
98

Studying Reuse of Out-dated Third-party Code

in Open Source Projects

Pei Xia Makoto Matsushita Norihiro Yoshida Katsuro Inoue

Using existing source code as third-party code to build new software systems becomes very popular in these

days. However, many existing code is keeping on updating during their life circle. Different versions of

code, even out-dated, is reused by other software and spreading all over the world. This paper presents an

empirical study on the reuse of out-dated third-party source code of several famous open source libraries.

Given target source code, using repository mining techniques and file clone detection techniques, we iden-

tified the different versions of code in other user projects, and discovered the vulnerability information of

the out-dated versions. We also investigated how user projects manage their code. The result shows that a

large proportion of open source projects are reusing out-dated third-party code, and many of them are not

well managed.

1 Introduction

Nowadays, using existing software to build new

software systems becomes very popular. More

and more high quality software are becoming open

source. Even software in the industry increasingly

reuse open source systems due to their reliability

and cost benefits. [2]

Integrating third-party code is an important ap-

proach in code reuse. Third-party code is a set of

reusable software components developed to be ei-

ther freely distributed or sold by an entity other

than the original vendor of the development plat-

form, and they are wildly reused by developers all

over the world [10]. However, while enjoying the

benefits, developers also have to concern about the

risks brought by reusing third-party code. If the

オープンソースプロジェクトを対象としたレガシーコード
の保守漏れに関する調査.

夏 沛, 松下 誠, 井上 克郎, 大阪大学大学院情報科学
研究科コンピュータサイエンス専攻, Department of

Computer Science, Graduate School of Information

Science and Technology, Osaka University.

吉田 則裕, 奈良先端科学技術大学院大学情報科学研究
科, Graduate School of Information Science, Nara

Institute of Science and Technology.

コンピュータソフトウェア,Vol.30,No.4 (2013),pp.98–104.

[研究論文 (レター)] 2013 年 3 月 27 日受付.

reused code contain critical vulnerabilities, it will

bring damage to the software system.

Out-dated third-party code in this paper rep-

resents that code of older versions containing

known vulnerabilities such as software vulnerabili-

ties which should be fixed by upgrading them to a

newer version. As far as we know, currently there

is few research focus on the out-dated third-party

code reuse and management behavior. Our work

is to do an empirical study in this area and collect

quantitative and qualitative data to answer follow-

ing research questions:

RQ1 What is the proportion of out-dated third-

party code reused in the open source projects?

RQ2 What are the potential vulnerabilities

caused by such reuse?

RQ3 How do developers manage those out-

dated third-party code?

Answering these questions would be helpful in

understanding the open source software, evaluat-

ing the quality of the software which reuses reused

third-party code, and predicting some of the poten-

tial vulnerabilities in open source software. Also it

would make developers aware of the importance of

third-part code management.

Based on the code clone detection, repository

mining techniques, and open source code search

engines, here we propose an approach to detect-

Vol. 30 No. 4 Nov. 2013 99

Fig. 1 Study Approach Overview

ing out-dated third-party code reuse for certain li-

braries in open source software.

2 Study Approach

Fig.1 shows the proposed approach of this study,

composed of Step 1 to 4.

2. 1 Step 1: Vulnerabilities Information

Collection

To explore the potential vulnerabilities of given

third-party project, we did not analyze the project

directly. Instead, the vulnerabilities information

is manually collected from those two sources: the

National V ulnerability Database [5] (NVD) and

project homepage announcement.

NVD is the U.S. government repository for the

vulnerability management data. It contains fa-

mous resources such as Common V ulnerabilities

and Exposures and CERT V ulnerability Notes

Database. Searching with keywords such as project

name or filename, NVD returns a list of vul-

nerabilities information including vulnerability id,

summary, published date, and CVSS Severity

score. For example, one result of using keyword

“libpng”†1:

†1 National Vulnerability Database (CVE-2011-

3464), http://web.nvd.nist.gov/view/vuln/detail?

vulnId=CVE-2011-3464

CVE-2011-3464 (07/22/2012): Off-by-one

error in the png formatted warning function in

pngerror.c in libpng 1.5.4 through 1.5.7 might

allow remote attackers to cause a denial of ser-

vice (application crash) and possibly execute

arbitrary code via unspecified.

