
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

LETTER

Towards Logging Optimization for Dynamic Object Process Graph
Construction

Takashi ISHIO †a), Member, Hiroki WAKISAKA †b), Yuki MANABE ††c), Nonmembers,
and Katsuro INOUE †d), Fellow

SUMMARY Logging the execution process of a program is a popular
activity for practical program understanding. However, understanding the
behavior of a program from a complete execution trace is difficult because
a system may generate a substantial number of runtime events. To focus on
a small subset of runtime events, a dynamic object process graph (DOPG)
has been proposed. Although a DOPG can potentially facilitate program
understanding, the logging process has not been adapted for DOPGs. If
a developer is interested in the behavior of a particular object, only the
runtime events related to the object are necessary to construct a DOPG. The
vast majority of runtime events in a complete execution trace are irrelevant
to the interesting object. This paper analyzes actual DOPGs and reports that
a logging tool can be optimized to record only the runtime events related to
a particular object specified by a developer.
key words: dynamic analysis, logging, program understanding, dynamic
object process graph

1. Introduction

Logging the execution process of a program is a popular ac-
tivity for practical program understanding [1]. However, it
is challenging to record and analyze a substantial number
of runtime events. For example, developers are investigat-
ing a web server problem. Developers have to identify the
requests from clients that caused the failures from an execu-
tion trace, even if the vast majority of events in the trace are
related to successful requests.

To focus on a small subset of runtime events which are
related to the behavior of a single object, a dynamic object
process graph (DOPG) can be used [2], [3]. A DOPG is a
partial control-flow graph for a single object, which con-
nects only executed instructions such as branches, method
calls, and field access related to the object. Figure 1 shows
a source code fragment including three control-flow paths.
While its control-flow graph includes 11 nodes, a DOPG for
an object created by the shaded path includes 6 nodes as
shown on the right side of Figure 1. The other nodes are
excluded from the DOPG because they are irrelevant to the
object.

Manuscript received January 1, 2013.
Manuscript revised January 1, 2013.
†Graduate School of Information Science and Technology, Os-

aka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
††Graduate School of Science and Technology, Kumamoto Uni-

versity, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
a) E-mail: ishio@ist.osaka-u.ac.jp
b) E-mail: h-wakisk@ist.osaka-u.ac.jp
c) E-mail: y-manabe@cs.kumamoto-u.ac.jp
d) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.E0.D.1

1: X x = new X();

2: if (c1) {

3: x.f1();

4: x.f2();

5: } else {

6: x.f3();

7: x.f4();

8: if (c2) {

9: x.f5();

10: } else {

11: x.f6();

12: }

START

1: X x = new X();

END

2: if (c1) {

3: x.f1(); 6: x.f3();

4: x.f2();

7: x.f4();

8: if (c2) {

9: x.f5(); 11: x.f6();

START

1: X x = new X();

END

2: if (c1) {

3: x.f1();

4: x.f2();

Fig. 1 A sample source code fragment, its control-flow graph and a
DOPG for an object created from the shaded control-flow path.

A developer is often interested in the behavior of a par-
ticular object in an execution trace. Although a simple log-
ging tool for DOPG may record all the runtime events and
then permit a developer to choose a preferred DOPG, it re-
quires a lot of time and space to record a numerous run-
time events and most events are unlikely to be relevant to
the interesting behavior. Therefore, this paper discusses an
optimization approach for DOPG construction that involves
reducing the number of runtime events to be recorded; it
requires a developer to specify the method calls for the ob-
ject of interest. For example, if a developer is interested in
only the shaded path in Figure 1, the developer can specify
the interesting object that receives a method call at line 3.
A logging tool can discard runtime events for objects that
reach line 6 and ignore events on paths between line 6 and
the end node.

This paper investigates whether actual DOPGs in pro-
grams can be specified by method calls and whether a log-
ging tool can be optimized for a DOPG. Because there is no
empirical data of DOPGs in literature, the paper analyzes
actual DOPGs from a benchmark suite and discusses possi-
ble optimizations.

2. Analysis

A basic idea for optimization is to identify the objects of in-
terest to a developer. This paper evaluates whether a DOPG
can be specified by method calls because a developer will
not know the precise shape of a DOPG of interest before

Copyright c⃝ 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

A1
 1: X x = new X(); 3: x.f1(); 4: x.f2();

A2
 1: X x = new X(); 6: x.f3(); 7: x.f4(); 9: x.f5();

A3
 1: X x = new X(); 6: x.f3(); 7: x.f4(); 11: x.f6();

Fig. 2 DFA accepting method calls on each control-flow path

execution. If a smaller number of method calls are enough
to identify an object for a DOPG, a logging tool can ignore
additional runtime events that are irrelevant to the DOPG.

