
Building Domain Specific Dictionaries of Verb-Object Relation from Source Code

Yasuhiro Hayase
Faculty of Information Sciences and Arts

Toyo University
Kawagoe, Saitama, Japan

Email: hayase@toyo.jp

Yu Kashima Yuki Manabe Katsuro Inoue
Graduate School of Information Science and Technology

Osaka University
Suita, Osaka, Japan

Email: {y-kasima,y-manabe,inoue}@ist.osaka-u.ac.jp

Abstract—An identifier is an important key in mapping
program elements onto domain knowledge for the purpose
of program comprehension. Therefore, if identifiers in a
program have inappropriate names, developers can waste
a lot of time trying to understand the program. This paper
proposes a method for extracting and gathering verb-object
(V-O) relations, as good examples of naming, from source
code written in an object-oriented programming language.
For each of several application domains, dictionaries con-
taining the V-O relations are built and evaluated by software
developers. The evaluation results confirm that the relations
in the dictionaries are adequate in many cases.

I. INTRODUCTION

Program comprehension consumes at least half the
time allocated to the software maintenance process [1],
[2]. Identifiers in the source code are very important for
program comprehension. Software developers generally
try to understand a program by guessing the roles of the
program elements from their identifiers [3], [4].

In general, an identifier consists of several words, and
multiple identifiers are used to represent the behavior of a
program. As a result, various relations exist between the
words in identifiers. For example, the name of a method
has a verb-clause representing its behavior together with
optional object-clauses in most cases. The name of the
method relates to the name of the class and formal
parameters when declaring the method, or receiver object
and actual parameters when calling the method. These
related identifiers sometimes assume the role of the object-
clause for the verb in the method name.

Accordingly, if identifiers in a program have inappro-
priate names, it is difficult for developers to guess the
role of the program elements and map the elements onto
knowledge of the application domain. Lawrie et al. [5]
revealed that identifiers that are acronyms or meaningless
serial numbers cause developers to waste much more time
in program comprehension, compared to when identifiers
are spelled out fully without any abbreviations. Therefore,
software developers should give identifiers names that
accurately represent the role of the program elements when
creating or changing source code.

Unfortunately, not all developers are able to give appro-
priate names to identifiers, since a broader knowledge and
a great deal of experience are necessary to define accurate
names. Developers need to learn the rules of various words
and their combinations (e.g., naming rules) in different

domains, such as the programming language, development
organization or application domain. The only way to learn
these rules is through examples, since the rules are not
documented in many cases.

For the purpose of naming identifiers, our research
group is working on building dictionaries containing good
examples of identifier names. The dictionary has a network
structure. In a previous work, we proposed a method for
building a dictionary of the super-sub (abstract-concrete)
relation of nouns used in identifiers [6]. We believe that
the dictionary is useful for naming classes and variables.

This paper proposes a method for building a dictio-
nary of verb-object (V-O) relations extracted from source
code. In particular, verbs are extracted from a method
name using existing natural language processing and the
pattern matching system we developed, and then objects
are extracted from the method name, names of formal
parameters of the method, and the name of the class to
which the method belongs. This process is applied to
a set of source files categorized by application domain.
Relations that appear frequently in a domain are included
in the dictionary for that domain.

The proposed method was applied to Java source files
belonging to four different domains, and the generated
dictionaries evaluated by developers. The results of the
evaluation confirm that most of the entries in the dictionar-
ies are domain specific relationships and general relations
in Java source code.

The rest of the paper is structured as follows. Section
II-B explains in detail the V-O relationship in object-
oriented programs and naming rules of methods, while
Section III presents the algorithm used to build a dic-
tionary of V-O relations from source code. Section IV
discusses the evaluation experiment and its results. Finally,
Section V discusses related works, while Section VI gives
our conclusions and future works.

II. VERB-OBJECT RELATIONS IN OBJECT-ORIENTED
PROGRAMS

This section explains in detail the V-O relationship in
methods of object-oriented programs. First, the naming
rule for identifiers in object-oriented languages, especially
Java, is given. Then the V-O relationship between words
in identifiers, which are related to method declarations, is
described.

