
What kind of and how clones are refactored? :
A case study of three OSS projects

Eunjgon Choi
Graduate School of Information
Science and Technology, Osaka

University
ejchoi@ist.osaka-u.ac.jp

Norihiro Yoshida
Graduate School of Information

Science, Nara Institute of Science
and Technology

yoshida@is.naist.jp

Katsuro Inoue
Graduate School of Information
Science and Technology, Osaka

University
inoue@ist.osaka-u.ac.jp

Abstract
Although code clone (i.e. a code fragment that has similar
or identical fragments) is regarded as one of the most typ-
ical bad smells, tools for identification of clone refactoring
(i.e. merge code clones into a single method) are not com-
monly used. To promote the development of more widely-
used tools for clone refactoring, we present an investiga-
tion of actual clone refactorings performed in the develop-
ments of three Open Source Software (OSS) projects. From
the results, we confirmed that clone refactorings are mostly
archived by two refactoring patterns, and token sequences of
refactored code clones are suggested to have a difference of
50%.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms Measurement, Experimentation

Keywords Code clone, Refactoring, Levenshtein distance

1. Introduction
Code clone (i.e. a code fragment that has similar or identical
fragments) is regarded as a highly prioritized bad smell in
source code [4]. So far, much research have been done on
the support for clone refactoring (i.e. merge code clones into
a single method) [5] [7] [13] [16]. For example, a lot of
tools have developed for the detection of code clones [6] [8]
[14], code transformation support for forming the template
method [7], and the prioritization of code clones based on
the difficulty of refactoring [5].

Currently, tools for clone refactoring are not commonly
used rather than refactoring tools not intended for clone

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WRT ’12 June 01, 2012, Rapperswil, Switzerland
Copyright c© 2012 ACM 978-1-4503-1500-5/12/06. . . $10.00

OSS developers
provide tools for clone refactoring 

hope to know how OSS developers refactor

clone refactoring
developer of tools for clone refactoring

investigate what kind and how code clones were refactored provide the information of clone refactoring 
researchers

Software repository

3

1
2

4

5
Figure 1. An overview of our research

refactoring. For the development of more widely-used tools
for clone refactoring, developers of tools for clone refac-
toring need to understand actual clone refactorings. For the
further refactoring support, tools for clone refactoring need
to support frequently-applied refactoring patterns, and then
suggest fine-grained code transformations according to the
characteristics of code clones. Therefore, the tool developers
need to understand what kind of code clones are refactored,
and which refactoring patterns are applied to them.

Actual refactoring patterns applied to non-cloned code
were investigated by Murphy-Hill et al. [18]. However, in
the case of code clones, applied refactoring patterns are still
unclear because identification of applied refactoring patterns
to code clones has not been developed to the best of our
knowledge.

In this paper, we present a preliminary investigation into
clone refactoring in three Open Source Software (OSS)



projects (see Figure 1). First, we propose a Levenshtein
distance-based method to identify clone refactorings from
version archives. Then, we compute the characteristic of
each clone refactoring according to three measurement. The
detailed approach is shown in Figure 2.

The main findings of the investigation are as follows:

• Most of refactorings are the applications of Extract
Method (EM) and Replace Method with Method Object
(RMMO) (see Figure 5).

• Sequences of refactored code clones have a difference of
roughly 50% (see Figure 6).

• In the case of the applying RMMO into code clones, large
differences are confirmed between the sizes of refactored
code clones. On the other hand, in the cases of the other
three refactoring patterns, the differences are relatively
small (see figure 7).

• In the case of the applying RMMO into code clones, the
code clones are in the same Java package but not in the
same Java class (see Figure 8).

The rest of paper is organized as follows: Section 2 pro-
vides explanations of background of this study. Section 3
presents an investigation method to identify clone refactor-
ings. Section 4 explains case study according to the method
explained in Previous Section and then discusses its re-
sults and limitations. Section 5 describes related work on
this study. Section 6 summarizes our paper with indications
about future work.

2. Background
To give clear idea of this study, this section explains in
detail code clones, clone refactoring and identification of
refactoring.

2.1 Code Clone
A code clone is a code fragment that has similar or identical
code fragment in the source code. A clone pair is a pair of
code clones which are similar or identical each other. Code
Clones are categorized into the following three types base on
the textual similarity between the clone pair [2]:

Type 1: Identical code fragments except for variations in
whitespace, layout and comments.

