181

Development of a Code Clone Search Tool for

Open Source Repositories

Pei Xia O Yuki Manabe O Norihiro Yoshida O Katsuro Inoue

Finding code clones in the open source systems is important for efficient and safe reuse of existing open
source software. In this paper, we propose a novel search model, open code clone search, to explore code

clones in open source repositories on the Internet. Based on this search model, we have designed and imple-
mented a prototype system named OpenCCFinder. This system takes a query code fragment as its input,
and returns the code fragments containing the code clones with the query. It utilizes publicly available code

search engines as external resources. Using OpenCCFinder, we have conducted several case studies for Java
code. These case studies show the applicability of our system.

1 Introduction

Nowadays reusing existing source code to build
up new software systems becomes common. Devel-
opers can easily get source code of various projects
that hosted in open source repositories on the In-
ternet such as Google code, sourceforge, github and
so on. Some previous studies show that even indus-
trial software products are also increasingly reusing
open source code due to their reliability and cost
benefits [4].

However, when reusing source codes, some prob-
lems about software compliance may happen.

1. When we find a useful source code file, can

we reuse it safely?

2. Are our own open source projects illegally

reused by other people?

For the first question, before reusing the source

0oooooooooooooOooooooooooo
oooooo.

oo, 00o0o,o0obO,0bobo0o0oooooan
0000000000000 00O0, Department of
Computer Science, Graduate School of Information
Science and Technology, Osaka University.

o000, 00o0oooo0oboboooobobon
0, Graduate School of Information Science, Nara
Institute of Science and Technology.

000000000000, Vol.29, No.3 (2012), pp.181-187.

(0000 (00D0)] 20110 120 12000.

code, developers should make sure that they will
not violate the license. A license violation may
take them to court and cost them a lot. How-
ever, to tell the license of a source file is not easy
because there are many code clones among open
source projects [13]. That means they also copy
and modify source code from other projects. In ex-
tremely cases they even change or remove the origi-
nal license statement in the source files [1]. Reusing
such source files is risky. For the second question,
even though some other projects had reused source
code while violating its license, the original code
owner would hardly know it, since it is hard to
check other projects by hand.

In order to answer such questions, one solution
is to find out all the cloned code in the world, and
compare the related information about them to tell
the reuse relationship between those codes. In these
days, many code clone detection tools as well as
code search tools have been developed [5][7]. How-
ever, none of them can search for code clones from
open source repositories.

Basing on the code clone detection and code
search technologies, we proposed a novel approach
for open source code clone search, and also im-
plemented a prototype tool named OpenCCFinder
[12]. OpenCCFinder takes a code fragment as its
query input, and returns a list of files from open
source repositories that contain cloned code with
the queried one, along with extra information. This

182

ooooooo

Input Query Q

goooad

Output Results R

ri e
E;Z?-nent Dpen Code Clone " Cl—
Search System 1
Gade Open CCFinder @
Attribute
(Optional)
re.
Search Search r2
Query 5Q Results SR
Code Search Engines
soogle
g:;‘; of vt Source
m — | File
Internet it ¢ | —— Jwith Clone

{18

Open Source Repositories

Fig. 1 Architecture

tool can support us to study the raised problems.

In this paper, we first describe the overview of
OpenCCFinder including architecture and search
process in Section 2. Section 3 shows our case stud-
ies. Section 4 discusses our approach and Section 5
shows the related works. In Section 6, we conclude
our discussions with some future works.

2 Overview of OpenCCFinder

2.1 Architecture

Figure 1 shows the architecture of OpenCCFinder.
It takes an input query @ and returns an output
results set R. Input query @) is composed of code
fragment g. and code attribute ¢,. ¢g. may be a
complete source file or a part of a source code file,
which is in question. ¢, is a set of associated infor-
mation characterizing g., such as the file name. ¢,
is optional and could be added to improve the qual-
ity of the output results. Given an input Query @,
OpenCCFinder extracts useful information from it
and generates queries for external code search en-
gine (e.g. Google code search, SPARS/R etc.), and
then analyze the returned candidate files from ex-
ternal search engines, at last form a final result as
output R. The detail of this search process will be
introduced in section 2.2.