A. Naming rule for identifiers

In general, it is recommended that an identifier has a
specific and obvious name that expresses its role. Since
the role of identifiers is sometimes complicated in object-
oriented programs, an identifier in an OO program is
often expressed as a compound name, consisting of several
words.

Unfortunately, white spaces are prohibited in identifiers
in many programming languages, and therefore, alternative
ways are employed to express compound names, i.e.,
camel case and snake case. Camel case refers to a con-
catenated string of words, whose first letters are capitalized
(e.g., CamelCase). Snake case is a concatenated string of
words with underscores between words (e.g., snake case).
In Java source code, camel case is recommended and is
most popular [7].

Commonly, the name of a method in an object-oriented
program includes a verb. In most cases, the head of
the method name is a verb or verb clause, followed
by a noun or adjectives. In other cases, the head of
the method name is a noun or adjective, or a noun or
adjective clause, followed by a verb in the past tense.
For example, java.awt.event.ActionLister
in the Java API [8] has a method
actionPerformed(ActionEvent).

In a few cases, the method name contains no verbs.
For example, the names of the toString() method of
java.lang.Object and newInstance() method
of java.lang.Class do not contain any verbs. From
one point of view, these methods omit the obvious verbs,
such as convert or create. The alternative view is that to
and new act as verbs in the methods. This paper adopts
the latter view.

B. Verb and Object Words in a method

Object-oriented programs contain many statements de-
scribing operations on targets. An operation and a target
correspond to a verb and an object, respectively. Receiver
or parameter objects are used as the targets of the opera-
tion. Fry et al.[9] proposed a method to extract verbs and
direct objects from method names and parameters or class
names, respectively.

In source code, there are many pairs of verbs
and objects that seldom appear in natural language
texts. For example, java.net.Socket has a method
bind(SocketAddress). The method name actually
means “bind SocketAddress to Socket”. However, in nat-
ural language text, except for programming documents,
socket almost never acts as the object of the verb “bind”.

Moreover, the verb-object relations that appear in source
code are sometimes specific to a certain program domain,
since programs in different domains use different words,
or the same words with a different meaning. For instance,
in a database domain, noun cursor is used as a pointer to
selected data for the purpose of accessing the data one-by-
one. On the other hand, in the GUI application domain,
cursor means the editing point of a text area. Only in a

database domain does fetch from cursor mean to acquire
one set of data from the database.

III. APPROACH TO OBTAINING V-O RELATIONS FROM
SOURCE CODE

This section describes a method to build a dictionary
of V-O relations by extracting the relations from object-
oriented programs. The input to the method is source
files for a certain domain written in an object-oriented
language, while the output is a dictionary composed of
tuples consisting of a verb (V), direct-object (DO), and
indirect-object (IO) specific to the domain. The IO field
may be empty. An outline of the approach is shown in
Figure 1.

The approach consists of the following three steps.
• Step 1: Obtaining the identifiers related to each

method
Retrieve all method declarations in the input source,
and then for each declaration, obtain identifiers that
relate to a declaration.

• Step 2: Extracting V-O relations
Analyze the output of step 1 to obtain the words for
each identifier and the word class for each word. This
information is expressed as a tuple consisting of V,
DO, and IO.

• Step 3: Filtering V-O relations
From the output of step 2, select the tuples that appear
in more than a certain number of software products.

The following section describes each step.

A. Step 1: Obtaining the identifiers related to each method

This step extracts all the method declarations and related
identifiers from the input source files. In particular, source
files are parsed to extract all method declarations. Then,
for each method declaration, the return type, name of
the method, names and types of formal parameters, and
the name of the class to which the method belongs, are
extracted.

B. Step 2: Extracting V-O relations

This step analyzes the output of step 1 to obtain the
words comprising the identifiers and a part of speech
for each word. This information is expressed as a tuple
consisting of V, DO, and IO.

Extracting the V-O relations is done in the following
stages.

• Obtaining the method property
Acquire the words relating to the method, together
with their parts of speech, (the method property)
from the output of the previous step.

