
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

A Clone Detection Approach for a Collection

of Similar Large-Scale Software Products

Eunjong CHOI†, Norihiro YOSHIDA††, Yoshiki HIGO†, and Katsuro INOUE†

† Graduate School of Information Science and Technology, Osaka University

Yamadaoka 1–5, Suita-shi, Osaka, 565–0871 Japan

†† Graduate School of Information Science, Nara Institute of Science and Technology

Takayama-cho 8916–5, Ikoma-shi, Nara, 630–0192 Japan

E-mail: †{ejchoi,higo,inoue}@ist.osaka-u.ac.jp, ††yoshida@is.naist.jp

Abstract Reusing existing software with or without modifications is frequently occurred to develop new large

software at low cost with high quality. So far, many techniques and tools have been proposed for detecting reused

pieces in source code. However, existing tools have low scalability; they spend lots of memory and time to detect

reused pieces on large-scale software. In this paper, we proposed an approach for detecting reused files as well as

reused code fragments, code clones for a collection of similar large-scale software products. For the case study, we

applied our approach to three OSS projects and compared code clone detection time between only using CCFinder

and our approach. We found that our approach takes shorter time to detect code clones.

Key words hasing, code clone, open source system

1. Introduction

Software reuse, using existing software with or without

modifications during the construction of a new software sys-

tem, is frequently occurred to develop large-scale software at

low cost with high quality. However, in some ways, these

reused pieces occur annoying problems because if a defect

is found in a reused piece, all of its same pieces should be

checked for the same defect. This task takes a lot of time

and effort, especially in large-scale software.

Detecting and managing reused pieces in software is im-

portant for not only detecting bugs but also understand-

ing code quality, plagiarism detection, copyright infringe-

ment investigation. Many tools have been proposed for de-

tecting reused pieces in software at code fragment level, so

called code clones [5], [6], [7]. However, existing clone detec-

tion tools have a low scalability, these tools take numerous

times and memory to detect code clones on large-scale of soft-

ware. To overcome this limitation, several tools have been

proposed and implemented but their scalability is still not

high.

In case of detecting reused files, our previous study sug-

gested an approach for detecting reused file without any (or

just slight) modifications in comments or headers on large-

scale software [12]. We used hash computation of the tok-

enized files and implemented a tool named FCFinder (File

Clone Finder). In case study, we detected reused files in the

FreeBSD Ports Collection in 17.16 hours with a single work-

station and investigated characteristics of them. However,

the goal of this study is not detecting code clones or reused

files but investigating characteristics of sets of reused files.

This paper suggests an approach for detecting code clones

for a collection of similar large-scale software products. Our

approach is similar to previous study; We also compute hash

values of files to detect reused files. However, this study is

different from the previous study on following two aspects

(1) the outputs of our approach are not only reused code

fragments, code clones but also reused file. (2) we only de-

tected sets of files that are reused in other collections without

modifications.

To detect code clones, we use CCFinder which detects code

clones on token-base [7]. As case study, we compare clone

detection time between using our proposed approaches and

only using CCFinder in three Open Source Software (OSS)

projects. As a result of the case study, we found that our

approach is much faster than only using CCFinder to detect

code clones on large-scale software.

The rest of this paper is organized as follows. Section

2. explains the background of this study, definition of code

clone and its related terms, and CCFinder, a token-based code

clone detection tool. Section 3. explains our approach. Sec-

tion 4. describes the case study and its results. Section 5.

explains related work. Section 6. summarizes this paper and

discusses future work.

— 1 —



2. Background

This section explains definition of code clone and its re-

lated terms, CCFinder, a token-based code clone detection

tool, to give a clear understanding of this study.

2. 1 Code Clone

A code clone is a code fragment that has lexically, syntacti-

cally, or semantically similar code fragments in source code.

Code clones are created because a programmer sometimes

intentionally reuses existing code when she develops a new

hardware drivers, or new platforms to improve the maintain-

ability of source code. Meanwhile, she unintentionally cre-

ates code clones due to programming idioms or algorithmic

idioms [8]. Many code clones are contained in software sys-

tems. In large-scale software, 13 - 20 percent of code clones

are contained [1].

