
An Effective Method to Control Interrupt Handler for Data
Race Detection

Makoto Higashi
Graduate School of

Information Science and
Technology, Osaka University

m-higasi@ist.osaka-
u.ac.jp

Tetsuo Yamamoto
College of Information Science
and Engineering, Ritsumeikan

University
tetsuo@cs.ritsumei.ac.jp

Yasuhiro Hayase,
Takashi Ishio,
Katsuro Inoue

Graduate School of
Information Science and

Technology, Osaka University
{y-hayase, ishio,

inoue}@ist.osaka-u.ac.jp

ABSTRACT
Embedded software frequently uses interrupts for timer or
I/O processing. If a memory area is used by both an in-
terrupt handler and other routines at the same time, the
embedded system has the potential to fail because of unex-
pected data in the memory. To detect the race conditions of
memory, this paper proposes a method of interrupt testing
on a CPU emulator. The method consists of two features:
one is interrupt generation at the instruction points that
possibly causes race conditions; the other is replacing input
value from external device to control interrupt handlers. An
interrupt is generated just after the program reads or writes
data on memory for the purpose of covering all possibility
of sharing memory between the interrupt handler and other
routines. Sequence of input value from the external device
is prepared by hand before program execution. We have ap-
plied our method to testing for a race condition of uClinux.
The experience of detecting race conditions has shown the
mechanism causes interrupts at necessary and sufficient tim-
ing compared with random interrupt testing. Also, it is easy
to substitute values in memory to detect race conditions.

Categories and Subject Descriptors
C.3 [Special-purpose and application-basedsystems]:
Real-time and embedded systems; D.2.5 [Software Engi-
neering]: Testing and debugging.Testing tools

General Terms
RELIABILITY

Keywords
race condition, embedded systems, fault injection, interrupt-
driven software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST’10 , May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-970-1/10/05 ...$10.00.

1. INTRODUCTION
Embedded software frequently uses interrupts for timer

or I/O processing. However, interrupts should be used and
tested carefully since wrong use of interrupts causes a race
condition [12], i.e. the failure caused by inadequately con-
trolled multiple accesses to shared memory[15]. Assume that
a certain variable is changed by an interrupt handler just af-
ter a condition check for the variable. In such case, the state-
ments after the condition check should not work correctly
since the precondition for the statements may be violated.

To detect the race conditions, static detection methods,
which are based on model checking[5, 8, 14], and dynamic
detection methods, which intentionally generate an inter-
rupt for testing [16], are proposed. In this paper, we focused
on dynamic testing since the dynamic methods generate less
false-positive than the static methods.

In [16], Regehr proposed a dynamic detection method that
randomly causes interrupts while a program is running. This
method depends on duration of the random interrupt sched-
ule. If the schedule is too sparse, there are only a little
detections of race conditions. If the schedule is too dense,
there are always multiple pending interrupts, and then non-
interrupt routine cannot make progress. Therefore, it is im-
portant to consider adequate interrupt schedule.

At first, we consider the timing in which interrupts occur.
To test all race conditions, it needs that an interrupt occurs
on all instruction points which access shared memory.

Moreover, it is necessary that appropriate value in mem-
ory or variable within interrupt handler to cause a race con-
dition. If there is no execution path to access shared mem-
ory, there is no race condition.

In this paper, we propose a method of interrupt testing
to detect race conditions. The method comprises two mech-
anisms. One is that a mechanism to cause an interrupt at
all possible timing to cause race conditions. Another is that
a mechanism to substitute appropriate value for a value in
memory. The former one is to provide a function that an
interrupt automatically occurs just after instructions which
access shared memory. The latter one is to provide a func-
tion that automatically change the value specified by a user.
The user specifies memory address and new value in the
memory before a program runs.

