METHOD DIFFERENTIATOR USING
SLICE-BASED COHESION METRICS

Akira Goto (Osaka University)

Norihiro Yoshida (Nara Institute of Science and Technology)
Masakazu loka (Osaka University)

Eunjong Choi (Osaka University)

Katsuro Inoue (Osaka University)




Source code differentiation

- Developers need to understand differences
between a pair of methods in Java source code

- When developers refactor a method pair into a module

E | New method

» ‘7 Call statements

- When developers modify a method pair simultaneously
- For enhancement, bug fix

—
]
]

However, manual differentiation is
tedious and error prone.



Example of similar methods

It is hard to understand the differences

between the method pair

public void similarMethodA(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(9);
transform(finalBuffer);
finalBuffer.position(0);
}
finalBuffer.putLong(length << 3);
finalBuffer.position(9);
transform(finalBuffer);

public void similarMethodB(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(9);
transform(finalBuffer.array(),0);

finalBuffer.position(9);
}
finalBuffer.putLong(length << 3);

finalBuffer.position(9);
transform(finalBuffer.array(),0);




Automatic code differentiation

- Textual Diff
- e.g., GNU Diff

- Syntactic Diff

- e.g., Eclipse

- PDG-based Diff [Xue2011]

- Comprehension support for differences in terms of dependency type
- For a pair of duplicated code fragments

[Xue2011] Xue, et al., “CloneDifferentiator: Analyzing clones by differentiation”,
ASE 2011.



Example of similar methods

Syntactic differences are insufficient to support
refactoring, enhancement and bug fix.

public void similarMethodA(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(9);
transform(finalBuffer);
finalBuffer.position(0);
}
finalBuffer.putLong(length << 3);
finalBuffer.position(9);
transform(finalBuffer);

public void similarMethodB(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);

}

finalBuffer.position(0);
transform(finalBuffer.array(),0);
finalBuffer.position(9);

}

finalBuffer.putLong(length << 3);

finalBuffer.position(9);
transform(finalBuffer.array(),0);




Example of similar methods

Syntactic differences are insufficient to support
refactoring, enhancement and bug fix.

public void similarMethodA(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(9);
transform(finalBuffer);
finalBuffer.position(0);
}
finalBuffer.putLong(length << 3);
finalBuffer.position(9);
transform(finalBuffer);

public void similarMethodB(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(0);
transform(finalBuffer.array(),0);

finalBuffer.position(9);
}
finalBuffer.putLong(length << 3);

finalBuffer.position(9);
transform(finalBuffer.array(),0);

} Which part should be merged into one method?




Example of similar methods

Syntactic differences are insufficient to support
refactoring, enhancement and bug fix.

public void similarMethodA(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(9);
transform(finalBuffer);
finalBuffer.position(0);
}
finalBuffer.putLong(length << 3);
finalBuffer.position(9);
transform(finalBuffer);

public void similarMethodB(){

if(finalBuffer.remaining() < 8){
while(finalBuffer.remaining() > 0){
finalBuffer.put((byte)o);
}
finalBuffer.position(0);
transform(finalBuffer.array(),0);

finalBuffer.position(9);
}
finalBuffer.putLong(length << 3);

finalBuffer.position(9);
transform(finalBuffer.array(),0);

Which part should be modified simultaneously for enhancement and bug fix?




Motivation

Developers often try to understand which part of a
source file corresponds to each functionality.

During refactoring

A code fragment that implements a single functionality
Is a good candidate for code extraction.

During enhancement and bug fix

Simultaneous editing should be considered for each
code fragment that implements a single functionality.

The existing differentiators do not take into account
functionalities implemented in a source file.



Research overview

We have developed a method differentiator
MEDICO.

The differentiation is based on slice-based
cohesion metrics.

In order to identify a set of code fragments, each of
which implements a single functionality

Cohesion metric is generally defined as

a measure which expresses, in order for each of the
constituent parts to realize a specific feature, the extent
to which they work together. [Stevens1974]

[4] W. P. Stevens, G. J. Myers, and L. L. Constatine, “Structured design,” IBM Systems Journal, 1974.



Cohesion metrics for code fragment

- Most of the existing cohesion metrics are aimed at
calculating the degree of the cohesion of a class/method.

- However, cohesion metrics for calculating the cohesion of

a code fragment are needed.

- in order to identify a code fragment that includes a set of cohesive
statements and implements a single functionality

- We modified slice-based cohesion [Weiser1981] to
calculate the cohesion of a code fragment.
- Calculate slice-based metrics after the code fragment is extracted
- Tightness, Coverage, Overlap - FTightness, FCoverage, FOverlap

[Weiser1981] Weiser: Program slicing, Proc. of ICSE1981



L
Steps of the differentiation by MEDICO

Input: A pair of Java methods

AST-based Differencing

¥

Enumerating all possible differences

$

Ranking of differences using cohesion metrics

e g B