Output result R is composed of results r1,r2 ...
rn. Each result ri is composed of a code file ri.

of OpenCCFinder.

and its code attribute ri,. 7i. is a code file which
is returned by external code search engines, and 7i,
a set of associated information about 7i., including
URL, file path, LOC, license, copyright, last mod-
ified time, clone cover ratio and clone detail.

For the external code search engines, we use
Google code search and SPARS/R in our tool im-
plementation. Google code search is a famous code
search engine. It provides search service API to
the user, so we can easily integrate it to our tool;
SPARS/R is a Java component search engine with
the keyword input and component rank mechanism
developed by our research group [9]. The Java class
repository of SPARS/R is kept updated by us.

2.2 Search process
Search process of OpenCCFinder can be devided
into 6 steps, as shown in Figure 2.

(a) Word Extraction. At the beginning, code
fragment q. in input query Q is tokenized, and
the words from source code and comments are
separated. User can choose whether to extract
words from source code or from comments, or
from both.

(b) Keyword Ranking. Next, the keywords
used for query generation are selected from
the extracted words. In this step, first
OpenCCFinder filters out the words that con-

Vol. 29 No.3 Aug. 2012 183

Input Q . (c)
oken
p— Keyword 6 } —)
—_— (a) Etg:g (b) Keyword 4
= | TS | s | ceywora 1 } — External
Tokens Keywora 3 Code Search
Token6 eyword 2 H
Keyword 5 —) Engines
Filename | |}
File1
Code (©) =5 File2
Clone File3
/ Information | = Clone |/ —
0] : ~ L] -
OUtpUt R ¢ Related pen Source Repositories]
Information

(a) Word Extraction

(b) Keyword Ranking
(d) Downloading Candidate Files (e) Code Clone Analysis

(c) Searching for Candidate Files
(f) Result Forming

Fig. 2 Search process of OpenCCFinder.

sidered being featureless. For example, the
reserved words of each source code language,
the words in very short length, and the words
included in customized filter are filtered out.
After the filtering, a simple words importance
ranking strategy is applied on the remaining
words. Currently, there are two strategy im-
plemented in the tool for ranking the words:
frequency strategy and random strategy. Fre-
quency strategy is to rank the keywords by the
times they appear in the source codes or com-
ment, while random strategy is just to rank the
words randomly.

(c) Searching for Candidates Files. As the
search engines, here we choose SPARS/R and
Google Code Search. We use different com-
bination of high ranked keywords to generate
search queries for each search engine to get ap-
propriate candidate files. For each query, the
returned results set should not be very large,
so as not to include too many irrelevant results.
If the returned results set are too large, we will
add one more keyword from the ranked key-
words list to the query to narrow the results
set. At last, we merge the returned results of
several queries as the analysis candidate files.
(d) Downloading Candidate Files. All the
candidate files in step (c) are downloaded from
Internet. While downloading the file, the tool
is also crawling the web to extract useful infor-

mation for the code attributes such as file path,
URL, LOC, License, Copyrights, and last mod-
ified time if available.

(e) Code Clone Analysis. The code clones

between the input query code fragment g. and
each source code file obtained at Step (d) are
computed. We have used a code clone detec-
tion tool CCFinder [17], with its parameter set-
ting for the minimum token length 15.

(f) Result Forming. All the candidate files

and their code attributes are combined and
packed as the output result R of this system,
sorted by their similarity to q.. Here we use
coverratio to evaluate their similarity, which
defined as the percentage of reused g.’s code.

3 Case Study

We have conducted two case studies to explore
applicability of OpenCCFinder approacth.

3.1 Case study 1: base6/.java

Case study 1 is designed for the first raised ques-
tion: When we find some useful source code, can
we reuse it safely?

Consider such a situation that we have found a

11 All these case studies have been performed under

PC Workstation with dual Xeon X5550 2.66GHz
processors and 24 GB memory between Aug.2011
and Sep.2011.