• Extract V-O relations by pattern matching
Acquire the tuples consisting of <V, DO, IO> by
applying a pattern matching technique to the method
property.

Details of the method property and how we obtain the
information is described below. Thereafter, we explain the
patterns and pattern matching algorithm.

void add Product(Product) in Stock

verb noun noun noun

Method propertySource Products

in a same domain

Extraction Pattern

void verb1 noun2 (noun2) in noun3

V : 1

DO ： 2

IO ： 3

V DO IO

Add Product Stock

Set Password User

Pattern Match

V DO IO # of

products

Add Product Stock 3

Build Data Matrex 1

Set Password User 4

Describe Alias Xml 1

Extracted V-O Relation

V-O Dictionary

Filtering

Figure 1. Overview of our approach

Verb Direct Object Indirect Object

create Ticket User

Verb Direct Object Indirect Object

1 2 4

void create Ticket For User User Server

VOID verb noun prepos noun noun noun

Method Property

Extraction Pattern

Pattern Match

V-DO-IO tuple

Extraction Spec

Structure Spec

return type method name parameters class name

void verb1 noun2 prepos3 noun4 wild card wild card

Extract the words according to a extraction spec

if a structure spec matches to a method property

Figure 2. Method property, extraction pattern and pattern matching

1) Obtaining the method property: Method property is
expressed as a tuple of four sequences of words together
with their respective parts of speech. (Figure 2) The four
sequences respectively correspond to the return type of the
method, the name of the method, the parameters of the
method, and the name of the class to which the method
belongs. If the method has one or more parameters, two
tuples are produced for the method property; one contains
the sequence of types of the parameters in the third
element, while the other contains the sequence of names
of the parameters. The procedure to acquire the method
property from the identifiers obtained in the previous step
is described below.

The first element of the method property is a sequence
that only contains the return type of the method. If the
method has a non-void return type, the name of the return
type is treated as a noun. Otherwise, the return type void
is treated as a special part of speech ”VOID”.

The fourth element is almost the same as the first
element; it is a sequence containing only the class name,
which is treated as a noun.

The third element is a sequence with length greater than
0. The n-th formal parameter of the method corresponds
to the n-th element of the sequence. As described above,
formal parameter names and their types are respectively
used for two method properties. Since the procedure to
build the sequence is the same, parameter names and types
are not distinguished and are simply referred to as the
“name” in this paragraph. Each of the names is treated as
a single noun.

The third element is a sequence derived from the
method name using OpenNLP 1. First, a sequence of
simple words from the compound name of the method
is obtained. Then the parts-of-speech of each simple word

1OpenNLP is a natural language processing system. http://opennlp.
sourceforge.net/

are determined by OpenNLP. As described in Section II-A,
headings to and new are treated as verbs.

2) Extracting V-O relation by pattern matching: Pattern
matching is used to obtain a tuple <V, DO, IO> from the
method property (see Figure 2). The pattern (extraction
pattern) is composed of two parts, the structure spec and
extraction spec.

The structure spec is represented by a tuple of four
elements. These four elements correspond, respectively, to
the return type, name of the method, parameters, and class
name. Unlike the method property, the elements of the
tuple are not sequences of words. An element of a structure
spec is a wild card or a sequence of pairs consisting of a
part-of-speech and a word number.

A structure spec matches the method property only
when all of the following conditions are satisfied.

1) For each n-th element of the structure spec and the
method property, the element of the structure spec
is a wild card, or both sequences have strictly the
same part-of-speech in the same order.

2) If the structure spec has the same word number
at several points, the corresponding words in the
method property are the same.

The extraction spec is represented by a tuple of three
word numbers. The third number may be empty. If the
structure spec matches a method property, the words that
correspond to the word numbers specified in the extraction
spec are extracted as V, DO, and IO words, respectively.
If the third number is empty, IO is also empty.

Several patterns are defined by hand prior to pattern
matching. The method properties obtained in the previous
stage are collated with the patterns. If two or more patterns
match a single method property, multiple tuples for each
pattern are extracted from the single method property.