A metric for interesting object identification is com-
puted for classC as follows. First, DOPGs are extracted
from all instances of classC. Each DOPG is translated into
a deterministic finite automaton (DFA), which includes only
method call events. Figure 2 shows three DFAs correspond-
ing to three DOPGs of control-flow paths in Figure 1. Next,
the shortest unique pathlk is computed for each DFAAk.
A sequence of method calls is unique toAk if only Ak has
the path from the initial state (the other DFAs rejectlk). In
Figure 2, the shortest unique paths are indicated by solid
edges (10 of 11 edges). To identify an object as relevant
to a DOPG, the object must traverse one of the paths. For
example, an object was identified as relevant toA1 when it
received the method calls at line 1 and line 3. Finally, the
metricR(C) for classC is calculated using the following for-
mula:

R(C) =
Predict(C)

Trace(C) + Predict(C)

whereTrace(C) is the total number of edges in the paths
lk (solid edges),Predict(C) is the total number of remain-
ing edges (dashed edges). IfR(C) is high; a logging tool
can ignore more runtime events for irrelevant objects on an
average. In case of Figure 2,R(X) = 1

10+1 = 0.09. This indi-
cates that if three control-flow paths are equally selected, a
logging tool has to record most of the events for the class.

To compute theR(C) metric in general programs, ac-
tual DOPGs are extracted from five applications in the Da-
Capo benchmarks:avrora, batik, lusearch, pmd, and
xalan. The applications include 1015 classes in total. The
analysis excluded 212 classes, which included at least one
object that satisfied one of the following conditions.

• The object has been concurrently accessed by two or
more threads. This is because a DOPG has not been
defined for a multi-threaded program.
• The object has used recursive calls, because realizable

paths of recursive calls cannot be represented by DFA.
• The DFA of the object has more than 50 states. This

condition excludes objects globally used in an applica-
tion since such a class is likely to be a utility class [4].

In Figure 3,R(C) is plotted for each class in a descend-
ing order. 535 classes (66% of the analyzed classes) have
R(C) = 1. Each of these classes is represented by a single
DOPG, i.e., each class is used by a particular sequence of
method call sites. To construct a DOPG for these classes,

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classes

R

Fig. 3 R(C) value of 803 classes in descending order.

a logging tool requires only the first single instance cre-
ated in an execution. A pointer/alias analysis, which iden-
tifies source code locations where an object may be used,
is also effective for minimizing logging. Many classes are
included in this category because a single object is created
for a particular feature (or business logic). For example,
DisplayManager class inbatik manages display proper-
ties of the system.ClockDomain class inavrora manages
a dataset for the whole system.

183 classes (24%) have 0< R(C) < 1. Each of these
classes has more than two DFAs. The averagePredict(C)
are 4 method call sites. A logging tool can ignore sections
of runtime events for these classes as described in Section 1.
In this group, instances are set up in different ways after their
instantiation. For example,StyleSheet andPathParser
classes inbatik are included in this group.

The other 85 classes (10%) haveR(C) = 0 . Their
instances have received the same sequence method calls
except for the final method call. Therefore, optimiza-
tion using method calls are not effective for these classes.
GenericText class inbatik is an example of this category.

3. Conclusion

This paper analyzed actual DOPGs in terms of theR(C) met-
ric. The result shows optimized logging could be imple-
mented for 90% of the classes. Although the DOPGs used
in this paper depend on the DaCapo benchmark, optimized
logging for DOPG construction is a promising approach.

Before a new optimized logging tool can be built, two
issues need to be addressed. First, the result might miss
some DOPGs, because the benchmark does not cover all
possible execution paths in the programs. More test cases
for improving the path coverage are required to evaluate the
effectiveness of the optimization approach more precisely.
Secondly, the new logging tool should incorporate a pointer
analysis (or an alias analysis) to identify method call sites
relevant to interesting objects, because an object can be ma-
nipulated by various methods. Furthermore, the effect of
the precision of the pointer analysis on the performance of a
logging tool should be evaluated.

LETTER
3

Acknowledgement

This work was supported by JSPS KAKENHI Grant Num-
ber 23680001.

References

[1] A. Zeller, Why Programs Fail - A Guide to Systematic Debugging,
the Second Edition, Morgan Kaufmann, 2011.

[2] J. Quante and R. Koschke, “Dynamic object process graphs,” Journal
of Systems and Software, vol.81, pp.481–501, 2008.

[3] J. Quante, “Do dynamic object process graphs support program un-
derstanding?,” Proc. of ICPC, pp.73–82, 2008.

[4] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of
large traces to facilitate the understanding of the behaviour of a soft-
ware system,” Proc. of ICPC, pp.181–190, 2006.