Code clones are categorized following types base on the

similarity of text [2]:

Type 1: Identical code fragments except for variations in

whitespace, layout and comments.

Type 2: Syntactically identical fragments except for vari-

ations in identifiers, literals, types, whitespace, layout and

comments.

Type 3: Copied fragments with further modifications such

as changed, added or removed statements, in addition to

variations in identifiers, literals, types, whitespace, layout

and comments.

We call a pair of code cones as a Clone Pair and a set of

code clones that are identical or similar to each other as a

Clone Set.

2. 2 CCFinder

Many studies suggested code clone detection technics

and its implemented tool [4], [5], [6], [7], [10]. Between them,

token-based techniques have high the recall and scalabil-

ity [2], [9]. One of the famous token-based code clone de-

tection tools is CCFinder which is developed by Kamiya et

al [7]. It takes a source files as an input and outputs clone

pairs information. It can report Type 1 and Type 2 clones

in several languages (e.g. C, C++, Java, COBOL).

The process of CCFinder consists of following four steps:

（ 1） Lexical Analysis. Each line of source files is di-

vided into tokens corresponding to a lexical rule of the pro-

gramming language. The tokens of all source files are con-

catenated into a single token sequence, so that finding clones

in multiple files is performed in the same way as single file

analysis. At this step, the white spaces (including “\n” and

“\t” and comments) between tokens are removed from the

token sequence, but those characters are sent to the format-

ting step to reconstruct the original source file.

（ 2） Transformation. The token sequence is trans-

formed, (i.e., tokens are added, removed, or changed based

on the transformation rules) and then, each identifier related

to types, variables, and constants is replaced with a special

token. This replacement makes code portions with different

variable names to become clone pairs. At the same time, the

mapping information from the transformed token sequence

into the original token sequences is stored for the formatting

step which comes later.

（ 3） Match Detection. From all the substrings on the

transformed token sequence, equivalent pairs are detected as

clone pairs. A suffix-tree matching algorithm [3] is used to

compute matching, in which the clone location information

is represented as a tree with sharing nodes for leading iden-

tical subsequences and the clone detection is performed by

searching the leading nodes on the tree.

（ 4） Formatting. Each location of clone pair is con-

verted into line numbers on the original source files.

Moreover, if the total size of source files is too large to build

a single suffix-tree on primary store, it provides a ‘divide and

conquer’ approach. The input source files are divided into

disjoint subsets. For each pair of the subsets, a sub suffix-

tree is built to extract clone-pairs. The total collection of

clone-pairs is the final output. However, it still takes nu-

merous time to detect code clones on large-scale software,

especially in building and matching suffix-tree.

3. Proposed Approach

The overview of this approach is described in Figure 1. At

first, hash values of input files are created. Then two cate-

gories, identical file sets (i.e.. sets of files that are identical

each other), and target files are created. Then, code clones

on target files are detected. Finally, overall clone sets are cre-

ated by matching detected clone sets and identical file sets.

This approach takes a source files as an input and outputs

overall clone sets and identical file sets. We will explain each

step with an example of input files Fi = {F1, F2, F3, · · · , Fn}.
（ 1） Calculate MD5 Hash. This step creates input

files’ MD5 hash values [11]. We select MD5 as a hash func-

tion because it does not require any large substitution tables

can be coded quite compactly. Let us assume that as a re-

sult of input files F’s MD5 hash computations we obtain a

set of hash values H = {Ha, Ha, Hb, · · · , Hk} (k <= n). This

means that MD5 hash values of files F1, F2 are the same.

Meanwhile, file F3 has unique MD5 hash value.

