
Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

HOW WE KNOW
THE PRACTICAL IMPACT OF
CLONE ANALYSIS 	

Norihiro Yoshida (Nara Institute of Science and Technology)
Eunjong Choi (Osaka University)
Yuki Yamanaka (Osaka University)
Katsuro Inoue (Osaka University)

1

Simultaneous editing of clones
in the Python project	

Revision 16150	
 Revision16151	

Function-level clones for fork model variations in UNIX systems.

Check of process ID
was missing	

Conditional Statements were
added to check process ID	

2

Same bug was introduced again	

• At a later date, a function-level clone was added for the

another variation of fork model.

Check of
process ID was
missing again!	

3

This bug was also fixed in
a later revision.	

This is a good motivated example
for clone analysis but … 	

We do not know the practical impact of clone analysis.

Q1: Did the developers use clone analysis tools to perform
the simultaneous editing and the bug fix?

Q2: Can clone analysis tools successfully support the
developers once they use?

4

For the advancement of clone analysis tools,
we should observe how those techniques affect development.	

How should we observe the impact of applying clone
analysis techniques during actual development process?

Our experience of observing
the practical impact of clone analysis	

• Applied Clone Notifier to development process in NEC
•  6 programmers, 120 KLOC written in Java

• Clone Notifier: Clone change notification system for notifying
change of code clones.

• Got regular feedbacks from a project manager

5

Clone Notifier

Daily Report	

Questionnaire	

Feedback	

Project

manager
Our group

Clone Notifier :
A Clone Change Notification System [1]	

6

Developer	

Version Control
System

Commit
source code	

Checkout
source code	

Report clone evolution information
•  E-mail notification
•  Web-based UI	

Clone Notifier

Identification of
Clone Evolution	

[1] Yamanaka, et al.: "Applying Clone Change Notification System into an Industrial
Development Process", ICPC 2013.	

In order to get feedbacks 	

• We asked the project manager whether he found

unintentionally-developed clones using Clone Notifier.
•  If he said yes, we asked him how the development team

should maintain them.
•  Perform refactoring
•  Write a source code comment to denote the existence of the clone
•  leave the clone as it is

7

Clone Notifier

Daily Report	

Feedback	

Project

manager
Our group

Feedbacks from the project manager	

He recognized

• 10 clone sets should be refactored
• Two of the 10 clone sets was merged into a single

function during the 40 days, respectively.
• The other 8 clone sets were designated as refactoring

candidates for next maintenance project.

• 1 clone set should be noted in a source code
comment

8

Findings from Manual Observation	

• All refactoring opportunities were newly-appeared
by adding new code.
à If code clones are newly-appeared by only code

replacement and deletion, they should not be notified.

• All refactoring opportunities were syntactically-
complete.
• E.g., whole parts of loop or branch statements are

involved.
à Syntactically-incomplete clones should not be notified.	

9

Summary & Challenge	

We introduce our experience in observing the
practical impact of clone analysis in industry.

We hope that our work provides a good starting point to
discuss approaches for observation.

Challenge:

• More disciplined approaches for observation
•  Larger-scale observation
• Approaches to sharing observation results among the

clone research community	

10