184 ooboooooooood

2 Query
o
a8 o % P o
a8 *
aT
206 L4 d y
€5
go4 b & Balt i %ee?
o *res oVe
a4
1]
Jan-04 May-06 Oct-06 Fab-08 Juk0g Nov-10 Apr-12

Last modified time

#public domain WMIT hcense ALGPL WGPL WEBSD eApache LAGPL

Fig. 3 Files that contain code clones with
base64.java found by OpenCCFinder.

file named base64.java [3] in Apache ObjectRela-
tionBridge (Apache OJB) open source project [2]
and we would like to reuse it. The comments sec-
tion in the source file represents that this file is
under the Apache license. But we wondered if this
file is copied from somewhere else that may be un-
der another license. Then we take this base64.java
file as input and search for similar files from open
source repositories using OpenCCFinder.

OpenCCFinder returns 57 other files from open
source repositories that contain code clone with the
base64.java. For the limited space here, we cannot
present all the detailed data of the 57 files. Instead
we organized the data and draw a scatterplot view,
as shown in Figure 3. In the figure, the files are
distributed by their cover ratio and last modified
time. Licenses are shown in different icons. From
it, we can observe the following;:

1. 55 source files from other projects contain
code clones of base64.java. The last modified
time is varied from 2004 to current. The earli-
est file we can find is under Apache license.

2. In these files, the cover ratios are not the
same, which may indicate these files reused and
modified from each other in different ways.

3. Most of the licenses are found as public do-
main, while several files have been found under
MIT, LGPL, GPL, BSD, Apache or AGPL li-
censes.

After checking the detailed information of each
file by hand, we confirmed that it is safe to keep this
file as Apache license. Another choice is to reuse
the public domain code, which is also safe. Though
OpenCCFinder cannot tell the answer of the first
question directly, it helps us to do the analysis eas-

200
8150 143 437
=100
g- 34
£ 50 16 10 1 2 1
0 — : : .
0 14 59 1014 15-19 20-24 2529 >30

#similar files found by Open CCFinder

Fig. 4 The histogram of #input files in terms
of #similar files found by OpenCCFinder.

3.2 Case study 2: SSHTools

Case study 2 is designed for the second question:
Are our own open source projects illegally reused
by other people? In this case study, we investigate
a Java project SSHTools [14], to find some files that
may illegally reused by other projects.

SSHTools is a Java SSH application providing
Java SSH API and terminal, which is under the
GPL license.
is widely used by other projects and it is a small

We choose this project because it

project that is easy to analyze.

Ignoring some tiny sized files, we have selected
339 files from SSHTools project (version 0.2.9, last
modified time is 6-23-2007), and each of them
is used as the input of OpenCCFinder. We
counted the number of similar files found in open
source repositories for each SSHTools’ file, and also
counted the number of different licenses of these
similar files. In this case study, we set up a thresh-
old of the cover ratio to filter out non-similar files.
Only those files which cover more than 40% code of
the queried file would be identified as similar file.
The result is shown as Figure 4. The figure shows
the number of similar files found in each of the 339
SSHTools’ files.

From this figure, we can observe that 305 of the
339 files contain code clones with other files from
open source repositories. 275 of them have less than
10 similar files found for each; several files have 10-
30 similar files found for each; one file has more
than 30 similar files. Besides, we also investigated
the different licenses appeared in each similar file.
SSHTools is under GPL license. However, 285 files
in SSHTools have similar files found with 1 differ-
ent license, 10 files in SSHTools have similar files
with 2 different licenses, and 1 file in SSHTools have

Vol. 29 No.3 Aug. 2012

185

Table 1 The case that similar files are under 3 other license (partial results)

File path Project name Cover ratio | License | Last modified time
/j2ssh-fork/src/com/sshtools/ j2ssh-fork 0.91 GPL 2008/6/17
common/util/BrowserLauncher.java

/de.fzj.unicore.rcp.terminal.ssh. unicore 0.89 LGPL 2010/2/3
gsissh/.../sshtools/common/

util/BrowserLauncher.java

/openfire/launcher /BrowserLauncher.java openfire-tomcat | 0.88 Apache | 2010/4/19
/dg/hipster /BrowserLauncher.java hipster 0.84 BSD 2006/10/12

similar files with 3 different licenses.

We checked the detailed files whose cloned files
have 2 or 3 different licenses. There are several un-
usual source code reuse cases. Here we only state
one case of them as an example.

Table 1 shows the similar files with 3 other dif-
ferent licenses, along with extra information about
file path, project name, cover ratio and last modi-
fied time. For the space limitation, we only present
a small part of the results here.