These two mechanisms are implemented on a CPU em-
ulator to test for race conditions in an early phase of the
development of embedded systems. In development of em-

1: #define MAX 16

2: unsigned int index = 0;

3: int array[MAX];

4: void array_print(void);

5: {

6: if(index < MAX)

7: printf(“%d¥n”, array[index]);

8: }

9:

10: void interrupt_handler(DEVICE *dev){

11: index+=get_int(dev);

12: }

Figure 1: Sample source code that potentially causes
race condition

Call array_printer(void)

no

yes

Return

index < MAX

Print Array[index]

Interruption

Call interrupt_handler(dev)

index+=int_getter(dev)

Return

Figure 2: Flowchart of Figure 1 with an interrupt
just after the branch

bedded systems, software is often executed and tested on
a CPU emulator since hardware and software for the sys-
tem are developed in parallel. The mechanisms on a CPU
emulator enable efficient test for race conditions before the
hardware is finished.

The rest of this paper is organized as follows: Section
2 clarifies a race condition that this paper targets. Sec-
tion 3 describes details of our method, which test for race
conditions using the mechanism to cause interrupts and the
mechanism to substitute values in memory. Section 4 shows
implementation of our method on a CPU emulator. Section
5 evaluates our method through an experiment. Section 6 in-
troduces related work on generating interrupts and changing
values. Concluding remark and future work are presented
in Section 7.

2. DEFINITION OF RACE CONDITION
In this section, we provide a motivating example, explain-

ing the definition of race conditions in this paper.
Figure 1 shows an example source code that may causes

a race condition. Procedure print_array checks that index
is less than MAX, then print index-th element of array.

It apparently seems that print_array has no buffer-over-
run problem since the function checks the index before it
accesses to the array. However, as shown in Figure 2, if
an interrupt occurred and interrupt_handler is called just
after the check of index, index in line 7 may have MAX or
more value.

As mentioned above, a program that is made without at-
tention for an interrupt sometimes has an implicit assump-
tion that a variable stores the same value when the variable
is accessed previously. Unfortunately, the assumption breaks

and the program may not work correctly if an interruption
handler asynchronously works and modifies the variable.

In this paper, a race condition is defined as the failure
that is caused by interruption handler that modifies a certain
variable between a reference or modification to the variable
and a later reference to the variable. Our method is designed
to detect this kind of race condition.

3. METHOD
This section proposes a method to test for race conditions

effectively. The method has two mechanisms. One is the
mechanism to cause interrupts and another is to substitute
values.

As described in section 2, a race condition occurs if fol-
lowing conditions are met.

1. An interrupt handler is executed when the program
is running on the point after an access to a certain
variable and before a read access to the variable.

2. The interrupt handler modifies the variable in the ex-
ecution.

Therefore, we need to treat two tasks in order to detect
a race condition; to cause an interrupt between the former
access to the variable and the latter reference to the variable,
and to control the interrupt handler to access the variable.

Then, the mechanism to cause interrupts treats the for-
mer task, and the mechanism to substitute values treats the
latter task. Each mechanism runs independently and treats
the different task, but both these mechanisms contribute to
the solution of the same problem. It is efficient interruption
to test for race conditions.

3.1 Mechanism to cause interrupts
This section describes the mechanism to cause interrupts

on all point that possibly causes a race condition, i.e. af-
ter any access to certain memory area. The mechanism is
implemented as a part of memory-accessing instruction in a
CPU emulator. The mechanism proceeds in following steps
after all memory-access instructions are executed.

1. Checks whether the instruction access memory.

2. If step 1 is true, checks whether the program has just
returned from any interrupt handler.

3. If step 2 is false, checks whether the current status of
the execution matches the conditions in the configura-
tion file.

4. If step 3 is true, causes an interrupt according to the
configuration file.

The step 3 is designed to avoid infinite loop. If inter-
rupts occurs just after returning from interrupt handlers ev-
ery time, only the interrupt handler runs infinitely. For this
reason, the mechanism doesn’t cause interrupt in such case.