Type 2: Syntactically identical fragments except for varia-
tions in identifiers, literals, types, whitespace, layout and
comments.

Type 3: Copied fragments with further modifications such
as changed, added or removed statements, in addition to
variations in identifiers, literals, types, whitespace, layout
and comments.

A well-known assumption for introducing code clones to
software is copying an existing code fragment and pasting

it with or without modification. This activity frequently oc-
curs for two main reasons. Firstly, unskilled programmers
often create code clones due to the lack of program skills
or knowledge of assigned projects. Secondly, mature pro-
grammers often create them to preserve high reliability of
software or avoid a high-risk for creating new code logic.

Although, a significant amount of code clones are con-
tained in the software systems [1] [15], code clones make
software more difficult to be maintained. For example, when
a defect is detected in a code fragment of code clone, all of
its cloned code fragments should be inspected for the same
defect. Therefore, to manage code clones is one of the cru-
cial factors for the effective software maintenance.

2.2 Clone Refactoring
A representative method to manage code clones is merging
code clones into a single method using refactoring patterns.
Several refactoring patterns from Fowler’s book [4] can be
applied for clone refactoring.

An example of merging code clones into a single method
through refactoring pattern using EM is shown in Figure 3.
In Figure 3, two duplicated statements, code clone exist in
two methods(printOwing() and printAssets()) before refac-
toring. But after refactoring, code clones are extracted as a
new method(printDetails()) and the old statements are re-
placed by caller statements of the new method.

Moreover, RMMO also can be applied to code clones that
use local variables which is originally applied to a longer
method that uses local variables in such a way that develop-
ers cannot apply EM. As a result of applying the RMMO,
code clones are extracted as a new method into its own ob-
ject, so that all the local variables become fields on that ob-
ject.

2.3 Identification of Refactoring
Past refactoring can be covered by analyzing commit logs
and code histories, observing programmers and logging
refactoring tool use. Using these methods, analyzing the
code histories becomes more accurate and can faithfully
capture the details of the refactoring event than others [17].

Several techniques for identifying refactoring on code
histories have been suggested [19] [20]. Prete et al. pro-
posed a template based refactoring reconstruction technique
and tool named Ref-finder [11] [19]. Ref-finder takes two
program versions as input data and decomposes input pro-
grams as a database of logic facts. After representing each
refactoring pattern as template logic rule, Ref-finder identi-
fies refactoring instances via logic queries. Weißgerber et al.
proposed a signature-based refactoring detection technique
[20]; It stores the most important data of source code in a
relational data base and then, looks for added, changed or
removed entities (e.g. classes, fields, methods) to get refac-
toring candidates. Finally, they rank these candidates using
clone detection to identify real refactoring.



SourcecodeSoftware repository Identified basic refactoring Identified clone refactoringRef-finder Identification of clone refactoring
applied refactoring  patterns of clone refactoring similarity measurement

Figure 2. An overview of proposed investigation

void printOwing(double amount){printBanner();System.out.println(“name:”+ _name);System.out.println(“amount”+ amount);}void printAssets(double amount){printResult();System.out.println(“name:”+ _name);System.out.println(“amount”+ amount);}
void printOwing(double amount){printBanner();printDetails(amount);}void printAssets(double amount){printResult();printDetails(amount);} void printDetails(double amount){System.out.println(“name:”+ _name);System.out.println(“amount”+ amount);}

Before Refactoring

After Refactoring

Figure 3. An example of clone refactoring using Extract
Method

3. Investigation Method
We investigated the characteristics of code clones where
refactoring was performed based on applied refactoring pat-
terns. The investigation is comprised of the following steps;
(1)Identify refactorings on code histories as described in
Section 3.1 (2)Identify code clones from the identified refac-
torings as described in Section 3.2 (3)Investigate the char-
acteristics of code clones where refactoring was performed.
Measurement of the refactored code clones are explained in
Section 3.3

3.1 Detection of Refactorings
We analyzed past source code of software projects from their
software repositories. As targeting refactoring patterns, we
selected the following 7 refactoring patterns from Fowler’s
book; Extract Method (EM), Replace Method with Method
Object (RMMO), Extract Class (EC), Parameterize Method
(PM), Pull Up Method (PUM), Extract Superclass (ES), and
Form Template Method (FTM)

We identified refactoring on each version of source code
using Ref-finder which is explained in Section 2.3. We se-
lected Ref-finder because its outputs were validated with
high accuracy in Prete’s study [19] and it can detects sixty
five Fowler’s refactoring patterns.