C. Step 3: Filtering V-O relation

This step filters the output of step 2, and builds a
dictionary of V-O relations that frequently appear in source
code. In particular, only those tuples that appear in a
certain number of software products are included in the
dictionary. The threshold is tuned by hand.

IV. EVALUATION EXPERIMENT

We performed an experiment to evaluate the validity
of the dictionary built using the proposed method. This
section describes the experiment in detail, together with
its result, and then examines and discusses the result.

A. Experimental setup

We prepared 31 extraction patterns by hand (Table I).
The target of extraction was source code for 37 open
source software products (see Table II). The products
were classified into four domains, Web Applications, XML
Processing, Databases, and GUIs, which are abbreviated as
Web, XML, DB, and GUI, respectively. For each domain,
source files were analyzed and a dictionary built.

Table III
NUMBER OF METHODS AND EXTRACTED TUPLES

of
methods

of methods
that match
any patterns

matched
ratio

of
tuples

Web 74707 67276 90% 67429
XML 55812 46885 84% 49926
DB 74127 60326 81% 63087
GUI 298696 247918 83% 273202

Table IV
FREQUENCY DISTRIBUTION OF TUPLES

of products producing tuples
1 2 3 4 5 6

Web 67147 258 18 4 2 0
XML 49379 465 63 13 5 1
DB 62415 609 28 1 32 2
GUI 272795 339 38 23 5 2

B. Resulting dictionaries

Table III gives the output of the analysis before filtering.
Since several methods produce two or more tuples, # of
tuples is greater than # of methods that match any patterns.

Table IV shows the frequency distribution of tuples
obtained from a certain number of software products.

Based on the above results, we set 2 as the threshold
for filtering; i.e., tuples appearing in 2 or more software
products were included in the dictionaries.

C. Evaluation process

The resulting dictionaries were evaluated by 6 students
in a software engineering laboratory. The participants all
had experience in software development in Java. More-
over, they evaluated the dictionaries for the domains in
which they had some experience.

For each domain dictionary, the tuples <V, DO, IO>
were evaluated from the following perspectives.

1) The V-O relation of the tuple is actually used in the
domain or in Java programs.

2) The verb, direct-object, and indirect-object are suit-
able.

3) The tuple is useful for appropriate naming of iden-
tifiers.

Based on the perspectives, we prepared several ques-
tions for the participants.

The following three questions were based on the first
perspective.

• Q1
Is this <V, DO, IO> tuple popular in the domain of
the dictionary?

• Q2
Is this <V, DO, IO> tuple popular in common Java
programs?

• Q3
Is this <V, DO, IO> tuple popular in another do-
main? If so, give the domain.

The following question was prepared according to the
second perspective.

Table I
LIST OF THE EXTRACTION PATTERNS

structure spec extraction spec
return type method name parameters class name verb DO IO
* verb1 noun2 prepos3 noun4 * * verb1 noun2 noun4
* verb1 prepos2 noun3 * noun4 verb1 noun4 noun3
* verb1 noun2 * noun3 verb1 noun2 noun3
* verb1 prepos2 noun3 noun4 * verb1 noun4 noun3
* verb1 noun2 prepos3 noun4 * verb1 noun2 noun4
void verb1 (empty) noun2 verb1 noun2 (empty)
void verb1 prepos2 noun3 (empty) noun4 verb1 noun4 noun3
void verb1 noun2 noun2 noun3 verb1 noun2 noun3
void verb1 noun2 prepos3 noun4 * noun5 verb1 noun2 noun5
void verb1 noun2 noun3 verb1 noun2 noun3
void verb1 noun2 noun3 noun4 verb1 noun3 noun4
void verb1 noun2 noun3 noun2 verb1 noun2 noun3
void verb1 noun2 (empty) noun2 verb1 noun2 (empty)
void verb1 noun2 (empty) noun2 verb1 noun2 (empty)
void noun1 verb2 noun3 noun4 verb2 noun1 noun3
void noun1 verb2 noun3 noun4 verb2 noun1 noun4
void noun1 verb2 noun1 noun3 verb2 noun1 noun3
noun1 verb2 noun1 noun3 noun1 verb2 noun1 noun3
noun1 verb2 noun1 prepos3 noun4 noun4 noun3 verb1 noun1 noun4
noun1 verb2 noun3 prepos4 noun5 (empty) noun6 verb2 noun3 noun 3
noun1 verb2 prepos3 noun4 noun5 noun6 verb2 noun6 noun4
noun1 verb2 noun1 (empty) noun3 verb2 noun1 noun3
noun1 verb2 noun3 noun4 verb2 noun4 noun3
noun1 verb2 prepos3 noun4 noun5 verb2 noun5 noun4
noun1 verb2 prepos3 noun4 * * verb2 noun1 noun4
noun1 verb2 prepos3 noun4 (empty) noun1 verb2 noun1 noun4
noun1 verb2 prepos3 noun4 noun4 verb2 noun4 noun4
noun1 verb2 noun3 (empty) noun1 verb2 noun3 noun1
noun1 verb2 noun1 (empty) noun3 verb2 noun3 (empty)
noun1 verb2 noun3 (empty) noun3 verb2 noun3 noun1
noun1 verb2 noun1 (empty) noun1 verb2 noun1 (empty)

