
181

Development of a Code Clone Search Tool for

Open Source Repositories

Pei Xia　Yuki Manabe　Norihiro Yoshida　Katsuro Inoue

Finding code clones in the open source systems is important for efficient and safe reuse of existing open

source software. In this paper, we propose a novel search model, open code clone search, to explore code

clones in open source repositories on the Internet. Based on this search model, we have designed and imple-

mented a prototype system named OpenCCFinder . This system takes a query code fragment as its input,

and returns the code fragments containing the code clones with the query. It utilizes publicly available code

search engines as external resources. Using OpenCCFinder , we have conducted several case studies for Java

code. These case studies show the applicability of our system.

1 Introduction

Nowadays reusing existing source code to build

up new software systems becomes common. Devel-

opers can easily get source code of various projects

that hosted in open source repositories on the In-

ternet such as Google code, sourceforge, github and

so on. Some previous studies show that even indus-

trial software products are also increasingly reusing

open source code due to their reliability and cost

benefits [4].

However, when reusing source codes, some prob-

lems about software compliance may happen.

1. When we find a useful source code file, can

we reuse it safely?

2. Are our own open source projects illegally

reused by other people?

For the first question, before reusing the source

オープンソースレポジトリに対するコードクローン検索
ツールの開発.

夏沛, 眞鍋雄貴, 井上克郎, 大阪大学大学院情報科学
研究科コンピュータサイエンス専攻, Department of

Computer Science, Graduate School of Information

Science and Technology, Osaka University.

吉田則裕, 奈良先端科学技術大学院大学情報科学研究
科, Graduate School of Information Science, Nara

Institute of Science and Technology.

コンピュータソフトウェア,Vol.29,No.3 (2012),pp.181–187.

[研究論文 (レター)] 2011 年 12 月 12 日受付.

code, developers should make sure that they will

not violate the license. A license violation may

take them to court and cost them a lot. How-

ever, to tell the license of a source file is not easy

because there are many code clones among open

source projects [13]. That means they also copy

and modify source code from other projects. In ex-

tremely cases they even change or remove the origi-

nal license statement in the source files [1]. Reusing

such source files is risky. For the second question,

even though some other projects had reused source

code while violating its license, the original code

owner would hardly know it, since it is hard to

check other projects by hand.

In order to answer such questions, one solution

is to find out all the cloned code in the world, and

compare the related information about them to tell

the reuse relationship between those codes. In these

days, many code clone detection tools as well as

code search tools have been developed [5][7]. How-

ever, none of them can search for code clones from

open source repositories.

Basing on the code clone detection and code

search technologies, we proposed a novel approach

for open source code clone search, and also im-

plemented a prototype tool named OpenCCFinder

[12]. OpenCCFinder takes a code fragment as its

query input, and returns a list of files from open

source repositories that contain cloned code with

the queried one, along with extra information. This

182 コンピュータソフトウェア

Fig. 1 Architecture of OpenCCFinder .

tool can support us to study the raised problems.

In this paper, we first describe the overview of

OpenCCFinder including architecture and search

process in Section 2. Section 3 shows our case stud-

ies. Section 4 discusses our approach and Section 5

shows the related works. In Section 6, we conclude

our discussions with some future works.

2 Overview of OpenCCFinder

2. 1 Architecture

Figure 1 shows the architecture of OpenCCFinder .

It takes an input query Q and returns an output

results set R. Input query Q is composed of code

fragment qc and code attribute qa. qc may be a

complete source file or a part of a source code file,

which is in question. qa is a set of associated infor-

mation characterizing qc, such as the file name. qa

is optional and could be added to improve the qual-

ity of the output results. Given an input Query Q,

OpenCCFinder extracts useful information from it

and generates queries for external code search en-

gine (e.g. Google code search, SPARS/R etc.), and

then analyze the returned candidate files from ex-

ternal search engines, at last form a final result as

output R. The detail of this search process will be

introduced in section 2.2.

