
Industrial Application of Clone Change Management System

Yuki Yamanaka∗, Eunjong Choi∗, Norihiro Yoshida†, Katsuro Inoue∗, Tateki Sano‡
∗ Graduate School of Information Science and Technology, Osaka University, Japan

{y-yuuki, ejchoi, inoue}@ist.osaka-u.ac.jp
† Graduate School of Information Science, Nara Institute of Science and Technology, Japan

yoshida@is.naist.jp
‡ Software Process Innovation and Standardization Division, NEC Corporation, Japan

t-sano@cp.jp.nec.com

Abstract—Clone change management is one of crucial issues
in open source software(OSS) development as well as in
industrial software development (e.g., development of social in-
frastructure, financial system, and medical equipment). When
an industrial developer fixes a defect, he/she has to find the
code clones corresponding to the code fragment including it. So
far, several studies performed on the analysis of clone evolution
in OSS. However, to our knowledge, a few researches have been
reported on an application of a clone change management
system to industrial development process. In this paper, we
propose a clone change management system based on the
categorization of clone evolution, and then present case study
of industrial application. In case study, we confirmed that
the proposed system suggested two unintentionally developed
clones in a half of the month.

Keywords-Code Clone, Clone Evolution, Software Mainte-
nance, Change Management

I. I NTRODUCTION

During software maintenance, change management of
code clones is required for consistent change [1], [2], [3] of
them, and identification of simultaneously changed clones
as refactoring opportunity [4].

So far, several studies are done on change management
of code clones in a software system. For example, Duala-
Ekoko et al. presentedClone Region Descriptorsto track
code clones moved to other locations in source code [2],
[3]. Also, Nguyen et al. have developed a clone management
tool JSyncto notify developers change and its inconsistency
of code clones in source files [5].

Change management of code clones is required not only
in open source projects but also in industry. In industrial
development, the consistency of change has to be rigor-
ously inspected to prevent post-release defects, especially
in developments of social infrastructure, financial system,
and medical equipment. However, to our knowledge, only
a few studies have been reported on an applications of
clone change management systems to industrial development
process [6], [7].

In this paper, we present a clone change management
system based on the categorization of clone evolution.

The system regularly reports change information of code
clones and clone sets (i.e., a set of code clones identical or

similar to each other) in a software system. For example,
modified code clones in a clone set and newly created
clone sets are reported daily to developers. The changed
information is provided through web-based user interface
(see Figure 4) and e-mail notification.

In case study, we applied the clone change management
system to the development process of industrial software in
NEC. As a result, we confirmed that the clone management
system suggested two unintentionally developed clones in
a half of the month. The contributions of this study are as
follows:

• We developed a clone change management system with
the feature of the categorization of clone evolution,
which is based on the opinions of industrial developers
in NEC.

• We report an industrial application of the clone change
management system. The result shows that the system
suggested two unintentionally developed clones.

II. PROPOSEDMETHOD

Code clones are often changed (e.g., added, modified)
when a software system evolves. The comprehension of the
code clones at detection time is insufficient for managing
code clones efficiently. A developer needs to understand and
apply an appropriate solution correspond to an evolution
pattern of code clones. For example, the developer could
merge a new added set of code clones into a single method.
On the other hand, he/she should consider modifications of
all code clones in a clone set, in the case of modification
was occurred in one of code clones in the clone set. We
categorize code clones and clone sets based on the evolution
patterns between two versions of source code, and then
implement a clone change manage system based on the
categorization. We used CCFinder [8] to detect code clones.
CCFinder detects Type-1 and Type-2 code clones [9] and
outputs the locations of them in source code.