Figure 3 shows the steps to check whether an interrupt
should be caused. Inputs to this mechanism are program
counter of a CPU emulator and a configuration file. The
configuration file consists of the following items.

kind of interrupt A kind of interrupt which this mecha-
nism causes. An example of this kind is I/O device
number linked with the interrupt handler to test for a
race condition.

compare

current program counter

with the saved counter

If the saved counter is

different from

the current program counter,

cause an interrupt and

save program counter

mechanism to cause interrupts

saved counter

current

program

counter

interrupt

program
LDR ADDR

ADD

MOV
・

・

・

・

・

・

result of

comparison

•kind of interrput

•permission of nested interrupts

configuration file

specify causing

interrupts

saved

counter

current

program

counter

access to

memory area

Figure 3: How to cause interrupts.

permission of nested interrupt An option to select wh-
ether this mechanism causes an interrupt while the in-
terrupt handler is executed.

The program counter is used for determining whether the
program state is just return from an interrupt handler. Pro-
gram counter is saved just before an interrupt is caused.
Then, the saved counter is compared with the current pro-
gram counter when the mechanism checks to cause interrupt
or not. If the two counters are same, the mechanism deter-
mines that the program state is just return from the handler.

3.2 Mechanism to substitute values
This mechanism is used for controlling execution path of

an interrupt handler by substituting an input value from
external device to user specified value. Since embedded
software uses memory-mapped I/O in interrupt handlers for
communicating with external devices in most case, substi-
tuting input value is same as substituting values in a certain
memory area.

This mechanism functions on the place where instructions
read memory. This is the reason that we assume embedded
software on a processor using the memory-mapped I/O. On
the processor, a program gets input values from devices by
reading memory.

The mechanism proceeds in following steps after all in-
structions are executed.

1. Checks whether the instruction is reading memory.

2. If step 1 is true, compares the program state to condi-
tions in the configuration file.

3. If step 2 matches, changes the value in the memory
according to the configuration file.

Figure 4 shows the steps to substitute a value in a memory
area.

Inputs of this mechanism are the memory address the in-
struction reads and a configuration file. The configuration
file consists of the following items.

• memory address: An address which is mapped to ex-
ternal device.

access memory

with addressprogram
LDR ADDR

ADD

MOV
・

・

・

・

・

・

send user

specified value

send an

input value

instruction which

reads memory

1 2 3

* #

4 5

7

6

8 9

0

CPU emulator

external device or

an emulator of it

check if the memory address which

the instruction reads

is mapped to external device

If memory address

the instruction reads

is mapped to external device,

change the value

access memory

with address

memory address A: 0x10000000

formula A: 0x2000

memory address B: 0x20000000

formula B: current input + 1

memory address C: 0x40000000

formula C: temp
・

・

・

configuration file

specify

substituting

inputs

mechanism to substitute inputs

Figure 4: How to substitute a value.

• formula: An expression to calculate new value from
existing value.

You can specify not only constant value, but also an ex-
pression using the current value and any other global vari-
ables in the expression. This expression makes variety of
execution path of interrupt handler possible.

4. IMPLEMENTATION
To automate our method, we implemented a prototype

system of our approach on ARM subsystem of SkyEye[3]
CPU emulator.

4.1 Mechanism to cause interrupts
We implemented functions to cause interrupts as follows.

• Function to cause interrupts: this is implemented in
C language. The function is called by six C functions
which deal with load instructions and by six C func-
tions which deal with store instructions.

• Function to detect the return from interrupt handler:
when an interrupt occurs, the function saves the value
of program counter. To compare current value of pro-
gram counter with the saved value, we detect the state
just after the return from interrupt handler.

• Function to analyze the configuration file: we imple-
mented the function to parse the configuration file by
using yacc and lex.In this configuration file, the kind
of interrupt consists of I/O device number linked with
the interrupt handler to test and whether an interrupt
is IRQ or FIQ in ARM architecture.

