this policy will produce
similar results for other query code fragments.

4.4 Related Works

4.4.1 Code Clone Detection Techniques
So far, a lot of techniques have been developed on code

clone detection [1, 2, 6, 7, 10, 11, 12, 13, 15, 18]. Several
of them are token-based detection techniques [1, 6, 11], and
they are very scalable in terms of time and space complexity.
We have used a token-based detection tool CCFinder [11] for
the case studies.

Tree-based and semantic-based techniques have been also
devised [2, 10]. Jiang et al. have developed an abstract syn-
tax tree (AST) based code clone detection tool DECKARD
[10]. It can treat a pair of code fragments as a code clone
when their syntax elements are the same (even if their AST
structures are slightly different). Semantic-based techniques
identify code clones using program dependence graphs [7, 12,
13].

Code clone detection tools find only structurally similar
code fragments. On the other hand, our method retrieves
similar fragments based on the correspondence of identifiers;
thus the retrieved results might not be structurally similar.
This would be a major benefit of our approach for the cases
of the retrievals for unknown structured patterns, such as
the case study for SPARS-J where we sought missing type
cast operations.

4.4.2 Defect Detection Techniques
Li et al. proposed a tool named PR-Miner [16]. It ex-

tracts frequently occurring pattern of variable and function
names from source code based on frequent item-set mining,
then detects the violations of detected patterns. It finally
provides code fragments involving such violations as defect
candidates. Also, Li et al. showed identifier naming in-
consistencies among code clones of the Linux kernel as the
defect candidates [15].

We believe that by giving SC-Retriever those defect candi-
dates, we can detect more defects that Li’s methods cannot
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detect.

5. CONCLUSION
We have proposed a method for retrieving similar code

fragments to a query code fragment. The proposed method
can provide not only code fragments which share all iden-
tifiers with a query code fragment, but also code fragments
which involve all identical or synonymous identifiers.

In the case studies, we have applied SC-Retriever to the
source files of Canna and SPARS-J, together with CCFinder
for the purpose of comparing the retrieval efficiency. In most
cases, the SC-Retriever outperforms CCFinder in the retrieval
efficiency.
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