To describe categorization of code clones and clone sets,
we definedVi as source code at the point of timei, and
Ci as a set of code clones detected inVi. Input of this
method isVt (the latest version of source code) andVt−1



de

A
B

insert 4 linesdelete 2 lines

Vt-1 Vt

Δt

(a) Case1

deA B
insert 2 lines

Vt-1 Vt

Δt

(b) Case2

Figure 1. Tracing code clones: parent-child relationship of code clones

(the previous version of source code). This method consists
of the following steps:

Step1 : DetectCt andCt−1 by analyzing overallVt and
Vt−1 using CCFinder.

Step2 : Trace code clones between two versions based on
a method which is described in section II-A.

Step3 : Categorize code clones inCt andCt−1 based on
a definition which is described in section II-B.

Step4 : Categorize clone sets inCt andCt−1 based on a
definition which is described in section II-C.

A. Tracing Code Clones

In our previous study, code clones were traced across
multiple versions based on correspondence of the start and
end line of them in source code. We used the same method
in our previous study [10] as a reference to trace code clones
between two versions.

We defined the parent-child relationship to trace code
clones. If code cloneB ∈ Ct corresponds to code clone
A ∈ Ct−1, we defineB as achild cloneof A, andA as a
parent cloneof B.

For example, code fragment which is located above code
cloneA ∈ Ct−1 was modified between two versions shown
in Figure 1(a) (four lines were inserted also two lines were
deleted aboveA). In this case, code fragmentB in Vt

corresponding toA can be traced by counting inserted and
deleted lines. Thus, the start and end line numbers ofB are
increased by two lines. WhenCt containsB, we defineB as
a child clone ofA. On the other hand, code cloneA ∈ Ct−1

was modified between two versions shown in Figure 1(b)
(two lines were inserted toA). In this case, code fragment
B in Vt corresponding toA can be traced by counting and
inserted lines inA. Thus, the start line number ofB is the
same asA, and the end line number ofB is increased by
two lines. WhenCt containsB, we defineB as a child clone
of A.

B. Categorization of Code Clones

In this method, all code clones inVt and Vt−1 are
categorized based on evolution patterns of them. We defined
the following five categories of code clones by using propo-
sitional function about code cloneXc ∈ Ct andXp ∈ Ct−1

shown in Table I.

A1

Clone Set A

A2Stable

Modified A1’

Clone Set A

A2’ Stable

Modified

Changed

modify

B1

B2

Moved

Moved

C1’

Clone Set C

C2’ Moved

Moved

New

B3

Clone Set B

B4Stable
B3’

Clone Set B

B4’ Stable

Changed

modify

modify

Stable
Stable

copy
D1’

Clone Set D

D2’

Added

New

Added

Clone Set Code Clone

Parent –Child Rela!onship

Code Fragment

Same Clone Set

Vt-1 Vt

Δt

Figure 2. Example of categorzation of code clones and clone sets

Table I
DEFINITION OF PROPOSITIONALFUNCTION

function definition
P (Xc) Parent clone ofXc exists inVt−1

C(Xp) Child clone ofXp exists inVt

M(Xc) Xc was modified between two versions
CP (Xc) A pair of Xc and its parent clone is a clone pair

• Stable clone: Xc satisfiesP (Xc) ∧ ¬M(Xc)
• Modified clone: Xc satisfiesP (Xc)∧M(Xc)∧CP (Xc)
• Moved clone: Xc satisfiesP (Xc)∧M(Xc)∧¬CP (Xc)
• Added clone: Xc satisfies¬P (Xc)
• Deleted clone: Xp satisfies¬C(Xp)

For example, modified clone means that some code clones
of clone set are modified. However, they are contained in the
same clone set between two versions. And also, added clone
means that the code clone is added newly inVt.

Additionally, the parent clone of stable, modified or
moved clone is categorized into the same category of it.

C. Categorization of Clone Sets

In this method, all clone sets inVt andVt−1 are catego-
rized based on evolution patterns of them. We defined the
following four categories of clone sets.

• Stable clone set:Only stable clones are shared between
two clone sets involved inVt andVt−1 respectively.