4.2 Mechanism to Substitute Values
We implemented functions to input new values as follows.

• Function to inject the new value: When load instruc-
tions read the value of devices from memory-mapped
I/O, we implemented the function which substitute
user specified value for the value of devices.

• Function to analyze the configuration file: we imple-
mented the function to parse the configuration file by
using yacc and lex.

• Function to get the value of variables: we implemented
the function to get information of global variables by
using dwarf2[1] before running the program.

5. EXPERIMENT
This section describes a case study in applying our pro-

posed method to test for race conditions for an open-source
software. The aim of this study is examine how much reduc-
tion of the cost to test for race conditions when a developer
doubts the possibility of a race condition. We test for a race
condition as a practical matter, and report the process to
detect the race condition.

5.1 Target of detection
We select a fault in uClinux version 2.4 as the detection

target of our method. The fault was fixed in the revision
1.12 of /drivers/char/68328serial.c in the software. 1

Figure 5 shows an excerpt of the source code which has the
fault. Function rs_flush_chars is a non-interrupt routine
and function rs_interrupt is an interrupt handler. These
functions are used by the driver of UART port to trans-
mit characters through the port. Both of these functions
send one character obtain from the character queue, info-
>xmit_buf, when the following conditions are fulfilled.

In line 445–448 and 782, UART port is available for tr-
ansmission, i.e. logical multiply of utx.w and UTX_TX-

_AVAIL is true.

In line 400 and 768, The queue stores one or more char-
acters, i.e. info->xmit_cnt is greater than 0.

A race condition is exposed if the queue stores only one
character and the interrupt handler modifies the queue just
after the conditional statement in line 768 branches to else
side. Especially, the condition in which the race condi-
tion occurs is that the conditional expression in line 768
is false and info->xmit_cnt is equal to 1, and utx.w &

UTX_TX_AVAIL is true. Then last one character is removed
from the queue. However, the statements in line 786-789
read a character from the empty queue. Therefore, the pro-
gram fails and a random character is transmitted.

In this experiment, we modified uClinux to run these func-
tions on the emulator.

• uClinux is modified to call these functions on ARM ar-
chitecture, since originally the functions are only called
on m68k architecture. The source code of the functions
is not modified.

1http://cvs.uclinux.org/cgi-bin/cvsweb.cgi/
uClinux-2.4.x/drivers/char/68328serial.c.diff?
r2=1.12&r1=1.11&f=h

・

・

・

389: static _INLINE_ void transmit_chars(struct m68k_serial *info)
390: {

400: if((info->xmit_cnt <= 0) || info->tty->stopped) {
401: /* That's peculiar... TX ints off */
402: uart->ustcnt &= ~USTCNT_TX_INTR_MASK;
403: goto clear_and_return;
404: }
405:
406: /* Send char */
407: uart->utx.b.txdata = info->xmit_buf[info->xmit_tail++];
408: info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
409: info->xmit_cnt--;

・

・

・

423: }
・

・

・

428: void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs)
429: {

・

・

・

445: tx = uart->utx.w;
・

・

・

448: if (tx & UTX_TX_AVAIL) transmit_chars(info);
・

・

・

453: }
・

・

・

757: static void rs_flush_chars(struct tty_struct *tty)
758: {

・

・

・

768: if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped ||
769: !info->xmit_buf)
770: return;

・

・

・

782: if (uart->utx.w & UTX_TX_AVAIL) {
・

・

・

786: /* Send char */
787: uart->utx.b.txdata = info->xmit_buf[info->xmit_tail++];
788: info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
789: info->xmit_cnt--;
790: }

・

・

・

Figure 5: Excerpt of the failure in uClinux-
2.4.x/drivers/char/68328serial.c rev 1.11

• uClinux is modified not to call function __delay, since
this function wastes much execution time. It is not re-
lated with both function rs_flush_chars and function
rs_interrupt, and the evaluation of this experiment
does not need an exact execution time.