From this table,
BrowserLauncher.java with very high cover ratio.
Beside the GPL license, there are LGPL, Apache
and BSD licenses. It is reasonable for us to suppose

we can see 4 files named

that they share the same origine. However, some-
times it is not allowed to release the reused source
code under a different license. Some reuse activities
in this case are suspicious.

This case study shows that OpenCCFinder is
helpful for answering the second raised question.
We can find candidates of the suspicious files easily
and effectively by using this tool.

4 Discussion

4.1 Usefulness

As shown in the case studies, OpenCCFinder
is helpful to analyze how source code is reuse.
In case study 1, from the open source reposito-
ries we search out many similar files of Apache
OJB’s file base64.java.
about each file, we can know how the searched
Then devel-
oper’s reuse activity that we focus on becomes easy

With extra information

code is used in different projects.

and efficient. In case study 2, we have found out
files from open source repositories containing code
clones with SSHTools files, among which there are
several suspicious cases.

However, although this tool provides some clues

to get evidence, the final judgment on the legality
issue should be made by human after all.

And due to the keyword based search model,
OpenCCFinder can only find out Type 1 clones [5].

4.2 Performance

It takes about 1-2 minutes for OpenCCFinder to
complete one search task, including keyword ex-
tracting, downloading, collecting information and
running CCFinder. Most of the time is spend at
Network traffic and the size
of file to be downloaded also affect the executing

downloading step.
time. Case study 1 took about 2 minutes, while
case study 2 took about 7-8 hours in total.

4.3 Recall and precision

OpenCCFinder searches for code clones in open
source repositories using external code search en-
gines. So the recall and precision of this tool de-
It is difficult to
evaluate recall of OpenCCFinder quantitatively be-

pends on those search engines.

cause we could never know all the files in open
source repositories, and OpenCCFinder cannot
download all the files stored in open source reposi-
tories due to the limitation of space and time cost.
The precision of OpenCCFinder has been calcu-
lated. In this discussion, it is defined as the ratio of
files containing code clones to all the downloaded
files.

loaded, of which 55 files contain code clone with

In case study 1, 62 files have been down-

the queried file. The precision can be simply calcu-
lated as 0.887; in the case study 2, overall we have
downloaded 17054 files from the Internet, and 2480
of those files have been detected as containing code
clone with the files in SSHTools.
precision is 0.145. The precision in case study 2 is

So the average

low, but non-cloned files are filered out by the later
process.

186 ooboooooooood

5 Related work

There are many research studies on analyzing
and tracing code origin, provenance, evolution, ge-
nealogy through code clone analysis [10][11][15][16].
Duala-Ekoko et. al propose Clone Tracker to trace
and manage code clone history [6]. They have de-
veloped a tool for supporting clone tracking, with
abstract clone information named clone region de-
scriptor. Davies et al. propose Software Bertillon-
age for determining the origin of code entities with
These
studies are closely related to our work. However,

anchored signature matching method [8].

their objectives are different from ours in the sense
that they analyze various characteristics of code
fragment in their local repositories. In our case, we
analyze the query code in the Internet repositories.

6 Conclusion

In this paper, we have proposed a novel concept
for open code clone search, and then presented its
search model and detailed processes for the proto-
type system OpenCCFinder. We have conducted
two case studies, which show the applicability of
our approach.

Acknowledgements This work was supported
by KAKENHI (No.21240002, No0.23650015). Early
version of OpenCCFinder is developed by our ear-
lier student Yusuke Sasaki.

References

[1] Arne, P.H.: Jacobsen v. Katzer - Open Source
License Validation: How Far Does It Go?, The
Computer € Internet Lawyer, Vol. 25 No. 11 (2008),
pp. 27-31.

[2] Apache ObJectRelationalBridge OJB, http://
db.apache.org/ojb/

[3] Base64: Public Domain Base64 Encoder/Decoder,

http://iharder.sourceforge.net/current/java/base64/

[4] Ebert, C. (ed.): Open Source Software in Indus-
try, IEEE Software, Vol. 25, No. 3(2008), pp. 52-53.

[5] Roy, C. K., Cordy, J. R. and Koschke, R: Com-
parison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach,
Science of Computer Programming, Vol.74, No.7
(2009), pp. 470-495.