• Changed clone set:Modified, moved, deleted and
added clones are shared between two clone sets in-
volved in Vt andVt−1 respectively.



Developers

( Users )

Version Control 

System

Commit Source Code Checkout Source Code

Provide Changed 

Information of 

Code clones and Clone sets

Change  

Management

System

Figure 3. Process of change management system

• New clone set:Clone sets involved in onlyVt.
• Deleted clone set:Clone sets involved in onlyVt−1.

Changed clone sets contain stable clones, modified clones
or moved clones such as clone setA and B in Figure 2
should be modified consistently. Meanwhile, new clone sets
that contain added clones such as clone set D in Figure 2
could be merged into a single method.

III. C HANGE MANAGEMENT SYSTEM

We developed a system for clone change management. It
takes two versions of source code as input and categorizes
code clones and clone sets comprised of them which is
described in section II. Figure 3 shows the process of
this system. This system assumes that the developers use
version control system such as Subversion1 in software
development. The process of this system is comprises of
following steps:

Step1 : Get the current version of source code from
version control system as the latest versionVt. 2

Step2 : Categorize code clones and clone sets between
Vt andVt−1 which is described in section II.

Step3 : Generate html files for web-based user interface
(UI) and a text file for e-mail notification3.

Step4 : Send an e-mail with generated text file to devel-
opers.

As described above, the system provides information of
changed code clones and clone sets between the two versions
through web-based UI and e-mail notification as following:

• Web-based UI: Figure 4 shows clone set list page and
source file page in the web browser. Clone set list page
displays the list of clone sets (Figure 4(a)). Users can
move to the corresponding source file page by clicking

1http://subversion.tigris.org/.
2we use source code that were analyzed in the last time as the previous

versionVt−1.
3Note that the analysis of the system is stored for two months as html

files.

(a) Clone set list page

(b) Source file page

Figure 4. Example of web-based UI

Table II
THE ANSWER FORQ2

Category Q2(a) Q2(b) Q2(c)
Clone Set A New No Yes Merge clone set
Clone Set B New No Yes Merge clone set

the links of each code clone. Source file page displays
code clones that are involved in the selected clone set
in clone set list page(Figure 4(b)). Each code clone is
highlighted on this page.

• E-mail notification: The list of clone sets categorized
into changed, new and deleted clone sets provided in
the developers by an e-mail notification. Each infor-
mation of clone set consists of the code clone list that
involved in each clone set and code fragment of each
code clone.

IV. CASE STUDY

To confirm the usefulness of our developed system, we
applied it to an industrial software development in NEC,
a Japanese multinational IT. The target of software de-
velopment is a web-application software implemented in
Java. It is 120KLOC in 350 files. We set 30 tokens as the



Table III
CLONE SETS CATEGORIZATION OF CASE STUDY2

Analysis day #Stable #Changed #New #Deleted
December 19, 2011 873 4 13 1
December 28, 2011 833 34 37 14
December 29, 2011 895 1 0 2

January 6, 2012 895 0 0 3

for (int i = 0; i < contents.size(); i++) {

try {

Content content1 = contents.get(i);

Content content2 = (Content) content1.clone();

content2.setTitle(StringU!l.concatPath(toPath, content1.getName()), 
true);

if (content1 instanceof Page) {

copyPage((Page) content1,(Page) content2);

} else if (content1 instanceof File) {

copyFile((File) content1,(File) content2);

} else if (content1 instanceof Category) {

copyCategory((Category) content1,(Category) content2);

}

} catch (Excep!on e) {

if (!(e instanceof AccessDeniedExcep!on)) 

throw e;

}

}

(a) Code fragment for copy contents

for (int i = 0; i < contents.size(); i++) {

try {

Content content1 = contents.get(i);

Content content2 = (Content) content1.clone();

content2.setTitle(StringU�l.concatPath(toPath, content1.getName()), 
true);

if (content1 instanceof Page) {

move Page((Page) content1,(Page) content2);