Output result R is composed of results r1,r2 ...

rn. Each result ri is composed of a code file ric

and its code attribute ria. ric is a code file which

is returned by external code search engines, and ria

a set of associated information about ric, including

URL, file path, LOC, license, copyright, last mod-

ified time, clone cover ratio and clone detail.

For the external code search engines, we use

Google code search and SPARS/R in our tool im-

plementation. Google code search is a famous code

search engine. It provides search service API to

the user, so we can easily integrate it to our tool;

SPARS/R is a Java component search engine with

the keyword input and component rank mechanism

developed by our research group [9]. The Java class

repository of SPARS/R is kept updated by us.

2. 2 Search process

Search process of OpenCCFinder can be devided

into 6 steps, as shown in Figure 2.

(a) Word Extraction. At the beginning, code

fragment qc in input query Q is tokenized, and

the words from source code and comments are

separated. User can choose whether to extract

words from source code or from comments, or

from both.

(b) Keyword Ranking. Next, the keywords

used for query generation are selected from

the extracted words. In this step, first

OpenCCFinder filters out the words that con-

Vol. 29 No. 3 Aug. 2012 183

Fig. 2 Search process of OpenCCFinder .

sidered being featureless. For example, the

reserved words of each source code language,

the words in very short length, and the words

included in customized filter are filtered out.

After the filtering, a simple words importance

ranking strategy is applied on the remaining

words. Currently, there are two strategy im-

plemented in the tool for ranking the words:

frequency strategy and random strategy. Fre-

quency strategy is to rank the keywords by the

times they appear in the source codes or com-

ment, while random strategy is just to rank the

words randomly.

(c) Searching for Candidates Files. As the

search engines, here we choose SPARS/R and

Google Code Search. We use different com-

bination of high ranked keywords to generate

search queries for each search engine to get ap-

propriate candidate files. For each query, the

returned results set should not be very large,

so as not to include too many irrelevant results.

If the returned results set are too large, we will

add one more keyword from the ranked key-

words list to the query to narrow the results

set. At last, we merge the returned results of

several queries as the analysis candidate files.

(d) Downloading Candidate Files. All the

candidate files in step (c) are downloaded from

Internet. While downloading the file, the tool

is also crawling the web to extract useful infor-

mation for the code attributes such as file path,

URL, LOC, License, Copyrights, and last mod-

ified time if available.

(e) Code Clone Analysis. The code clones

between the input query code fragment qc and

each source code file obtained at Step (d) are

computed. We have used a code clone detec-

tion tool CCFinder [17], with its parameter set-

ting for the minimum token length 15.

(f) Result Forming. All the candidate files

and their code attributes are combined and

packed as the output result R of this system,

sorted by their similarity to qc. Here we use

coverratio to evaluate their similarity, which

defined as the percentage of reused qc’s code.

3 Case Study

We have conducted two case studies to explore

applicability of OpenCCFinder approach†1.

3. 1 Case study 1: base64.java

Case study 1 is designed for the first raised ques-

tion: When we find some useful source code, can

we reuse it safely?

Consider such a situation that we have found a

†1 All these case studies have been performed under

PC Workstation with dual Xeon X5550 2.66GHz

processors and 24 GB memory between Aug.2011

and Sep.2011.

184 コンピュータソフトウェア

Fig. 3 Files that contain code clones with

base64.java found by OpenCCFinder .

file named base64.java [3] in Apache ObjectRela-

tionBridge (Apache OJB) open source project [2]

and we would like to reuse it. The comments sec-

tion in the source file represents that this file is

under the Apache license. But we wondered if this

file is copied from somewhere else that may be un-

der another license. Then we take this base64.java

file as input and search for similar files from open

source repositories using OpenCCFinder .

OpenCCFinder returns 57 other files from open

source repositories that contain code clone with the

base64.java. For the limited space here, we cannot

present all the detailed data of the 57 files. Instead

we organized the data and draw a scatterplot view,

as shown in Figure 3. In the figure, the files are

distributed by their cover ratio and last modified

time. Licenses are shown in different icons. From

it, we can observe the following:

1. 55 source files from other projects contain

code clones of base64.java. The last modified

time is varied from 2004 to current. The earli-

est file we can find is under Apache license.