Table II
TARGET OF EXTRACTION

Web Applications
BBS-CS 8.0.3 JForum 2.1.8 JGossip 1.1.0.005 mvnForum 1.2.1 Yazd Discussion Forum Software 3.0

Order Portal 1.2.4 Arianne RPG 0.80 JBoss Wiki Beta2 JSP Wiki 2.8.3 SnipSnap 1.0b3
XML

Castor 1.3 DOM4J 1.6.1 JDOM 1.1.1 Piccolo 1.04 Saxon-HE 9.2.0.5
Xalan-J 2.7.1 Xbeans 2.0.0 Xerces-J 2.9.0 XOM 1.2.4 XPP3 1.1.4 Xstream 1.3.1

Databases
Axion 1.0 Milestone 2 Apache Derby 10.5.3 H2 1.2.128 HSQLDB 1.8.1.1 Berkeley DB Java Edition 4.0.92

Mckoi 1.0.3 MyOODB 4.0.0 NeoDatis 1.9.22.674 OZONE 1.1 tinySQL 2.26
GUIs

ArgoUML 0.28.1 BlueJ 2.5.3 Eclipse Classic 3.5.1 jEdit 4.3.1 NetBeans 6.8
vuze 4.3.1.2 LimeWire 5.4

• Q4 V, DO and IO are correctly extracted? If you do
not think so, identify the incorrect words.

The following three questions were based on the third
perspective.

• Q5
Should this <V, DO, IO> tuple be given as a good
example to a developer who is naming an identifier
in a program in this domain?

• Q6
Should this <V, DO, IO> tuple be given as a good
example to a developer who is naming an identifier
in a common Java program?

• Q7
Should this <V, DO, IO> tuple be given as a good
example to a developer who is naming an identifier in
a program in another domain? If so, give the domain.

The participants selected answers for Q1, Q2, Q5 and
Q6 from (A) strongly agree, (B) agree, (C) disagree, (D)
strongly disagree, or (Z) no idea.

Each of the dictionaries was evaluated by two partici-
pants, and each of the participants evaluated two different
dictionaries. 15 tuples that appeared in three or more
software products and 15 tuples that appeared in two
software products were evaluated by the participants. The

Table V
RESPONSE TO Q1

(A) (B) (C) (D) (Z)
Web 21 35 7 3 24
XML 44 18 5 7 16
DB 32 36 4 9 9
GUI 42 26 9 6 7

Table VI
RESPONSE TO Q2

(A) (B) (C) (D) (Z)
Web 16 29 10 30 5
XML 15 11 17 42 5
DB 22 13 32 17 6
GUI 32 37 9 6 6

tuples were randomly and exclusively selected from the
dictionary. However, since the dictionary for the web
application domain only contains 24 tuples appearing in
three or more products, only 6 tuples were evaluated by
two participants.

D. Results of the evaluation

First, we describe the results obtained according to
perspective 1.