} else if (content1 instanceof File) {

move File((File) content1,(File) content2);

} else if (content1 instanceof Category) {

move Category((Category) content1,(Category) content2);

}

} catch (Excep�on e) {

if (!(e instanceof AccessDeniedExcep�on)) 

throw e;

}

}

(b) Code fragment for move contents

Figure 5. Example of a clone set that needs additional maintenance

minimum token length of a code clone to CCFinder. The
developer applied the developed system from December 18,
2011 to January 31, 2012, and it analyzed four times during
this period. Moreover, we conducted a survey of the our
system to a developer, a project manager with 10 years of
development experiences with Java. This survey consists of
the following questions:

• Q1: By using this system, were you able to find any
harmful clone sets that need additional maintenance
(e.g., refactoring, consistently change)?

• Q2: If the answer of Q1 is “Yes”, please answer
following questions.

– (a): Have you already noticed the existence of it
before applying our system?

– (b): Does this clone set need additional mainte-
nance?

– (c): Please select appropriate solutions to each
clone set:
∗ Merge the clone set into a single method.
∗ Modify the clone set consistently.
∗ Others.

Q1 is the question to confirm that the developer could find
a clone set that needs additional maintenance. Moreover, if
the answer for Q2(a) is“No”, we regarded that the results
of this system is useful for software development because
a developer could find clone sets that are necessary to be
performed additional maintenance by using the developed
system. That are necessary to be performed additional main-
tenance by using the developed system. Q2(b) and Q2(c) are
the auxiliary questions.

As a result the survey, we are able to evaluate the
developed system because the answer for Q1 was “Yes”. The
developer could find two clone sets that needed additional
maintenance according to this survey. Table II shows the
answers for Q2 in the survey. These clone sets appeared
in the December 28, 2011 and categorized into new clone
set. Figure 5 shows an example of one of them. This clone
set consisted of two code clones. One performed copy
contents(see Figure 5(a)) and the other performed move
contents(see Figure 5(b)). They performed a similar role.
Therefore, the developer extracted common code fragment
from them and merged into a single method immediately.
Another clone set also consisted of two code clones that
performed a similar role. Therefore, they were also merged
into a single method immediately. As you can see this result,
the developer could find clone sets that needed to be merged
into a single method immediately by using the developed
system.

Table III shows the result of categorization, the number
of clone sets of with category at analyzed data. In addition,
the most of clone sets were categorized into stable at each
day as shown in Table III. Therefore, it is difficult to find
changed, new, deleted clone sets from overall clone sets.
Therefore, developers could find these clone sets easily by
using our system and the cost of clone changed management
were reduced.

V. RELATED WORK

A lot of studies have been done for investigating and
supporting clone evolution [6], [7], [11], [12], [13], [14],
[15], [16], [17], [18].

Kim et al. studied genealogies of code clone [11]. They
defined a model of clone genealogy in order to study
evolution of code clones across multiple versions of source
code. We presented a clone change management system with
the feature of the categorization of clone evolution, which is
based on the opinions of industrial developers in NEC, and
then reported an industrial application of the clone change



management system. Also, other models of clone evolution
have been proposed, and discussed [12], [13], [14], [15]. We
should improve our model of clone evolution based on those
existing models.

Duala-Ekoko et al. presentedClone Region Descriptorsto
track code clones moved to other locations in source code
[2], [3]. The tracking code clones in proposed system is
based on text difference and similarity. For more accurate
tracking code clones, we should integrateClone Region
Descriptorsinto proposed system.