From project homepage announcement, we can

also get some vulnerabilities information. Usually,

when some critical vulnerabilities are found in some

versions of an open source project, there would be

an announcement on the project’s homepage. Tak-

ing the zlib homepage as example†2, we can find

announcement such as:

Version 1.2.3 (July 2005) eliminates poten-

tial security vulnerabilities in zlib 1.2.1 and

1.2.2, so all users of those versions should up-

grade immediately.

The vulnerabilities information from these two

sources are considered to be reliable.

2. 2 Step 2: User Projects Searching

Nowadays, open source software hosting facili-

ties are becoming popular. Millions of open source

projects are hosted on the Internet. Google Code

†2 zlib Home Site, http://zlib.net/

100 コンピュータソフトウェア

and GitHub are some of the most popular open

source hosting sites. From such open source soft-

ware hosting facilities, we find a list of projects that

reused the subject third-party code. In this step,

we use a code searching system OpenCCFinder

(Open Code Clone Finder) helping us to do this [4]

[7]. OpenCCFinder is a system to explore code frag-

ments from open source repositories. This system

takes a query code fragment as input, and returns

the files containing code clones with the query code,

along with information including project repository

URL, code similarity and so on.

In this study, we select several source files from

the subject third-party projects and give them to

OpenCCFinder , and merge the search results to-

gether. Then we get a list of open source projects

reusing the code of the subject third-party project.

There are a number of experimental personal

projects also hosted on the open source project

hosting facilities, which are not well managed or

abandoned, so we manually filter out the projects

considered not appropriate. The user projects

in this study are formally published and actively

maintained by stable organizations.

2. 3 Step 3: Version Identification

The idea of identify the version number is to com-

pare the content of each file in the user projects re-

turned by OpenCCFinder with those of third-party

projects. If each file of a certain version (e.g. v1.0)

of a third-party code exactly matches with the files

in a user project returned by OpenCCFinder, this

project is probably reusing v1.0 of the third-party

code.

However, when a user project tries to reuse source

code from third-party project, it is possible to mod-

ify the original code. In this study, we ignore trivial

modifications between source code such as adding

or removing comments, blank lines, line breakers or

space characters. We also ignore the rename refac-

toring, since such modifications would not affect the

potential vulnerabilities in source code. In order to

ignore the effect of these trivial modifications, each

source file is tokenized before the hash values cal-

culation and matching. Fig.2 explains the process

of the hash value calculation.

We check out all the source files of each versions

in history of third-party code from its repository

and calculate the tokenized hash value for each file.

Fig. 2 File Hash Calculation

Also, we check out the latest version of user projects

and calculate the tokenized hash values. By com-

paring those hash values, we are able to identify the

version numbers of the third-party code which are

reused in the user projects precisely. In addition, if

there are some user project files which do not match

any files in third-party code history, we would man-

ually look into the files to confirm whether they are

modified by the user projects.

2. 4 Step 4: Management Information

Collection

At last, we manually investigate how the devel-

opers of the user projects have managed the third-

party code.

Firstly, we check the repository commit message

history to see whether the developers have ever up-

dated the third-party code. Secondly, we check

the “readme.txt” and “changelog.txt” etc. under

the directory of the third-party code to find how

the developers have managed the version informa-

tion of the third-party code. At last, we check

if there are any extra changes that might cause

difficulty of management. For example, some de-

velopers change the package or directory name of

the third-party libraries, or they change some of

the filenames, or they mix the third-party code

with their own code. Such behaviors are consid-

ered harmful for management.