（ 2） Formatting. In this step, a hash table is created

with calculated MD5 hash values as keys and its correspond-

ing sets of file as values. If files have same MD5 hash value,

they are added to the same value as a set. For example, files

F1, F2 have Ha as a MD5 hash value, they are added as val-

ues in hash table whose hash key is Ha. Meanwhile, file F3

— 2 —



Source files (1) Calculate MD5 Hash Hashed files (2) Create Each Set Target files
Identical file sets

(3) Detect Code Clones Clone sets (4) Match Clone Information All clone sets

Figure 1 An overview of our research

path is added as a value in a hash table whose hash key is

Hb.

（ 3） Create Each Set. This step creates target files T

and identical file sets SI based on the information on a hash

table. At first, a number of each MD5 hash value in hash

table is checked; If the number of MD5 hash value is more

than two, their corresponding key in the hash table is added

to target files T. Meanwhile, if the number of value is one,

its corresponding key of the hash table is added to identical

file sets SI. In addition, the first file of each identical file set

is added to target files T . This added file will be used in the

later step.

In example, first, files F1, F2 are added to identical file sets

SI and file F3 is added to target files T. In this situation,

each set contains following files;

• Identical file set SI = {F1, F2, · · ·}
• Target files T = {F3, · · ·}

Next, F1,the first file of each identical file set, is added to

target files. Therefore, final sets contains following files:

• Identical file set SI = {F1, F2, · · ·}
• Target files T = {F3, F1, · · ·}
（ 4） Detect Code Clones. A clone set on target files T

are detected in this step. To detect code clones, we selected

CCFinder as a code clone detection tool because it detects

code clones with high speed. Moreover, it has high accuracy

for detecting code clones. In example, let us assume that a

clone set C = {cα, cβ , · · ·} are detected from target files T =

{F3, F1, · · ·}.
（ 5） Match Cone Information. This step creates all

clone sets by matching detected clone sets on added file that

is the first file of each identical file set and identical file set SI.

assure that that because the files in the same set of identical

files are exact each other, the location of clone of each file

should be located in the same location. Therefore, if code

clone are detected on the first file of each identical file set, we

added the code fragments in other files of the same identical

file set to the same clone set.

In example, code clone cβ is detected on file F1 in previous

step. Because files F1, F2 are identical each other, we sure

that code clone is also located in file F2 in the same location

as code clone cβ in file F1. Let us assume that code clones

in the file F2 is cγ , then, contains code clone cβ , Therefore,

code clone cγ is added to the same clone set where code clone

cβ is contained. All clone sets C consits of {cα, cβ , cγ · · ·}

4. Case Study

In case study, we detected code clone on three large-scale

open source software(OSS) projects using our approach and

only using CCFinder. We used 30 tokens as the minimum

length of token sequence of a code clone to CCFinder in both

approaches. The goal of this case study is to compare code

clone detection time between our approach and only using

CCFinder.

This case study was performed on a 64 bits Windows 7

Professional workstation equipped with 2 processor, 2.67GHz

and 2.66GHx CPUs and 24 gigabytes of main memory.

4. 1 Target System

A summary about the target systems is described in Table

1. We selected three OSS projects, Apache Ant（1）, Linux ker-

nel（2）and GT-B5510 model（3）. Apache Ant is a Java library

and command-line tool whose mission is to drive processes

described in build files as targets and extension points de-

pendent upon each other. We selected only java files in the

src/main directory from 16 sequence versions (1.5.2-1.8.4).

Linux kernel is a clone of the operating system Unix, writ-

ten from scratch by Linus Torvalds with assistance from a

loosely-knit team of hackers across the Net. It originally de-

veloped first for 32-bit x86-based PCs (386 or higher), now,

it supports multiple architectures(e.g. AMD x86-64, IBM

S/390).We selected only c files in the fs directory from 12

sequence versions (2.6.0-2.6.10). GT-B5510 model is a Sam-

sung mobile phone, Samsung Galaxy Y Pro. We selected

three versions of this model for different countries, Euro,

Brazil and China. We selected only c files in the kernel di-

rectory.