Table V gives the results for Q1, and Table VI the results
for Q2. The sum of the percentages of (A) strongly agree
and (B) agree is 62% to 75% for Q1, and 38% to 76%
for Q2. These results show that the greater part of the
dictionaries consist of domain specific relations. However,
several domain independent relations are also included.

Table VII gives the responses for Q3. All dictionaries
contain some V-O relations from another domain. The
dictionary could be improved by separating these relations
into another dictionary.

Next, we give the results for perspective 2. Table VIII
gives the responses for Q4. The percentage of tuples with
incorrect V, DO, or IO values varies between 6% and 13%.
This indicates that the 31 extraction patterns we prepared
could be improved.

Finally, we present the results for perspective 3.
Table IX gives the results for Q5, and Table X the

results for Q6. The sum of the percentages for (A) and
(B) is between 53% and 71% for Q5, and between 30%
and 61% for Q6. The results for Q5 and Q1 indicate that
we need not only to improve precision of the dictionaries,
but also to select and provide the relations that developers
prefer. On the other hand, the results for Q6 show that
the dictionaries contain many tuples that are suitable
as naming examples for common Java programs. These
tuples should be separated into a domain independent
dictionary.

Table XI gives the responses to Q7. Similar to the results
for Q3, the responses for Q7 confirm the need to separate
these tuples into another dictionary.

1) Follow-up clarification of the results: Several tuples
were determined to be undesirable to developers, despite
the tuples being popular either in the domain or in

Table VIII
RESPONSE TO Q4

wrong
verb

wrong
DO

wrong
IO

two or more
wrong words

Web 3 1 3 6
XML 5 7 1 12
DB 1 6 5 11
GUI 8 1 0 9

Table IX
RESPONSE TO Q5

(A) (B) (C) (D) (Z)
Web 19 32 11 4 24
XML 33 15 10 16 16
DB 35 29 10 10 6
GUI 28 30 13 11 8

common Java programs. We asked the participants to give
reasons for this. The answers are given below.

• The tuple contains uncertain words. (e.g. abbrevia-
tion)

• The tuple is common sense for average developers.
• The tuple is used not in the whole domain, but in the

programs that dependent on a specific library.

E. Discussion

The results for Q2 and Q3 show that the dictionaries
contain V-O relations in another domain. The contamina-
tion might be as a result of the following two reasons.

• The threshold for filtering is too low to remove noise.
• Since software products generally span several do-

mains, the relations in the domains covered by each
of the input products, also span several domains.

The first problem is easy to solve by increasing the
number of input products.

Regarding the second problem, we have a solution as
described below. First, increase the number of domain
categories and input products, and then classify the prod-
ucts into the domain categories on a nonexclusive basis.
Thereafter, we track the origin products of the tuples. If a
tuple is a candidate of two or more dictionaries, the best
dictionary to include the tuple is selected based on the
origin products and their domains.

Table X
RESPONSE TO Q6

(A) (B) (C) (D) (Z)
Web 13 19 23 30 5
XML 14 13 12 46 5
DB 31 13 24 16 6
GUI 29 26 15 13 7

Table XI
RESPONSE TO Q7 (NUMBERS IN PARENTHESES MEAN THE NUMBER

OF SAME ANSWERS)

XML
Data Analysis(1), GUI(1), Parser(1),
Resource Management(1), Tree Structure(1),
Graph Processing(1)

DB GUI(5), Web Application(1)

Table VII
RESPONSES TO Q3 (NUMBERS IN PARENTHESES MEAN THE NUMBER OF SAME ANSWERS)

Web Database(16), I/O processing(6), Common Java Programs(2)
XML Data Analysis(2), GUI(1), Parser(1), Resource Management(1), Tree Structure(1), Graph Processing(1)
DB GUI(5), Web Application(1), String Processing(1)
GUI DB(1), Networking(1), Program Test Cases(1), Archiver(1), Common Java Programs(4),

F. Threats to validity

From the viewpoint of the dictionary, the data as-
signment is performed randomly, since the tuples are
randomly extracted from the dictionaries. However, the
input software products were collected intentionally, and
the number of products may be insufficient.