2. In these files, the cover ratios are not the

same, which may indicate these files reused and

modified from each other in different ways.

3. Most of the licenses are found as public do-

main, while several files have been found under

MIT, LGPL, GPL, BSD, Apache or AGPL li-

censes.

After checking the detailed information of each

file by hand, we confirmed that it is safe to keep this

file as Apache license. Another choice is to reuse

the public domain code, which is also safe. Though

OpenCCFinder cannot tell the answer of the first

question directly, it helps us to do the analysis eas-

Fig. 4 The histogram of #input files in terms

of #similar files found by OpenCCFinder .

ier.

3. 2 Case study 2: SSHTools

Case study 2 is designed for the second question:

Are our own open source projects illegally reused

by other people? In this case study, we investigate

a Java project SSHTools [14], to find some files that

may illegally reused by other projects.

SSHTools is a Java SSH application providing

Java SSH API and terminal, which is under the

GPL license. We choose this project because it

is widely used by other projects and it is a small

project that is easy to analyze.

Ignoring some tiny sized files, we have selected

339 files from SSHTools project (version 0.2.9, last

modified time is 6-23-2007), and each of them

is used as the input of OpenCCFinder . We

counted the number of similar files found in open

source repositories for each SSHTools’ file, and also

counted the number of different licenses of these

similar files. In this case study, we set up a thresh-

old of the cover ratio to filter out non-similar files.

Only those files which cover more than 40% code of

the queried file would be identified as similar file.

The result is shown as Figure 4. The figure shows

the number of similar files found in each of the 339

SSHTools’ files.

From this figure, we can observe that 305 of the

339 files contain code clones with other files from

open source repositories. 275 of them have less than

10 similar files found for each; several files have 10-

30 similar files found for each; one file has more

than 30 similar files. Besides, we also investigated

the different licenses appeared in each similar file.

SSHTools is under GPL license. However, 285 files

in SSHTools have similar files found with 1 differ-

ent license, 10 files in SSHTools have similar files

with 2 different licenses, and 1 file in SSHTools have

Vol. 29 No. 3 Aug. 2012 185

Table 1 The case that similar files are under 3 other license (partial results)

File path Project name Cover ratio License Last modified time

/j2ssh-fork/src/com/sshtools/ j2ssh-fork 0.91 GPL 2008/6/17

common/util/BrowserLauncher.java

/de.fzj.unicore.rcp.terminal.ssh. unicore 0.89 LGPL 2010/2/3

gsissh/.../sshtools/common/

util/BrowserLauncher.java

/openfire/launcher/BrowserLauncher.java openfire-tomcat 0.88 Apache 2010/4/19

/dg/hipster/BrowserLauncher.java hipster 0.84 BSD 2006/10/12

...

similar files with 3 different licenses.

We checked the detailed files whose cloned files

have 2 or 3 different licenses. There are several un-

usual source code reuse cases. Here we only state

one case of them as an example.

Table 1 shows the similar files with 3 other dif-

ferent licenses, along with extra information about

file path, project name, cover ratio and last modi-

fied time. For the space limitation, we only present

a small part of the results here.

From this table, we can see 4 files named

BrowserLauncher.java with very high cover ratio.

Beside the GPL license, there are LGPL, Apache

and BSD licenses. It is reasonable for us to suppose

that they share the same origine. However, some-

times it is not allowed to release the reused source

code under a different license. Some reuse activities

in this case are suspicious.

This case study shows that OpenCCFinder is

helpful for answering the second raised question.

We can find candidates of the suspicious files easily

and effectively by using this tool.

4 Discussion

4. 1 Usefulness

As shown in the case studies, OpenCCFinder

is helpful to analyze how source code is reuse.

In case study 1, from the open source reposito-

ries we search out many similar files of Apache

OJB’s file base64.java. With extra information

about each file, we can know how the searched

code is used in different projects. Then devel-

oper’s reuse activity that we focus on becomes easy

and efficient. In case study 2, we have found out

files from open source repositories containing code

clones with SSHTools files, among which there are

several suspicious cases.