Also, in this experiment, we did not select the option ex-
plained in section 3.1 that chooses to cause interrupts while
the interrupt handler to test is being executed. This is be-
cause a race condition can be caused without multiple inter-
rupts, and a large amount of multiple interrupts prevent a
non-interrupt routine from making progress.

5.2 Testing process
We report the process to detect the race condition we

described in the above. It must be noted that a developer
who tests for the race condition has following knowledge. He
or She:

• Doubts the possibility to cause a race condition within
function rs_flush_chars.

• Assumes function rs_interrupt as the interrupt han-
dler to cause the race condition in cooperation with
function rs_flush_chars

• Assumes variable info->xmit_cnt as a variable to cau-
se the race condition.

He or she must proceed following procedures to test effec-
tively.

• Examines adequate number of data in info->xmit_buf

queue before calling function rs_flush_chars. The
number depends on the number of interrupts are caus-
ed by our method just before calling function rs_flus-

h_chars and from 757 through 767 in Figure 5. Be-
cause the number of info->xmit_buf must be at least
one in the state the program executes line 768 in Fig-
ure 5 to cause the race condition. Also, the developer
considers that an interrupt occurs just before calling
function rs_flush_chars and from line 757 through
767. Therefore, the number of info->xmit_buf must
be calculated to use above information.

• Describes the number in the configuration file.

Also, he or she must find out following information that
is required in the configuration file.

• Memory address of utx.w member in structure uart

that represents UART port: This address is required
to decide the value of uart->utx.w. There are two
ways to investigate the address. One is to check the
specification of UART port. Another is to find out the
operand of load instruction which reads the value of
uart->utx.w to use a debugger. In the latter way, the
method to find out the load instruction is to search the
address of all lines in source code by using dwarf2[1].

• A value of uart->utx.w to cause the race condition:
The value is decided to investigate the value of UTX_-
TX_AVAIL of line 445–448 and 782 in Figure 5.

• A kind of interrupt and interrupt number to call func-
tion rs_interrupt: These are decided to find out the
line of function rs_interrupt call instruction in the
interrupt vector of source code.

5.3 Result
We show the cost of testing for race conditions by the

process we explained in section 5.2
It is needed to test more than six data about the value

of info->xmit_buf to detect the race condition. The rea-
son is to cause the race condition before calling function
rs_flush_chars only when the number of info->xmit_buf
is from 6 through 10.

If the number is less than 6, our mechanism causes inter-
rupts 5 times before executing line 768 in Figure 5. In such
case, info->xmit_buf is empty at the execution of line 768.
As a result, lines 787–789 are not executed. On the con-
trary, if the number is more than 10, the number of info-

>xmit_buf is more than 1 at the execution of line 787–789.
As a result, there is no race condition.

A developer required writing 7 lines in the configuration
file to test for a race condition in this case. The amount of
the file is small. However, to get information to describe the
file, it took about 10 minutes to search variables in source
files of uClinux-2.4.x and dynamically find out addresses of
variables in uClinux-2.4.x executing on the CPU emulator.

Next, we measured CPU cycles from the start of the CPU
emulator through detecting the race condition. It took 7241-
7488 cycles to execute uClinux-2.4.x on the CPU emulator
in applying our method. On the other hand, it took 4836078

cycles to normally execute uClinux-2.4.x on the CPU emu-
lator. It requires time about 15 times to apply our method.
Other information is as follows.

• The number of interrupts: 1409375

• The number of calling the interrupt handler: 390722

• The total number of cycles took in the interrupt han-
dler:69952632 (96% of all cycles)

5.4 Discussion
We argue the following points about the experience and

the results of it.

• difference from random interrupt testing

• how to prepare values of variables

• knowledge about target program

Difference from random interrupt testing.
The aim of our method is to improve random interrupt

testing(Regehr’s method) [16] as we explained in section 1.
There are two points to improve it, a timing of an interrupt
and behavior of an interrupt handler.