Regarding the participants, they are students in a gradu-
ate school, and not professional software developers. How-
ever, since they have experience of software development
through part-time jobs or research projects, they have
sufficient knowledge of several target domains to evaluate
the dictionaries. Since the number of participants was not
large enough, we could not randomly assign participants
to dictionaries.

V. RELATED WORKS

This section introduces related works on V-O relations
in the source code, and the differences between these
works and our approach.

Shepherd et al. [10] and Fry et al.[9] extracted V-O
relations from methods or comments in source code writ-
ten in an object-oriented language, and used the relations
for feature location and aspect mining. Hill et al. [11]
extracted the <V, DO, IO> tuples from source code and
applied the tuples to feature location and aspect mining.
Our approach is to build domain-specific dictionaries
suitable for providing identifier names.

Høst et al. built a dictionary of verbs from the name and
body of methods [12], and created several naming rules
from the dictionary to detect and fix incorrect naming[13].
Our approach is more relaxed compared to that in [13];
many good examples can be obtained using a verb with
an associated object.

VI. CONCLUSION AND FUTURE WORK

This paper proposed an approach for building a domain
specific dictionary of verb-object relations. The entries in
the dictionary, i.e. tuples consisting of <V, DO, IO>, are
extracted from identifiers related to a method.

As a future work, we aim to improve the precision of the
dictionaries and to build larger dictionaries from a larger
set of source code files. To support naming of identifiers, a
system is needed that can suggest an example name to the
software developer in the context of the source code. To
help achieve good naming, visualization of the dictionaries
is helpful for developers who have little experience in
certain domains.

ACKNOWLEDGEMENT

This work was supported by KAKENHI (21700031).

REFERENCES

[1] R. K. Fjeldstad and W. T. Hamlen, “Application program
maintenance study: Report to our respondents,” in Proceed-
ings GUIDE 48, April 1983.

[2] T. A. Corbi, “Program understanding: challenge for the
1990’s,” IBM Syst. J., vol. 28, no. 2, pp. 294–306, 1989.

[3] A. von Mayrhauser and A. M. Vans, “Identification of
dynamic comprehension processes during large scale main-
tenance,” IEEE Trans. Softw. Eng., vol. 22, no. 6, pp. 424–
437, 1996.

[4] N. Pennington, “Comprehension strategies in program-
ming,” in Empirical studies of programmers: second work-
shop. Norwood, NJ, USA: Ablex Publishing Corp., 1987,
pp. 100–113.

[5] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in
a name? a study of identifiers,” in ICPC ’06: Proceedings
of the 14th IEEE International Conference on Program
Comprehension. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 3–12.

[6] Y. Hayase, M. Ichii, and K. Inoue, “A novel approach
for building a thesaurus for program comprehension (in
Japanese),” in Proceedings of winter workshop 2008 in
Dogo, no. 3, 2008, pp. 33–34.

[7] Oracle Corporation, “The java tutorials,” http://java.sun.
com/docs/books/tutorial/java/javaOO/index.html.

[8] Sun Microsystems, “Java platform, standard edition 6 API
specification,” http://java.sun.com/javase/6/docs/api/.

[9] Z. P. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-
Shanker, “Analysing source code: looking for useful verb–
direct object pairs in all the right places.” IET Software,
vol. 2, no. 1, pp. 27–36, 2008.

[10] D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Towards
supporting on-demand virtual remodularization using pro-
gram graphs,” in AOSD ’06: Proceedings of the 5th interna-
tional conference on Aspect-oriented software development.
New York, NY, USA: ACM, 2006, pp. 3–14.

[11] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically
capturing source code context of NL-queries for software
maintenance and reuse,” in ICSE ’09: Proceedings of the
2009 IEEE 31st International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 232–242.

[12] E. W. Høst and B. M. Østvold, “The programmer’s lexicon,
volume i: The verbs,” in SCAM ’07: Proceedings of the
Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 193–202.

[13] ——, “Debugging method names,” in Genoa: Proceed-
ings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 294–317.