However, although this tool provides some clues

to get evidence, the final judgment on the legality

issue should be made by human after all.

And due to the keyword based search model,

OpenCCFinder can only find out Type 1 clones [5].

4. 2 Performance

It takes about 1-2 minutes for OpenCCFinder to

complete one search task, including keyword ex-

tracting, downloading, collecting information and

running CCFinder. Most of the time is spend at

downloading step. Network traffic and the size

of file to be downloaded also affect the executing

time. Case study 1 took about 2 minutes, while

case study 2 took about 7-8 hours in total.

4. 3 Recall and precision

OpenCCFinder searches for code clones in open

source repositories using external code search en-

gines. So the recall and precision of this tool de-

pends on those search engines. It is difficult to

evaluate recall of OpenCCFinder quantitatively be-

cause we could never know all the files in open

source repositories, and OpenCCFinder cannot

download all the files stored in open source reposi-

tories due to the limitation of space and time cost.

The precision of OpenCCFinder has been calcu-

lated. In this discussion, it is defined as the ratio of

files containing code clones to all the downloaded

files. In case study 1, 62 files have been down-

loaded, of which 55 files contain code clone with

the queried file. The precision can be simply calcu-

lated as 0.887; in the case study 2, overall we have

downloaded 17054 files from the Internet, and 2480

of those files have been detected as containing code

clone with the files in SSHTools. So the average

precision is 0.145. The precision in case study 2 is

low, but non-cloned files are filered out by the later

process.

186 コンピュータソフトウェア

5 Related work

There are many research studies on analyzing

and tracing code origin, provenance, evolution, ge-

nealogy through code clone analysis [10][11][15][16].

Duala-Ekoko et. al propose Clone Tracker to trace

and manage code clone history [6]. They have de-

veloped a tool for supporting clone tracking, with

abstract clone information named clone region de-

scriptor. Davies et al. propose Software Bertillon-

age for determining the origin of code entities with

anchored signature matching method [8]. These

studies are closely related to our work. However,

their objectives are different from ours in the sense

that they analyze various characteristics of code

fragment in their local repositories. In our case, we

analyze the query code in the Internet repositories.

6 Conclusion

In this paper, we have proposed a novel concept

for open code clone search, and then presented its

search model and detailed processes for the proto-

type system OpenCCFinder . We have conducted

two case studies, which show the applicability of

our approach.

Acknowledgements This work was supported

by KAKENHI (No.21240002, No.23650015). Early

version of OpenCCFinder is developed by our ear-

lier student Yusuke Sasaki.

References

[1] Arne, P.H.: Jacobsen v. Katzer - Open Source

License Validation: How Far Does It Go?, The

Computer & Internet Lawyer, Vol. 25 No. 11 (2008),

pp. 27–31.

[2] Apache ObJectRelationalBridge OJB, http://

db.apache.org/ojb/

[3] Base64: Public Domain Base64 Encoder/Decoder,

http://iharder.sourceforge.net/current/java/base64/

[4] Ebert, C. (ed.): Open Source Software in Indus-

try, IEEE Software, Vol. 25, No. 3(2008), pp. 52–53.

[5] Roy, C. K., Cordy, J. R. and Koschke, R: Com-

parison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach,

Science of Computer Programming, Vol. 74, No. 7

(2009), pp. 470–495.

[6] Duala-Ekoko, E. and Robillard, M. P.: Clone

Region Descriptors: Representing and Tracking Du-

plication in Source Code, ACM Tran. on Software

Engineering, Vol. 20, No. 1 (2010), pp. 3.1–3.31.

[7] Cordy, J., Inoue, K., Koschke, R. and Jarzabek,

S. (eds.): 4th International Workshop on Software

Clones (IWSC 2010), Cape Town, South Africa,

2010.

[8] Davies, J., German, D. M. and Godfrey, M. W.:

Software Bertillonage: Finding the Provenance of

an Entity, in Proc. of Working Conference on Min-

ing Software Repositories (MSR 2011), Honolulu,

Hawaii, 2011, pp. 183–192.