4. 2 Result and Discussion

Target files and identical file sets are created after “Creat-

（1）：http://ant.apache.org/

（2）：http://www.kernel.org/

（3）：http://opensource.samsung.com/index.jsp

— 3 —



Table 1 Target Systems

Project Name Language #Files Lines Of Code

Apache ant Java 11,393 2,971,948

Linux kernel C 10,673 6,191,838

GT-B5510 model C 86,986 41,982,594

ing Each Set” Step. The number of created target files and

identical file sets are shown in Table 2. The colum Identi-

cal Files represents the information of detected identical file

sets. Apach ant contains 3,083 sets of identical files. Overall

number of identical files is 8,667 and they are 76.1 percent of

input source files. Linux kernel contains 1,967 sets of identi-

cal files. Overall number of identical files is 9,712 and they

are 91.0 percent of input source files. GT-B5510 model con-

tains 28,181 sets of identical files. Overall number of identical

files is 9,712 and they are 99.8 percent of input source files.

Between them, GT-B5510 model contains the most identi-

cal files. We assume that this is because many of files are

reused in GT-B5510 model and only specific functions for

each country are implemented.

The number of detected clone sets by our approach are

also shown in Table 3. 10,692, 21,343 and 148,761 clone sets

were detected from Apache ant, Linex kernel, and GT-B5510

model, respectively as a result of our approach. The number

of clone sets by only using CCFinder are also shown in Table

3.

Henceforth, We will discuss our results in terms of detec-

tion time and accuracy of results.

（ 1） Detection Time The code clone detection time of

only using CCFinder and our approach is described in Table

3. As shown in Table 3, in Apache ant, detection time of

CCFinder is 241 seconds. Meanwhile, detection time of our

approach was 89 seconds. Moreover, in Linux kernel and GT-

B5510 model, the detection time of CCFinder was 1,119 and

113,445 seconds, respectively. Meanwhile, the detection time

of our approach was 168 and 113,445 seconds, respectively.

In Linux kernel and GT-B5510 model, our approach de-

tects code clones ten time faster than only using CCFinder.

We believe that our approach detects code clones faster, if

the scale of target system is more large.

（ 2） Accuracy of Results To determine accuracy of

the results derived by our approach, we arbitrary selected 30

clone sets that are detected by our approach from each OSS

Table 2 Target files and outputs for each OSS project

Project Name
Target Files Identical Files

#Files Lines of Code #Files # Sets

Apache ant 3,083 1,729,505 8,667 3,083

Linux kernel 2,928 2,383,758 9,712 1,967

GT-B5510 model 28,327 14,152,711 86,840 28,181

project project. Then, we use the output of CCFinder from

the same projects. We found that all selected clone sets are

also detected by only using CCFinder.

We also selected 30 identical file sets from each OSS

project. We manually checked all of them and found that

files in the same identical file sets are really identical each

other.

5. Related Work

Many technique and its implemented tools have been pro-

posed for detecting code clones on large-scale software.

Baker proposed a tool named Dup to detect text-based and

line based code clones [1]. Dup ignores comments, indenta-

tion and white space. It detects exactly same clone pairs

or parameterized match code fragments (i.e., code fragments

that are comprised of neighboring sequences of source lines

and variable names or structures member in one code frag-

ment are consistently changed into other code fragment). sf

Dup found 20 percent matches of lenght at least 30 lines on

the Window System subsystem (SS) which has almos 1.1M

lines.. The cpu time of SS was 7.9 minutes on the SS with

one 40MHz R3000 processor (primary I and D cache 64KB,

secondary 1MB, main 256MB, SGI IRIX 4.1)

CP-Miner, proposed by Li et al. detects token-based code

clones based on frequent subsequent mining which is an

association analysis technique to discover frequent subse-

quences in a collection of sequences [10]. Enhanced algo-

rithm, CloSpan [13] allows CP-Miner to tolerate one to two

statement insertions, deletions, or modifications in copy-

pasted code, ignoring an arbitrarily long different code seg-

ment that is unlikely to be copypasted code. CP-Miner found

190,000 and 150,000 copied code clones that account for 20-

22 percent of the source code in Linux and FreeBSD within

20 minutes.

