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PAPER

Proposing and Evaluating Clone Detection Approaches
with Preprocessing Input Source Files

Eunjong CHOI†a), Nonmember, Norihiro YOSHIDA††, Yoshiki HIGO†, and Katsuro INOUE†, Members

SUMMARY So far, many approaches for detecting code clones have
been proposed based on the different degrees of normalizations (e.g. re-
moval of white spaces, tokenization, and regularization of identifiers). Dif-
ferent degrees of normalizations lead to different granularities of source
code to be detect as code clones. To investigate how the normalizations
impact the code clone detection, this study proposes six approaches for
detecting code clones with preprocessing input source files using differ-
ent degrees of normalizations. More precisely, each normalization is ap-
plied to the input source files and then equivalence class partitioning is
performed to the files in the preprocessing. After that, code clones are
detected from a set of files that are representatives of each equivalence
class using a token-based code clone detection tool named CCFinder. The
proposed approaches can be categorized into two types, approaches with
non-normalization and normalization. The former is the detection of only
identical files without any normalization. Meanwhile, the latter category
is the detection of identical files with different degrees of normalizations
such as removal of all lines containing macros. From the case study, we
observed that our proposed approaches detect code clones faster than the
approach that uses only CCFinder. We also found the approach with non-
normalization is the fastest among the proposed approaches in many cases.
key words: code clone, hash function, source code transformation

1. Introduction

Recently, electronics companies release a new model in reg-
ular and rapid rushed intervals [1]–[3]. To release a new
model within a short time, a lot of companies develop the
model by reusing existing files with or without modifica-
tions. This activity provides the benefit of saving time and
cost as well as avoidance of a high risk for creating new
code logic. Whereas, it generates many identical or simi-
lar files between different versions and models, which make
software systems difficult to be maintained.

A code clone is a code fragment that has identical or
similar code fragments in software systems. It is impor-
tant to detect code clones from different release versions and
models. For example, when a defect is contained in a code
clone in the one version/model, all of its cloned code frag-
ments in the other versions/models should be inspected for
the same bug. This task takes much time and effort, espe-
cially in large-scale software system. Up to date, researchers
have proposed code clone detection approaches that use var-
ious granularities such as line, token, and abstract syntax
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tree and evaluated them to find out the effective one [4], [5].
Different degrees of normalizations (i.e. transformation

of program elements) for detecting code clones have been
also proposed. Each normalization make subtly different
similar source code to be detected as code clones. For in-
stance, code clone detection tool named Dup normalizes the
input source files by tokenizing each file into a single to-
ken sequence [6]. This normalization leads to detect source
code with different white space, layout, and comments as
code clones. A token-based code clone detection tool named
CCFinder normalizes the input source files by replacing
identifiers related to types, variables, and constants by a spe-
cial token and then concatenating all tokens in the same file
into a single token sequence [7]. This normalization leads
to detect source code with different identifiers, white space,
layout, and comments as code clones. Different degrees of
normalization cause different granularities of source code to
be detect as code clones, but only a little has been known
about how the normalizations impact the code clone detec-
tion [8].

To investigate how the normalizations impact the code
clone detection, this study proposes six approaches that de-
tect code clones with preprocessing using different degrees
of normalizations and evaluates them. More precisely, each
normalization is applied to the input source files and then
equivalence class partitioning is performed to the files based
on the MD5 hash function in the preprocessing. The goal
of this preprocessing is to avoid irrelevant code clone de-
tection caused by the identical files. These identical files
increase computational complexity of code clone detection
because code clones are repeatedly detected within them.
The proposed approaches can be categorized into two types,
approaches with non-normalization and normalization. The
former category is the detection of code clones based on the
identical files without any normalization. Meanwhile, the
latter category is the detection of clones based on the differ-
ent degrees of normalizations such as removing macro from
the input source files. After preprocessing, code clones are
detected only on corpus (i.e. a set of files that are repre-
sentatives of each equivalence class) by CCFinder. In case
study, the our proposed approaches as well as an approach
that uses only CCFinder are applied to different versions of
three Open Source Software (OSS) systems. The contribu-
tions of this paper are summarized as follows:

• We found that any proposed approach with preprocess-
ing input source files is faster than the approaches that
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uses only CCFinder.
• We also found that any normalization takes much time

in preprocessing and post-processing and is unable to
reduce total detection time in many cases.
• We have developed proposed and implemented code

clone detection approaches with preprocessing input
source files.