[9] Inoue, K., Yokomori, R., Yamamoto, T., Mat-

sushita, M. and Kusumoto, S.: Ranking Signifi-

cance of Software Components Based on Use Re-

lations, IEEE Trans. Softw. Eng., Vol. 31, No. 3

(2005), pp. 213–225.

[10] Godfrey, M. and Zou, L.: Using Origin Anal-

ysis to Detect Merging and Splitting of Source

Code Entities, IEEE Trans. Softw. Eng., Vol. 31,

No. 2(2005), pp. 166–181.

[11] Kim, M., Sazawal, V., Notkin, D. and Murphy,

G.: An empirical study of code clone genealogies,

in Proc. of the 2005 European Software Engineer-

ing Conference and 2005 Foundations of Software

Engineering (ESEC/FSE 2005), Lisbon, Portugal,

2005, pp. 187–196.

[12] Xia, P., Manabe, Y., Yoshida, N. and Inoue, K.:

Development of a Code Clone Search Tool for Open

Source Repositories, IPSJ SIG Technical Reports,

Vol.2011-SE-174, No.2 (2011), pp. 1–8.

[13] Livieri, S., Higo, Y., Matsushita, M. and In-

oue, K.: Very-Large Scale Code Clone Analysis and

Visualization of Open Source Programs Using Dis-

tributed CCFinder: D-CCFinder, in Proc. of 29th

International Conference on Software Engineering

(ICSE 2007), Minneapolis, MN, 2007, pp. 106–115.

[14] SSHTools Project, http://sourceforge.net/

projects/sshtools/.

[15] Kawaguchi, S., Garg, P. K., Matsushita, M. and

Inoue, K.: MUDABlue: An Automatic Categoriza-

tion System for Open Source Repositories, Jour-

nal of Systems and Software, Vol. 79, No. 7 (2006),

pp. 939–953.

[16] Thummalapenta, S., Cerulo, L., Aversano, L.

and Di Penta, M.: An empirical study on the main-

tenance of source code clones, Empirical Software

Engineering, Vol. 15, No. 1 (2009), pp. 1–34.

[17] Kamiya, T., Kusumoto, S. and Inoue, K.:

CCFinder: A Multilinguistic Token-Based Code

Clone Detection System for Large Scale Source

Code, IEEE Trans. Softw. Eng., Vol. 28, No. 7(2002),

pp. 654–670.

Vol. 29 No. 3 Aug. 2012 187

夏 　 沛

2010年上海交通大学ソフトウェア工

学部卒業．現在，大阪大学大学院情報

科学研究科博士前期課程 2 年．コー

ドクローン分析やビジュアライゼー

ションに関する研究に従事．

眞 鍋 雄 貴

2006年大阪大学基礎工学部情報科学

科退学．2011年同大学大学院情報科

学研究科博士課程修了．同年同大学

院情報科学研究科特任助教．博士 (情

報科学)．ソフトウェア工学，特にソフトウェア再利

用，ソフトウェアライセンスの研究に従事．情報処理

学会，ACM各会員．

吉 田 則 裕

2004年九州工業大学情報工学部知能

情報工学科卒業．2009年大阪大学大

学院情報科学研究科博士後期課程修

了．2010年奈良先端科学技術大学院

大学情報科学研究科助教．博士 (情報科学)．コード

クローン分析手法やリファクタリング支援手法に関す

る研究に従事．ソフトウェア科学会，情報処理学会，

電子情報通信学会，人工知能学会，IEEE，ACM 各

会員．

井 上 克 郎

1984年大阪大学大学院基礎工学研究

科博士後期課程修了 (工学博士)．同

年，大阪大学基礎工学部情報工学科

助手．1984～1986年，ハワイ大学マ

ノア校コンピュータサイエンス学科助教授．1991年大

阪大学基礎工学部助教授．1995年同学部教授．2002

年大阪大学大学院情報科学研究科教授．2011年 8月

より同研究科研究科長．ソフトウェア工学，特にコー

ドクローンやコード検索などのプログラム分析や再

利用技術の研究に従事．