First, we argue the timing of an interrupt. In our method,
an interrupt occurs just after an instruction accesses mem-
ory. On the contrary, interrupts randomly occurs in Regehr’s
method. The timing of an interrupt between these methods
does not correspond. However, a user can set up the sched-
ule of interrupts in Regehr’s method. If the schedule is too
dense, the timing of interrupts by Regehr’s method includes
the timing of interrupts by our method. However, we think
it is difficult that our method and Regehr’s method corre-
spond.

The reason is that Regehr’s method cannot detect nested
interrupt handler call. In our method, a user can select a
permission of nested interrupts as we described in section
3.1. This option prevent over interrupt. On the other hand,
Regehr’s method cannot prevent multiple interrupts.

Next, we argue the behavior of an interrupt handler. Reg-
ehr’s method can only trigger interrupts. Our method can
not only trigger interrupts but also substitute the value of
variables within the interrupt handler. Using this mech-
anism, a user can control execution path of the interrupt
handler. As a result, it is possible to try to test more case
to cause race conditions.

Given this mechanism, our method Regehr’s method are
different kinds of testing. In our method a user have to
understand the behavior of the program. On the other hand,
a user does not have to understand it in Regehr’s method.
We consider the difference between our method and Regehr’s
method as the relation between white-box testing and black-
box testing.

It is useful to be able to change execution path of the
interrupt handler to detect race conditions. An interrupt
from external device occurs and reading and/or writing val-
ues from the device are a close relationship. Therefore, to
change the value from the device has an impact to the be-
havior of the interrupt handler.

However, a user needs to know information of the device
and values of it in advance. If there is no information, a
user cannot specify the value. The difference between our

method and Regehr’s method is small in such case. A future
work is to test by using as little information that a user needs
to describe as possible.

On the other hand, users of our approach have to deter-
mine which combinations of an interrupt handler and a non-
interrupt routine should be tested. The following steps for
all interrupt handlers enumerate all the combinations that
potentially cause race condition.

1. Detect all variables to which an interrupt handler writ-
es.

2. For each one of the variable, find all routines that ac-
cess the variable at least twice.

How to prepare values of variables.
Information of not only interrupts and input values from

devices, but also values of variables in the program may be
required to detect race conditions as we described in section
5.3. We discuss how to prepare the information.

In section 5.3, we substituted values of variables by mod-
ifying the source code of uClinux to inject the information.
Then, we wasted much compile time because uClinux-2.4.x
is a large scale of software, As the result, the testing for race
conditions was inefficient.

It is realized to use the mechanism to substitute values in
memory to easily inject the information. The aim of the
mechanism is to substitute appropriate value for a value
from extern device. You specify memory-mapped I/O ad-
dress of the device to use the mechanism. If you specify
the address of the variable, you can change the value of a
variable in source code.

It is generally difficult to investigate the address of vari-
ables. However, it is easy to know the name of the variable.
We have to extend the format of a configuration file to be
able to write the name instead of the address.

Knowledge about target program.
In section 5.2, we assumed a user knows non-interrupt

routine, interrupt handler and shared memory of target pro-
gram that test for race conditions in advance. We argue the
knowledge of a user to test for race conditions.

First, we assume that a user has little knowledge about
target program, but enough about external device. A user
can test only when race conditions occur whenever an inter-
rupt occurs. Because only knowledge of a kind of device is
sufficient information to cause interrupts exhaustively.

Next, we assume that the user has knowledge about values
from an external device. The user may be able to select the
value to execute an instruction that causes race conditions.
Executing the path needs to examine source code in a precise
sense. However, it is possible to detect race conditions only
to create values according to the specification of the external
device.

To detect all race conditions is needed to create adequate
test cases. It is important that combination non-interrupt
routine with interrupt handler to cause a race condition.
Therefore, to cause all race conditions requires checking all
execution paths of not only interrupt handlers but also non-
interrupt routines. Also, there is a particular kind of case
as section 5.3. To detect a race condition is to make only 6
sets of test cases in such case.