The remainder of this article is organized into the fol-
lowing sections. Section 2 explains background for this
study. Next, Sect. 3 details our proposed code clone de-
tection approaches. Section 4 describes our case study on
different versions of three OSS systems. Section 5 explains
threats to validity. Section 6 reviews related work and fi-
nally, Sect. 7 concludes with possible future work.

2. Background

The purpose of this section is to explain background for this
research. Code clone will be explained in Sect. 2.1 and then
CCFinder, a token-based code clone detection tool will be
described in Sect. 2.2.

2.1 Code Clone

A code clone is a code fragment that has identical or sim-
ilar code fragment(s) to it in the source code [4]. A set of
code clones that are identical each other is a clone set. Code
clones are categorized into the following types based on the
textual similarities between code clones:

Type-1: Identical code fragments except for variations in
white space, layout and comments.

Type-2: Syntactically identical fragments except for vari-
ations in identifiers, literals, types, white space, layout
and comments.

Type-3: Copied fragments with further modifications such
as changed, added or removed statements, in addition
to variations in identifiers, literals, types, white space,
layout and comments.

Detecting code clones is important for not only detect-
ing bugs [9] but also understanding code quality [10], and
plagiarism detection [11], [12].

2.2 Code Clone Detection Tool: CCFinder

CCFinder is a representative token-based code clone detec-
tion tool developed by Kamiya et al. [7]. It has been adopted
in various companies and studies [13]–[15]. It detects Type-
1 and Type-2 code clones. The process of CCFinder is com-
prised of the following four steps [7]:

1. Lexical Analysis: Each line of input source files is di-
vided into tokens corresponding to a lexical rule of the
programming language. The tokens of all the files are
concatenated into a single token sequence, so that find-
ing clones in multiple files is performed in the same
way as single file analysis. At this step, the white

Fig. 1 Example of an output file of CCFinder.

spaces (including ‘\n’ and ‘\t’) and comments between
tokens are removed from the token sequence, but those
characters are sent to the Formatting step to recon-
struct the original input source file.

2. Transformation: The token sequence is transformed,
(i.e., tokens are added, removed, or changed based on
the transformation rules) and then, each identifier re-
lated to types, variables, and constants is replaced with
a special token. This replacement makes source code
with different variable names to become code clone. At
the same time, the mapping information from the trans-
formed token sequence in the original token sequences
is stored in the Formatting step which comes later.

3. Match Detection: From all the substrings on the trans-
formed token sequence, equivalent code fragments are
detected as code clone. A suffix-tree matching algo-
rithm [16] is used to compute matching, in which the
clone location information is represented as a tree with
sharing nodes for leading identical subsequences and
the clone detection is performed by searching the lead-
ing nodes on the tree.

4. Formatting: Each location of code clone is converted
into line numbers of the original input files.

The output of CCFinder consists of three sections: op-
tion, file description, and clone descriptions. Option sec-
tion contains specified programming language, the mini-
mum length of the token sequence of code clones, and the
other options. Users can utilize these options by invoking
CCFinder directly at the command line. File description
section represents information of each input source file such
as file number (i.e. the number assigned to each file), line of
source code, size of tokens. Finally, clone description sec-



CHOI et al.: PROPOSING AND EVALUATING CLONE DETECTION APPROACHES WITH PREPROCESSING INPUT SOURCE FILES
327

Fig. 2 Example of result of each normalization.

Fig. 3 Overview of approach with non-normalization.

tion represents information of code clones in each detected
clone set on the input source files. This section represents
clone information such as file number of detected file, loca-
tion where code clone begins and ends.

Figure 1 shows an example of the output. In this figure,
a code clone range from the 1161th token exists in the 13th
column of line 776 to the 1196th token exists in the 41th
column of line 781 and a code clone range from the 1655th
token exists in the 15th column of line 990 to the 1690th
token exists in the 41th column of line 996 consist a clone
set.

However, it takes much time to detect code clones if the
total size of input files is huge. For instance, it would take
about 40 days to detect code clones on 400 million lines of
input files [17].