3.2 Identification of Code Clones
Many tools have been proposed for detecting code clones on
source code [6] [8] [14]. However, existing code clone detec-
tion tools have their own limitations. For instance, CCFinder
[8], a token-based code clone detection tool, can only detect
Type-1 and Type-2 code clones, and can not detect Type-3
code clones as low-similar code clones.

However, we assume that developers sometimes merge
low similar code clones into a single method after much
thought. Figure 4 describes an example of refactoring Type-3
code clones. In Figure 4, a code clone is created by copying
existing source code with modification and deletion. How-
ever, due to this modification and deletion, these code clones
cannot be detected by CCFinder.

To overcome this limitation, we used undirected simi-
larity (usim) [16] to identify Type-3 code clones as well as
Type-1 and Type-2 code clones in this study. usim is a mea-
sure originally used to identify code clones for the grow-
and-prune model [16]. usim uses the Levenshtein distance
that measures the minimal amount of changes necessary to
transform one sequence of items into a second sequence of
items [12]. usim is defined by following equation

usim (fx, fy) =
max (lx, ly)−∆fx, y

max (lx, ly)
× 100 (%)

In the upper equation, source code where refactoring
was performed is represented as the normalized sequence
sfx (The normalization removes comments, line breaks
and insignificant white space). The resulting edit distance



if (i > j) {i = i/2;i++; }..........if (i < j) {i = i + 10;   }
int compare(int i, int j){if (i > j) {i = i/2;i++; } else {i = i+ 1 ;   }return i}

Before Refactoring

After Refactoring

Figure 4. An example of refactoring in the case of dissimi-
lar code fragments

∆fx, y = LD(sfx, sfy) describes the number of items
that have to be changed to turn method fx into fy . Lev-
enshtein distance can be normalized to a relative value using
the length of the corresponding sequence lx = len(sfx).
This equation represents the Levenshtein distance between
two sequences that are normalized by their maximum size.

We selected pairs of code fragments in the old version
which have performed refactoring into the same code frag-
ments in the new version based the outputs of Ref-finder.
Next, we determined the similarity between the refactored
pairs of code fragments using the usim and if the value of
usim of refactored pairs of code fragments in the old ver-
sion were over 40% 1, we regarded them as a clone pair who
merged into a single fragment.

3.3 Measurement of the Characteristics
To investigate characteristics of refactored clone pairs , we
applied two measurement, Sequence similarity and Length
difference of sequences between clone pairs. In addition,
to investigate characteristics of classes who contain refac-
tored clone pairs, we applied a measurement, Class distance
between the classes. The details of the measurement are fol-
lowings:

Sequence similarity between clone pairs
We used the usim to identify refactored clone pairs in
Section 3.2. This time, we used the usim to measure the
sequence similarity between clone pairs where refactor-

1 The number 40% is the same number that used in Mende’s research to
identify code clones [16]

Extract MethodReplace Methodwith Method ObjectExtract SuperclassForm TmplateMethod
Figure 5. Statistics of identified refactorings

ings were performed. If a usim value is lower between
refactored clone pairs, this means that refactorings were
performed between a lower-similar clone pair. Mean-
while, if usim values are higher between clone pairs,
this means that refactorings were performed between
a higher-similar clone pair. This information indicates
about which refactoring pattern could be performed ac-
cording to sequence similarity between clone pairs.

Length difference of sequences between clone pairs
This measurement measures the length difference of se-
quences between clone pairs where refactorings were
performed. If length difference of sequences between a
clone pair is lower, this means that refactorings were per-
formed between similar sizes of a clone pair. Meanwhile,
if the sequence length difference of sequences between a
clone pair is higher, it means that refactorings were per-
formed between a clone pairs with the different sizes.
This information indicates about which refactoring pat-
tern could be performed according to the length differ-
ences of sequences of a clone pairs.

Class distance
Class distance measures the locations between the classes
who contain a clone pair where refactorings were per-
formed. However, except RMMO, 6 refactoring patterns
have constraints in the location of clone pair in the old
version from 7 refactoring patterns that we selected in
Section 3.1. For example, PUM can be performed only
clone pairs which are distributed in subclasses who have
a common superclass. Therefore, we investigated the
class distances in terms of RMMO. This gives develop-
ers a clue of applying RMMO according to the location
information of clone pairs.