Hummel et al. proposed index-based code clone detection

approach [5]. It detects Type 1 and Type 2 clones by using

MD5 hash value to calculate hash values from normalized

statements for each input file and retrieving code clones from

the databases where the hash values are stored. In the case

study, 100 machines performed clone detection in 73 MLOC

of open source code in 36 minutes.

Table 3 Clone sets and detection time(seconds) from CCFinder

and our approach.

Project Name
CCFinder Our approach

#Clone Sets Time #Clone Sets Time

Apache ant 11,169 241 10,692 89

Linux kernel 24,235 1,119 21,343 168

GT-B5510 model 325,274 113,445 148,761 11,902

— 4 —



6. Summary and Future Work

In this paper, we suggest an approach for detecting code

clones on for a collection of similar large-scale software prod-

ucts. Our approach uses MD5 hash to find identical file sets

and CCFinder to detect code clones. The input of this ap-

proach is source files and outputs are overall clone sets and

identical file sets. In case study, we applied our approach to

three OSS projects and compared code clone detection time

between only using CCFinder and our approach. We found

that our approach takes shorter time to detect code clones.

There are a number of areas in which we would like to

expand upon this study. At first, our current approach suc-

cessfully detected reused identical file sets, but, it cannot

categorize files might be reused with slightly modification

(i.e., change identifier name or comments) as identical files.

Therefore, we plan to improve our approach for detecting

reused files with slightly modification as identical file sets.

Although we applied our approach to three OSS projects

and we found that our approach faster than CCFinder to de-

tect code clones in large-scale software. The result might be

changed to other software projects. Therefore, we plant to

apply our approach to various size of software in different

domains.

Finally, our approach uses CCFinder to detect code clones

and we compared our approach with only CCFinder in the

case study in this paper. Using other code cloning detection

tools might be efficient than CCFinder in detecting large-scale

software and the result of case study also might be changed if

we compare other tools. We believe that CCFinder is appro-

priate for detecting code clones on large-scale software, but

we consider introducing other code clones detection tools and

compare results from them in the case study.

7. Acknowledgments

This work is partially supported by JSPS, Grant-in-Aid

for Scientific Research (A) (21240002).

References

[1] B. S. Baker. On finding duplication and near-duplication

in large software systems. In Proc. of WCRE, pages 86–95,

July 1995.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.

Comparison and evaluation of clone detection tools. IEEE

Trans. Softw. Eng., 33(9):577–591, 2007.

[3] D. Gusfield. Algorithms on strings, trees, and sequences:

computer science and computational biology. Cambridge

University Press, 1997.

[4] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto. Incremen-

tal code clone detection: A PDG-based approach. In Proc.

of WCRE, pages 3–12, October 2011.

[5] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt.

Index-based code clone detection: incremental, distributed,

scalable. In Proc. of ICSM, pages 1–9, September 2010.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:

Scalable and accurate tree-based detection of code clones.

In Proc. of ICSE, pages 96–105, May 2007.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A

multilinguistic token-based code clone detection system

for large scale source code. IEEE Trans. Softw. Eng.,

28(7):654–670, 2002.

[8] C. J. Kapser and M. W. Godfrey. “cloning considered harm-

ful” considered harmful: patterns of cloning in software.

Empir Software Eng, 13(6):645–692, 2008.

[9] R. Koschke, R. Falke, and P. Frenzel. Clone detection us-

ing abstract syntax suffix trees. In Proc. of WCRE, pages

253–262, October 2006.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-

ing copy-paste and related bugs in large-scale software code.

IEEE Trans. Softw. Eng., 32(3):176–192, 2006.

[11] R. L. Rivest. The MD5 message digest algorithm. Internet

RFC 1321, April 1992.

[12] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue. Find-

ing file clones in freebsd ports collection. In Proc. of MSR,

pages 102–105, May 2010.

[13] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed

Sequential Patterns in Large Datasets. In Proc. SIAM Int’l

Conf. Data Mining, pages 166–177, May 2003.

— 5 —