Vol. 30 No. 4 Nov. 2013 101

Table 1 Subjects Third-party Code

Project name zlib libcurl (curl/lib) libpng

Domain data compression file transfer graphics

Project homepage http://www.zlib.net/ http://curl.haxx.se/libcurl/ http://www.libpng.org/

Repository url https://github.com/ https://github.com git://libpng.git.sourceforge.

madler/zlib.git /bagder/curl net/gitroot/libpng/libpng

Earliest version found v0.71 v6.5 v0.71

Release date of the earliest version found April 1995 December 1999 July 1995

Latest Version v1.2.7 v7.28.1 v1.5.13

Latest Release date May 2012 November 2012 September 2012

of version tags 65 134 150

of source files (.c or .h) in latest version 26 222 24

Totle size of source files (.c .h) in latest version 482KB 2.77MB 1.06MB

3 Case Study

3. 1 Subject Third-party Code

Currently we have chosen three subject third-

party code in different domain. These are zlib,

libcurl, and libpng. They are all well-known

and widely reused open source libraries. Table 1

is information of these three subject third-party

projects.

3. 2 Case Study Statistics

Using OpenCCFinder, we have collected 45 user

projects for zlib, 28 user projects for libcurl, and

50 user projects for libpng. The detailed data can

be found in [6]. †3

3. 2. 1 Proportion of Out-dated Third-

party Code

In our study, a number of versions of third-party

libraries even including out-dated unsafe code are

found in the user projects. Only a few projects are

using the latest version libraries. Fig.3 shows the

number of projects that reuse the third-party code

of the different versions. Those libraries without

any known software vulnerabilities are in light gray

columns; the ones with warnings from the third-

party project homepage are in dark gray columns;

and the ones containing software vulnerabilities are

in black columns. We can observe that:

• For zlib, 45 projects in this study reuse 9 dif-

ferent versions of zlib code. 14 projects (31.1%)

are using out-dated zlib code containing poten-

tial vulnerabilities, while 6 projects have up-

graded to the latest version. V1.2.3 seems to

be a stable version, and it is the most reused

†3 All these case studies have been performed be-

tween Nov. 2012 and Jan. 2013.

Fig. 3 Reused Third-party Code Versions

one.

• For libcurl, 28 projects in this study reuse 20

different versions of libcurl code. 24 projects

(85.7%) are reusing out-dated libcurl code.

Only 4 projects are using the newer versions

of code without vulnerabilities and only one

project is using the latest version.

• For libpng, 50 projects in this study reuse 37

different versions of libpng code. 46 projects

(92%) are reusing out-dated libpng code. Only

4 projects are using newer versions of code

without vulnerabilities and 2 projects are using

the latest version.

102 コンピュータソフトウェア

In all the 123 projects, 84 projects (68.3 %) are

reusing the out-dated third-party code. This re-

sult indicates that a large number of open source

software are containing code with vulnerabilities.

3. 2. 2 Third-party Code Management

Information

For the third-party code management informa-

tion:

• In all the 123 projects we studied, 27 projects

(22.0%) have modified the third-party code.

The left 96 projects (78.0%) have reused the

third-party code without any modification.

• In all 123 projects, only 18 projects have man-

aged the third-party code well and update

them frequently; while 83 projects did not up-

date the third-party code at all, and in these

83 projects, 23 projects (18.7%) have no ver-

sion information of the third-party code. Those

projects have imported only the source code of

the third-party libraries but they have not in-

cluded the readme or changelog files. The users

of these user projects cannot know which ver-

sion of the third-party code is reused.

• In all 123 projects, 6 projects have changed the

directory names or mixed the third-party code

with other code, which could lead to difficulty

in third-party code management. In addition,

2 projects have reverted the third-party code

from the new versions to older versions.

3. 3 Case Study Results

Based on the case study statistics, we answer the

raised questions as follows:

RQ1 What is the proportion of out-dated third-

party code reused in the open source projects?

In this study, 68.3% open source projects are

reusing out-dated third-party code.

RQ2 What are the potential vulnerabilities

caused by such reuse?

Software vulnerabilities of the third-party code

could cause potential vulnerabilities in open

source software. The detailed information

could be checked in NVD . In the case of

reusing zlib, libcurl and libpng, according to

the vulnerabilities descriptions, denial of ser-

vice and execute arbitrator code are some ex-

amples of the potential vulnerabilities.