3. Proposed Approaches

This study proposes approaches that detect code clones with
different preprocessing and evaluate them. Our proposed ap-
proaches can be categorized into two categories: approach
with non-normalization (see Sect. 3.1) and normalization
(see Sect. 3.2). The former is the detection of code clones
based on identical files without any normalization. Mean-
while, the latter category is the detection of code clones
based on identical files with different degrees of normaliza-
tions. All approaches share following pipeline phases:

i. Preprocessing: It performs equivalence class (i.e. a set
of files that are identical each other based on the hash
values) partition and then generates corpus based on

the MD5 hash values of the input source files. This
study adopted MD5 hash function because its probabil-
ity of an accidental collision is extremely small.

ii. Clone detection: It detects code clones on the cor-
pus using CCFinder. To detect code clones, this study
uses CCFinder because of its high accuracy of detect-
ing code clones.

iii. Post-processing: It generates all clone sets by map-
ping output of CCFinder, the equivalence classes, and
other information if necessary.

In the following sections, the detailed of the approaches
with non-normalization and normalization will be explained
in Sects. 3.1 and 3.2 respectively.

3.1 Approach with Non-normalization

This approach identifies identical files without any nor-
malization. For example, Figs. 2 (a) and 2 (b) are non-
normalized identical files in this approach. After that, code
clones are detected based on the identical files. Figure 3 il-
lustrates an overview of the three phases of this approach.
The detail of each phase is as follows:

a. Preprocessing: For each input source file, MD5 hash
value of the file is calculated. Then, equivalence
class partition is performed based on the hash values.
Namely, any files that have the same MD5 hash values
are partitioned into the same equivalence class. Fig-
ure 4 depicts an example of the partition. In this fig-
ure, characters written on the files represent the hash
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Fig. 4 Example of equivalence class partition and selection.

Fig. 5 Overview of approach with normalization.

values and rounded rectangle with red border repre-
sents each equivalence class. Taking a closer look at
the figure, files a1, a2, and a3 that have the same hash
value ’Occ’ are partitioned into the equivalence class.
Files b1 and b2 that have the same hash value ’be05’ are
also partitioned into the equivalence class. In addition
to this, file c1 and d1 is partitioned into each single-
ton equivalence class. After the partition, a file is se-
lected from each equivalence class as a representative
and then added to the corpus. Figure 4 depicts an ex-
ample of the selection. In this figure, files with asterisk
indicate that they are contained in the corpus. That is,
files a1, b1, c1, and d1 were selected and then contained
in the corpus.

b. Clone Detection: Code clones are detected on the cor-
pus using CCFinder.

c. Post-processing: It is easy to assume that if a code
clone exists at one file in an equivalence class, code
clones also exist in the same place at the other files
in the same equivalence class. Thus, in this phase, all
clone sets is generated based on this assumption. That
is, if a code clone was detected at the representative of
an equivalence class in the clone detection phase, then
code fragments in the same place at the other files in
the same equivalence class are also added into the same
clone set as code clones.

3.2 Approach with Normalization

This category contains approaches with different degrees of
normalizations as follows:

• Identical Except for Comments (IEC) approach
• Identical Except for Macro (IEM) approach
• Identical Except for Macro and Comments (IEMC) ap-

proach
• Identical Source Code (ISC) approach

• Identical Normalized Source Code (INSC) approach

These approaches require additional processes compared to
the approach with non-normalization explained in Sect. 3.1.
That is, they parse the input source files into tokens and then
save token information in the preprocessing phase. Figure 5
illustrates an overview of three common phases of these ap-
proaches. In this figure, additional processes are shown in
the red font. The detail of each phase is as follows:

1. Preprocessing: The input source files are parsed into
tokens and then following information is extracted
from each file:

• Token list: a list of tuples (token number, start col-
umn number, end column number, and line num-
ber) of each token, where

– Token number: the number assigned to each
token.

– Start column number: the column number
where token starts.

– End column number: the column number
where token ends.

– Line number: line number where token ex-
ists.