4. Case Study
This section, we explain target systems of case study. Next,
we explain the results of case study and then discuss its
limitations.



024
681012

40~49 50~59 60~69 70~79 80~89 90~100Form Template Method Extract SuperclassReplace Method with Method Object Extract Method (%)
Figure 6. Values of usim for each refactoring pattern

0510152025

Extract Method Replace Method with Method ObjectExtract Superclass Form Template Method
Figure 7. Sequence Length of token sequences for each refactoring pattern

Table 1. Target version pairs in OSS projects
Software Projects #Version Pairs Version Pairs
jEdit2 2 3.0-3.0.1, 3.0.2-3.1
CAROL3 2 302-352, 352-449
Columba4 6 62-63, 389-421, 421-422, 429-430, 430-480, 480-481

4.1 Target Systems
To investigate the characteristics of clone pairs where refac-
toring was performed, suitable software projects with re-
liable history information on refactoring activities had to
be considered. We selected 10 version pairs from jEdit,
Columba, and Carol, because their refactoring results from
Ref-finder are verified in Prete’s work with high recalls and
precisions.

4.2 Results
From the results, 31 pairs of code clones were detected from
overall subject projects.

Figure 5 shows the number of identified clone pairs in
terms of applied refactoring patterns. As shown in Figure
5, four refactoring patterns (EM, RMMO, ES, and FTM)
were detected and three refactoring patterns (EC, PM, and
PUM) were not detected. RMMO was the most frequently



applied clone refactoring pattern between all refactoring pat-
terns. The second frequently occurred clone refactoring pat-
tern was EM, followed by FTM, and finally the ES pattern.
The details on the results of applying three measurements
explained in Section 3.3 are followings;

Sequence similarity between clone pairs
Sequence similarity between clone pairs where refactor-
ing were performed are shown in Figure 6. We regarded
as a refactored clone pair only if the values of usim of a
pair of code fragments where refactoring were performed
is over 40% as mentioned in Section 3.2. Therefore, the
smallest usim value of a clone pair where refactoring
were performed is 40%. As shown in Figure 6, the val-
ues of usim of EM, and RMMO were low. Meanwhile,
the values of usim of ES, and FTM were high.
We suspected that EM, and RMMO were applied to low-
similar clone pairs because these refactoring patterns
make clone pairs to be moved into another class. Mean-
while, ES, and FTM were applied to high-similar clone
pairs because these refactoring patterns are pull up clone
pairs in the child classes into a superclass.

Length difference of sequences between clone pairs
The length difference of sequences between clone pairs
where refactoring were performed are shown in Figure 7.
The length difference of sequences of EM, ES, and FTM
were small. Meanwhile, the length difference of RMMO
was varying.

Class distance
The class distances in terms of RMMO are shown in
Figure 8. Clone pairs in the same package were the most
frequently occurred. Meanwhile, clone pairs in the same
class or others occurred less frequently in case of RMMO
pattern.

4.3 Threats to Validity
This investigation has several limitations.

First, our investigation is based on the data from Ref-
finder and usim, the results of investigation are rely on these
tools. However, the outputs of Ref-finder and usim are vali-
dated in the previous work, respectively. We believe that the
results of investigation in this study are reliable.

Second, we regarded as a refactored clone pair if the
values of usim between the pair of code fragment in the
old version were over 40%. Because of this value we set
up, some of actual refactored clone pairs might be omitted
or some of wrong data might be included. In the future, we
plan to investigate all of the values of usim of pairs of code
fragments in the old version and check that appropriate value
of usim to identify actual code clones.

Finally, our case study is conducted on three OSS projects.
Therefore, our investigation may not generalize to other OSS
projects. To improve generality, we need the future investi-
gation of other OSS projects.

5. Related Work
Kim et al. have developed a clone genealogy extractor [9],
and then investigated the genealogies of code clones in OSS
[10]. As the result of their investigation, they confirmed
that refactoring long-lived clones are difficult. They used
CCFinder [8] as a code clone detection tool. It is a sort of
scalable tools but detect only syntactically-equivalent code
clones (i.e., only Type-1 and Type-2 code clones [2]). As they
mentioned in their paper, the result of their investigation is
affected by the output of CCFinder. In our case study, we
confirmed that a lot of refactored and syntactically-different
clones.