However, it is impossible to detect race conditions in the

1: unsigned int len = 0;

2: void str_cpy(char *buf, char *str);

3: {

4: len = strlen(str);

5: if((0 < len) && (len <= strlen(str)))

6: memcpy(buf,str,len+1);

7: }

8:

9: void interrupt_handler(void){

10: len++;

11: }

Figure 6: Sample source code that causes race con-
dition when interrupt occurs only once

following conditions. As a future work, we are trying to
detect these race conditions.

• A race condition that depends on the number of in-
terrupts or a combination of interrupts: For example,
when an interrupt is not caused just after first load in-
struction and is caused just after next load instruction,
a race condition occurs. Our method cannot detect the
race condition. For example, in Figure 6, race condi-
tion occurs when an interrupt does not occur in line 4
and occurs in line 5.

• A race condition that depends on a combination of
multiple kinds of interrupts: For example, when at
first a timer interrupt is caused, next, UART interrupt
is caused, a race condition occurs. Our method deals
with only one kind of interrupt at a time.

If a user needs to test multiple interrupt handlers, the user
needs to apply our method with respect to each interrupt.
In such case, the number of execution of the program to
test is multiplying the number of interrupt handlers by the
number of test case. Test case means a value from external
device to cause a race condition.

6. RELATED WORK
Testing embedded software with hardware interrupt such

as device drivers is challenging because developers must in-
vestigate possible race conditions on a large number of contr-
ol-flow paths caused by interrupt.

Regehr proposed a method to test interrupt-driven em-
bedded software by causing interrupts at random [16]. Our
approach uses a CPU emulator to exhaustively cause inter-
rupts to cover possible control-flow paths.

Although our research focuses on interrupt-driven embed-
ded software, detecting a race condition is also an important
issue for developing multi-threaded programs. Entropy In-
jection[4] inserts artificial delays between data access opera-
tions to provoke race conditions in multi-threaded programs.
This approach increases the probability of race conditions
during an automated test session. Our approach controls the
interrupt mechanism of a CPU emulator to directly cause
race conditions; our approach allows developers to test and
debug a particular execution scenario of a program under
test.

Joshi et al. [11] proposes a method extracting a cyclic
lock dependence chain from an execution trace of a multi-
threaded program; their customized thread scheduler sus-
pends threads that acquire locks in the cycle to create a

deadlock with high probability. Our tool controls schedule of
interrupts instead of threads to create data race conditions.
A difference between interrupt-driven embedded software
and multi-threaded program is that an interrupt handler
often reads and writes shared variables and most of them
do not cause any problem. Data race conditions of interest
to us are caused by statements executed under assumptions
on values stored in variables that might be updated by an
interrupt handler.

There are also several dynamic analysis methods [9, 13];
however, these methods cannot be applied to interrupt-driv-
en software. Regehr and Cooprider have proposed an inter-
esting approach that translates source code of an interrupt-
driven program into a multi-threaded program that emulates
the original behavior [17]. We did not take this approach be-
cause we would like to test an interrupt-driven program on a
CPU emulator to analyze the actual behavior of the program
when a race condition occurs.

Our approach monitors a program execution, artificially
causes interrupts and generates input data from external
devices when the program accesses a particular memory ad-
dress. To implement our method, we have employed a fault
injection mechanism. Although the main goal of fault injec-
tion research is to decide input values that likely cause fail-
ures of systems to test and evaluate a program [10], a fault
injection approach that dynamically substitutes a modified
data for an actual data with a modified data is well suited
for us to generate input data to analyze a race condition.

Xception[6] is a tool to emulate hardware transient faults
in functional units of a processor. For example, Xception can
corrupt an operand loaded from a specified address with sev-
eral bit level operations: stuck-at-zero, stuck-at-one, bit flip,
and bridging. Our method implements a similar mechanism
but substitutes an arbitrary value for an input value speci-
fied by a developer so that developers can test a particular
execution scenario.