[6] Duala-Ekoko, E. and Robillard, M. P.: Clone
Region Descriptors: Representing and Tracking Du-
plication in Source Code, ACM Tran. on Software
Engineering, Vol. 20, No. 1 (2010), pp. 3.1-3.31.

[7] Cordy, J., Inoue, K., Koschke, R. and Jarzabek,
S. (eds.): 4th International Workshop on Software
Clones (IWSC 2010), Cape Town, South Africa,
2010.

[8] Davies, J., German, D. M. and Godfrey, M. W.:
Software Bertillonage: Finding the Provenance of
an Entity, in Proc. of Working Conference on Min-
ing Software Repositories (MSR 2011), Honolulu,
Hawaii, 2011, pp. 183-192.

[9] Inoue, K., Yokomori, R., Yamamoto, T., Mat-
sushita, M. and Kusumoto, S.: Ranking Signifi-
cance of Software Components Based on Use Re-
lations, IEEE Trans. Softw. Eng., Vol.31, No.3
(2005), pp. 213-225.

[10] Godfrey, M. and Zou, L.: Using Origin Anal-
ysis to Detect Merging and Splitting of Source
Code Entities, IFEE Trans. Softw. Eng., Vol.31,
No. 2(2005), pp. 166-181.

[11] Kim, M., Sazawal, V., Notkin, D. and Murphy,
G.: An empirical study of code clone genealogies,
in Proc. of the 2005 European Software Engineer-
ing Conference and 2005 Foundations of Software
Engineering (ESEC/FSE 2005), Lisbon, Portugal,
2005, pp. 187-196.

[12] Xia, P., Manabe, Y., Yoshida, N. and Inoue, K.:
Development of a Code Clone Search Tool for Open
Source Repositories, IPSJ SIG Technical Reports,
Vol.2011-SE-174, No.2 (2011), pp. 1-8.

[13] Livieri, S., Higo, Y., Matsushita, M. and In-
oue, K.: Very-Large Scale Code Clone Analysis and
Visualization of Open Source Programs Using Dis-
tributed CCFinder: D-CCFinder, in Proc. of 29th
International Conference on Software Engineering
(ICSE 2007), Minneapolis, MN, 2007, pp. 106-115.

[14] SSHTools Project, http://sourceforge.net/
projects/sshtools/.

[15] Kawaguchi, S., Garg, P. K., Matsushita, M. and
Inoue, K.: MUDABIlue: An Automatic Categoriza-
tion System for Open Source Repositories, Jour-
nal of Systems and Software, Vol. 79, No.7 (2006),
pp- 939-953.

[16] Thummalapenta, S., Cerulo, L., Aversano, L.
and Di Penta, M.: An empirical study on the main-
tenance of source code clones, Empirical Software
Engineering, Vol. 15, No.1 (2009), pp. 1-34.

[17] Kamiya, T., Kusumoto, S. and Inoue, K.:
CCFinder: A Multilinguistic Token-Based Code
Clone Detection System for Large Scale Source
Code, IEEE Trans. Softw. Eng., Vol. 28, No. 7(2002),
pp. 654-670.

Vol. 29 No. 3 Aug. 2012 187

o o o
10000000000000D0O0
odooooooooooooogd
obooooobooboooo 20000
A “;‘LDDDDDDDDDDDDDDDD
goooooooooooo

oooao
206 00000000000000
00002011 0000000000
obooboooooboooobooo
- ooooooooooooooo (o
o0o0)youooUooooooooooooooo
goooobobooooooooooooooooon
O0DO0ACMODOOO

oooao

004 000000000000D00
ooooooog2009000000
gboooooobooboooooDo
oo020100000000000000

ooo0oooooooOoOooo (Cooo)oooo
goooooooooooooooooooooon
gbooooooooboooooobooboooood
0000000000000 0OOIEEEDACMO
oo

oooao
1984 0 0000000000000
oo0oU0UooooOo (ooo)oo
‘ --.DDDDDDDDDDDDDDDD
- oo0198401986 OO OO OOO
obooooboooooobOoooooooboo0meon
oboooobooooooo0o199% 0o0ooan2o02
ooooooooooooboooononooz20110 80
gooooooooooooooooooooooo

gooobooooobooooboooboooooaonn
gbobooooooood