RQ3 How do developers manage those out-

dated third-party code?

Broadly speaking, more than a half of the open

source projects did not manage the third-party

very well. Many of them just “copied&pasted”

third-party code to their project without any

modification. A large number of develop-

ers only imported third-party code into their

projects. After those code started working

properly, they left those code alone and did

not tough them anymore. Some projects lost

the version information of the third-party code

and were not able to manage them anymore.

Also, a few projects changed directory names

or mixed the third-party code with their own

code.

4 Discussion

4. 1 Reason for No Updating

We randomly selected 5 user projects that have

reused out-dated third-party code, and sent emails

to the project owners to ask for reasons that out-

dated third-arty code is not updated. 4 of them

have replied to us.

Owner of “openjpeg” project†4 reusing libpng

said, they have notified users that these code are

from third-party and they do not recommend user

to use these code.

Owner of “mtasa-blue” project†5 reusing libpng

said, they thanked our notification and agreed that

there might be potential vulnerabilities. But they

only update when any problem happens to avoid

introducing new bugs.

Owner of “Angel-engine” project†6 reusing

libpng said, they cannot update because of mul-

tiple dependencies and compatibility issues.

Owner of “PCSX2” project†7 reusing zlib said,

they did not have time to go over everything. They

updated the code immediately after reading our

email and thanked to our contribution.

In our view, what the developers firstly care

about is the functional implements but not the se-

curity vulnerabilities. Thus, the priority of updat-

†4 openjpeg, http://www.openjpeg.org/

†5 mtasa-blue, https://code.google.com/p/mtasa

-blue/

†6 Angel-engine, https://code.google.com/p/angel

-engine/

†7 PCSX2, http://pcsx2.net/

Vol. 30 No. 4 Nov. 2013 103

ing their code would not be high, unless some secu-

rity problems really happen. Moreover, there are

risks for the developers to update the code cur-

rently working, just as mentioned in the case of

“mtasa-blue” project.

4. 2 Threat to Validity

Although many vulnerabilities of third-party li-

braries are reported, the reproducibility depends on

how people reuse code. Taking libpng for example,

many vulnerabilities are reproducible in a condition

of reading a crafted picture. If a user project only

uses this library to read their own pictures, these

vulnerabilities would not be problems. However, if

the software, such as a web browser, using libpng

library to read pictures from external users, they

have to take these vulnerabilities seriously. Any-

way, to use the newer version of the third-party

library would be a safer choice.

Totally 123 projects are studied in this study. To

a certain extent the results from these projects can

reflect how open source projects reuse and manage

third-party code. However, as we know, there are

millions of open source projects in the world. The

candidate projects returned by OpenCCFinder are

only in a very small subset of them. These projects

are from Google Code, GitHub, and search[code].

Since we do not know the detailed searching and

ranking algorithms of those external search engines,

there might be selection bias in this study.

Moreover, currently only the third-party libraries

written in C were studied. It is possible that we will

get different results if we study the libraries in other

language or in the form of binary code.

5 Related Work

There are existing researches on third-party evo-

lution impact analysis. Kotonya et al. [3] proposed

approach of assuming a black box view on inte-

grated components. They also use an architecture

description language and process-based approach

to manage evolving third-party components. Klatt

et al. [1] coped with the trend of integrating open

source components that provide access to source

code and software management information with

further possibilities for the impact and development

reliability analysis. Clarksen [8] et al. and Bohner

[9] used dependency analysis in source code based

impact analysis. However, they mainly focus on the

third-party components themselves. None of them

had done study on how out-dated third-party code

are reused by the user open source projects.

6 Conclusion

In this paper, we have proposed an approach for

studying the reuse of out-dated third-party source

code in open source projects. We have conducted

case studies on zlib, libcurl and libpng libraries

and found that a large proportion of open source

projects are reusing out-dated third-party code,

and many of the reused third-party code are not

well managed.