Qinject[7] is a CPU emulator with another fault injection
approach. Qinject generates input values when a specified
instruction is executed in order to emulate a defective code,
while our method generates input values when instructions
access a specified memory location in order to emulate a
memory mapped I/O.

To test and debug a program, gdb, the GNU Project De-
bugger [2], also can substitute a test input for an actual
input when an instruction loaded the input from a specified
memory address. However, gdb cannot directly control in-
terrupt. We have implemented our tool on a CPU emulator
instead of a combination of a regular CPU emulator and gdb

because of the ease of implementation.

7. CONCLUSIONS
In this paper, we have implemented two mechanisms to

a CPU emulator, which can cause interrupts after memory
accesses and substitute input values from external devices
that interrupt handler uses to test for race conditions in
embedded software. We have applied our method to testing
for a race condition of uClinux. The experience of detecting
race conditions has showed the mechanism causes interrupts
at necessary and sufficient timing compared with random
interrupt testing. Also, it is easy to substitute values in
memory to detect race conditions.

Future works will focus on substituting value of variables
in source code, causing more appropriate timing of inter-

rupts and dealing with multiple kinds of interrupts.

8. ACKNOWLEDGMENTS
This research was supported by Japan Society for the Pro-

motion of Science, Grant-in-Aid for Scientific Research (A)
(No.21240002). This research was also supported by Min-
istry of Education, Science, Sports and Culture, Grant-in-
Aid for Young Scientists (B) (No.21700031).

9. REFERENCES
[1] Dwarf home. http://dwarfstd.org/.

[2] Gdb: The GNU project debugger.
http://www.gnu.org/software/gdb/.

[3] SkyEye - open source simulator.
http://www.skyeye.org/.

[4] L. Albertsson. Entropy injection. SICS Technical
Report, T2007(2), February 2007.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin,
J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis
of device drivers. ACM SIGOPS Operating Systems
Review, 44(4):73–85, October 2006.

[6] J. Carreira, H. Madeira, and J. G. Silva. Xception: A
technique for the experimental evaluation of
dependability in modern computers. IEEE
Transactions on Software Engineering, 24(2):125–136,
February 1998.

[7] F. M. David, E. M. Chan, J. C. Carlyle, and R. H.
Campbell. Qinject: A virtual machine based fault
injection framework. International Conference on
Architectural Support for Programming Languages
and Operating Systems (Poster Presentation), March
2008.

[8] D. Engler and K. Ashcraft. Racerx: Effective, static
detection of race conditions and deadlocks. ACM
SIGOPS Operating Systems Review, 37(5):237–252,
December 2003.

[9] C. Flanagan and S. N. Freund. Fasttrack: efficient and
precise dynamic race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 121–133,
June 2009.

[10] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault
injection techniques and tools. IEEE Computer,
30(4):75–82, April 1997.

[11] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A
randomized dynamic program analysis technique for
detecting real deadlocks. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 110–120,
June 2009.

[12] N. G. Leveson. An investigation of the therac-25
accidents. IEEE Computer, 26(7):18–41, July 1993.

[13] D. Marino, M. Musuvathi, and S. Narayanasamy.
Literace: effective sampling for lightweight data-race
detection. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 134–143, June 2009.

[14] E. G. Mercer and M. D. Jones. Model checking
machine code with the GNU debugger. In 12th
International SPIN Workshop, pages 251–265, August
2005.

[15] R. H. B. Netzer and B. P. Miller. What are race
conditions?: Some issues and formalizations. ACM
Letters on Programming Languages and Systems,
1(1):74–88, March 1992.

[16] J. Regehr. Random testing of interrupt-driven
software. In EMSOFT ’05: Proceedings of the 5th
ACM international conference on Embedded software,
pages 290–298, September 2005.

[17] J. Regehr and N. Cooprider. Interrupt verification via
thread verification. Electronic Notes in Theoretical
Computer Science, 174(9):139–150, June 2007.