Burd and Bailey pointed out that the combination of var-
ious clone detection tools are needed to identify clones for
supporting preventive maintenance [3]. Such combination is
also promising for accurate identification of merged code
clones from version archives. We need to confirm the use-
fulness of combined code clone detection tools for the iden-
tification of merged clones.

The state of the art tools for fine-grained refactoring de-
tection [19] [21] are designed for the comparison between
only two versions. For larger-scale investigation, we need to
develop more scalable tool for refactoring detection from a
huge number of revisions in software repositories.

6. Conclusion and Future Work
We investigated actual clone refactorings performed in three
OSS projects. In this study, we identified the applied refac-
toring patterns for a clone refactoring. Also, we measured
the characteristics of refactored clone pairs. Our suggestions
according to the result of the investigation are as follows:

• Tool to support for the applying RMMO refactoring pat-
tern to clone pairs is needed. The tool should support the
refactoring of clone pairs spread into not only in the same
class but also the same package. To our knowledge, such
a tool has not yet be developed.

• Tool to support clone refactoring applied into clone pairs
that include different token sequences is needed.

• Tool to support refactoring for clone pairs consisting of
different size of token sequences is needed.

As future work, we plan to investigate all of the values of
usim of pairs of code fragments in the old version and check
that appropriate value of usim to identify code clones. Next,
we would like to apply our investigation method to more
OSS projects and industrial software for the generalization
of the result of the investigation. Finally, we would like to
develop tools for clone refactoring according to the result of
investigation.

Acknowledgments
We thank Mr. Raula Gaikovina Kula of Nara Institute of Sci-
ence and Technology for proofreading this paper. This work



Same ClassSame PackageOthers
Figure 8. Class distances between clone pairs using Re-
place Method with Method Object

is partially supported by JSPS, Grant-in-Aid for Scientific
Research (A) (21240002).

References
[1] B. S. Baker. On finding duplication and near-duplication in

large software systems. In Proc. of WCRE, pages 86–95, July
1995.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and evaluation of clone detection tools. IEEE
Trans. Softw. Eng., 33(9):577–591, 2007.

[3] E. Burd and J. Bailey. Evaluating clone detection tools for use
during preventative maintenance. In Proc. of SCAM, pages
36–, 2002.

[4] M. Fowler. Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[5] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based ap-
proach to identifying refactoring opportunities for merging
code clones in a Java software system. Journal of Software
Maintenance and Evolution: Research and Practice, 20:435–
461, 2008.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:
Scalable and accurate tree-based detection of code clones. In
Proc. of ICSE, pages 96–105, 2007.

[7] N. Juillerat and B. Hirsbrunner. Toward an implementation
of the form template method refactoring. In Proc. of SCAM,
pages 81–90, 2007.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(7):654–670,
2002.

[9] M. Kim and D. Notkin. Using a clone genealogy extractor
for understanding and supporting evolution of code clones. In
Proc. of MSR, pages 1–5, 2005.

[10] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An em-
pirical study of code clone genealogies. In Proc. of SIG-
SOFT/FSE, pages 187–196, 2005.

[11] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-finder:
a refactoring reconstruction tool based on logic query tem-
plates. In Proc. of SIGSOFT/FSE, pages 371–372, 2010.

[12] V. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10:707–
710, 1966.

[13] H. Li and S. Thompson. Incremental clone detection and
elimination for erlang programs. In Proc. of FASE, pages 356–
370, 2011.

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Trans. Softw. Eng., 32(3):176–192, 2006.

[15] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proc. of ICSM, pages 244–253, 1996.

[16] T. Mende, R. Koschke, and F. Beckwermert. An evaluda-
tion of code similarity identification for the grow-and-prune
model. Journal of Software Maintenance and Evolution: Re-
search and Practice, 21(2):143–169, 2009.

[17] E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin. Gathering
refactoring data: a comparison of four methods. In Proc. of
WRT, pages 7:1–7:5, 2008.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,
and how we know it. IEEE Trans. Softw. Eng., 38:5–18, 2012.
ISSN 0098-5589.

[19] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-
based reconstruction of complex refactorings. In Proc. of
ICSM, pages 1–10, 2010.

[20] P. Weissgerber and S. Diehl. Identifying refactorings from
source-code changes. In Proc. of ASE, pages 231–240, 2006.

[21] X. Zhenchang and S. Eleni. Refactoring detection based on
umldiff change-facts queries. In Proc. of WCRE, pages 263–
274, 2006.