In the future, we would like to develop a support

tool for third-party code version detection, vulner-

ability prediction and update support.

Acknowledgments This work was supported

by KAKENHI (No.21240002, No.23650015).

References

[1] Klatt, B., Durdik, Z., Koziolek, H., Krogmann,

K., Stammel, J. and Weiss, R.: Identify Impacts of

Evolving Third Party Components on Long-living

Software Systems, in 16th European Conference on

Software Maintenance and Reengineering (CSMR),

2012, pp. 461–464.

[2] Ebart, C.: Open Source Software in Industry,

IEEE Software, Vol. 25, No. 3(2008), pp. 52–53.

[3] Kotonya, G. and Hutchinson, J.: Analysing the

Impact of Change in Cots-based Systems, COTS-

Based Software Systems, 2005, pp. 212–222.

[4] Inoue, K., Sasaki, Y., Xia, P. and Manabe, Y.:

Where Does This Code Come from and Where Does

It Go?—Integrated Code History Tracker for Open

Source Systems, in Proc. 34th ICSE, 2012, pp. 331–

341.

[5] National Vulnerability Database. http://nvd.nist.

gov/.

[6] Xia, P.: An Empirical Study of Out-dated

Third-party Code in Open Source Software, Mas-

ter’s thesis, Graduate School of Information Science

and Technology of Osaka University, 2013.

[7] Xia, P., Manabe, Y., Yoshida, N. and Inoue,

K.: Development of a Code Clone Search Tool for

Open Source Repositories, コンピュータソフトウェア,

Vol. 29, No. 3(2012), pp. 181–187.

[8] Clarkson, J., Simons, C. and Eckert, C.: Pre-

dicting Change Propagation in Complex Design,

Journal of Mechanical Design(Transactions of the

ASME), Vol. 126, No. 5(2004), pp. 788–797.

[9] Bohner, S.: Extending Software Change Impact

Analysis into Cots Components, in Proceedings of

the 27th Annual NASA Goddard Software Engi-

104 コンピュータソフトウェア

neering Workshop, 2002, pp. 175–182.

[10] Haefliger, S., Krogh, G. and Spaeth, S.: Code

Reuse in Open Source Software, Management Sci-

ence, Vol. 54, No. 1(2008), pp. 180–193.

夏 　 沛
2010年年上海交通大学ソフトウェ
ア工学部卒業．2013年大阪大学
大学院情報科学研究科博士前期課
程修了．在学中、コードクローン

分析やコード再利用に関する研究に従事．現在
GREEに勤務．

松下　誠
1993年大阪大学基礎工学部情報
工学科卒業．1998年同大学大学
院博士後期課程修了．同年同大学
基礎工学部情報工学科助手．2002

年大阪大学大学院情報科学研究科コンピュータサ
イエンス専攻助手．2005 年同専攻助教授．2007

年同専攻准教授．博士（工学）．ソフトウェア
開発環境，リポジトリマイニングの研究に従事．
日本ソフトウェア科学会，ACM 各会員．

吉田則裕
2004年九州工業大学情報工学部
知能情報工学科卒業．2009年大
阪大学大学院情報科学研究科博士
後期課程修了．2010年奈良先端

科学技術大学院大学情報科学研究科助教．博士
（情報科学）．コードクローン分析手法やリファ
クタリング支援手法に関する研究に従事．ソフ
トウェア科学会，情報処理学会，電子情報通信
学会，人工知能学会，IEEE，ACM各会員．

井上克郎
1984年大阪大学大学院基礎工学
研究科博士後期課程修了（工学博
士）．同年、大阪大学基礎工学部
情報工学科助手．1984～1986年、

ハワイ大学マノア校コンピュータサイエンス学
科助教授．1991年大阪大学基礎工学部助教授．
1995年同学部教授．2002年大阪大学大学院情報
科学研究科教授．2011年 8月より大阪大学大学
院情報科学研究科研究科長．ソフトウェア工学、
特にコードクローンやコード検索などのプログ
ラム分析や再利用技術の研究に従事．