Nguyen et al. have developed a clone management tool
JSyncto notify developers change and its inconsistency of
code clones in source files [5]. Also, Jiang et al. [19] and
Li et al. [20] have been proposed on the inconsistency
detection of code clones from a single version of source
code. Proposed system is promising to support inconsistency
detection of code clones but unable to show inconsistency
between code clones explicitly. We should add the feature
of inconsistency detection by them to proposed system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a clone change management
system based on the categorization of clone evolution.
Our developed system categorizes code clones and clone
sets based on their evolution patterns and reports changed
information through a web-based UI and e-mail notification.
Additionally, we showed the usefulness of proposed system
by applying it to the development of an industrial software
in NEC.

As future work, we would like to investigate the use-
fulness of proposed system by applying other software
developments for long term. Also, we plan to extend our
system based onClone Region Descriptors[3].

ACKNOWLEDGMENT

We express our great thanks to Ms. Fusako Mitsuhashi
and Mr. Shin’ichi Iwasaki of NEC Corporation for data
collection. This work is being conducted as a part of Stage
Project. Also, this work is partially supported by JSPS,
Grant-in-Aid for Scientific Research (A) (21240002).

REFERENCES

[1] P. Jablonski and D. Hou, “CReN: a tool for tracking copy-
and-paste code clones and renaming identifiers consistently in
the IDE,” in Proc. of OOPSLA eclipse ’07, 2007, pp. 20–31.

[2] E. Duala-Ekoko and M. P. Robillard, “Tracking code clones
in evolving software,” inProc. of ACM/IEEE ICSE ’07, 2007,
pp. 158–167.

[3] ——, “Clone Region Descriptors: Representing and Tracking
Duplication in Source Code,” inProc. of ACM TOSEM ’10,
2010, pp. 20–31.

[4] R. Geiger, B. Fluri, H. Gall, and M. Pinzger, “Relation of
code clones and change couplings,” inProc. of FASE ’06,
2006, pp. 411–425.

[5] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and
T. N. Nguyen, “Clone management for evolving software,”
IEEE Transactions on Software Engineering, vol. 99, no.
PrePrints, 2011.

[6] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?” inProc. of ICSE ’07, 2009, pp.
485–495.

[7] J. O. Bailey and E. L. Burd, “Evaluating clone detection tools
for use during preventative maintenance.” inProc. of SCAM
’02, 2002, pp. 36–43.

[8] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code,”IEEE Transactions on Software
Engineering, vol. 28, no. 1, pp. 654–670, 2002.

[9] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,”IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp.
804–818, 2007.

[10] S. Kawaguchi, M. Matsushita, and K. Inoue, “Clone history
analysis using configuration management system,”IEICE
Transactions (in Japanese), vol. J89-D, no. 10, pp. 2279–
2287, 2006.

[11] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An
empirical study of code clone genealogies,” inProc. of
ESEC/SIGSOFT FSE ’05, 2005, pp. 187–196.

[12] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are
maintained: An empirical study,” inProc. of CSMR ’07, 2007,
pp. 81 –90.

[13] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone smells in
software evolution,” inProc. of ICSM ’07, 2007, pp. 24–33.

[14] J. Krinke, “A study of consistent and inconsistent changes to
code clones,” inProc. of WCRE ’07, 2007, pp. 170 –178.

[15] J. Harder and N. Gode, “Modeling clone evolution,” inProc.
of IWSC ’09, 2009, pp. 17–21.

[16] N. Gode, “Evolution of type-1 clones,” inProc. of SCAM ’09,
2009, pp. 77–86.

[17] N. Gode and J. Harder, “Clone stability,” inProc. of CSMR
’11, 2011, pp. 65–74.

[18] T. T. Nguyen, H. A. Nguyen, J. M. Al-Kofahi, N. H. Pham,
and T. N. Nguyen, “Scalable and incremental clone detection
for evolving software,” inProc. of ICSM ’09, 2009, pp. 491–
494.

[19] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of
clone-related bugs,” inProc. of ESEC/SIGSOFT FSE ’07,
2007, pp. 55–64.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding
copy-paste and related bugs in large-scale software code,”
IEEE Transactions on Software Engineering, pp. 176–192,
2006.