Then, one of the following normalizations is applied to
each input source file:

• For IEC approach: All lines containing only com-
ments, comments, and white spaces before and af-
ter comments are removed from each input source
files. This normalization transforms Figs. 2 (a)
into 2 (c).
• For IEM approach: All lines containing only

macros are removed from each input source
files. This normalization transforms Figs. 2 (a)
into 2 (d).
• For IEMC approach: All lines containing only
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macros and comments, comments, and white
spaces before and after comments are removed
from each input source files. This normalization
transforms Figs. 2 (a) into 2 (e).
• For ISC approach: Tokens in same file are con-

catenated into a single token sequence. This nor-
malization transforms Figs. 2 (a) into 2 (f).
• For INSC approach: Tokens of identifiers, literals,

types are replaced by a special token, and then to-
kens in same file are concatenated into a single
token sequence. This normalization transforms
Figs. 2 (a) into 2 (g). In this figure, a identifier ‘int’
is replaced by $.

The rest of this phase are the same with preprocessing
in the approach with non-normalization explained in
Sect. 3.1-a. Any files that have the same hash values
are partitioned into the same equivalence class. After
the partition, a file is selected from each equivalence
class as a representative and then added to the corpus.

2. Clone Detection: Code clones are detected on the cor-
pus using CCFinder.

3. Post-processing: As a result of normalizations in the
preprocessing phase, code clones might exist in the dif-
ferent places between the files within the same equiv-
alence class. Therefore, if a code clone was detected
at the representative of an equivalence class, then the
mapping is performed as follows:

a. Start token number (i.e. the first token number of
code clone) and end token number (i.e. the last
token number of code clone) at the representative
are identified.

b. Start column number and line number of the cor-
responding start token number in other files in the
same equivalence class are identified based on the
token list saved in the preprocessing.

c. End column number and line number of the cor-
responding end token number in other files in the
same equivalence class are also identified based
on the token list.

d. Code fragments range from the identified start
column number at the line number to identified
end column number at the line number in other
files in the same equivalence class are added into
the same clone set as code clones

4. Case Study

In the case study, our proposed approaches as well as the
approach that uses only CCFinder are applied to different
versions of three OSS systems. Note that our proposed
approaches detect code clones by excluding identical files
within the same equivalence class, therefore, for case study,
we select different versions of the same software system as
subject systems because they contain many identical files. In
particular, we design our case study to address the following

Table 1 Statistics of subject systems.

Name #Versions #Files Line of code #Tokens
Apache Ant 29 18,708 4,862,102 8,404,790
Linux kernel 12 7,839 5,690,967 12,537,555
Samsung Galaxy 2 29,573 19,920,387 43,924,235

two Research Questions (RQs):

• RQ1. Can proposed approaches detect code clones
faster than an approach that uses only CCFinder?
• RQ2. Which approach is the fastest among the pro-

posed approaches?

In the case study, we used 30 tokens (a default setting)
as the minimum length of the token sequence of a code clone
to CCFinder. During the case study, each approach is exe-
cuted three times to get reliable results. This case study was
performed on a 64 bit Windows 7 Professional workstation
equipped with 2 processor, 2.27GHz and 2.26GHz CPUs
and 24 gigabytes of main memory.

4.1 Subject Systems

As subject systems, we selected three OSS systems of dif-
ferent size and application domain: Apache Ant†, Linux ker-
nel††, and Samsung Galaxy†††. An overview of these sys-
tems is shown in Table 1.

Apache Ant is a Java library and command-line tool
for building system written in Java. From this system, we
selected Java files under a directory named main from 29
consecutive release versions (release version 1.1 to 1.9.4).
Linux kernel is a clone of the operating system UNIX writ-
ten in C. From this system, we selected C files having the file
extensions .c, .cc, .cpp, and .cxx under a directory named fs
from 12 consecutive release versions (release version 2.6.0
to 2.6.10). Samsung Galaxy is a Samsung mobile phone
named Samsung Galaxy Y Pro written in C. We selected
two release versions of this model for different area, Latin
America, and China. From this system, we selected C files
having the file extensions .c, .cc, .cpp, and .cxx under a di-
rectory named common from each version. Note that files
that are lexically incomplete are excluded.

4.2 Results

This section illustrates results of the case study to answer
the RQs.

4.2.1 Comparing with the Approach that Uses only
CCFinder

To answer RQ1, this study compares our proposed approach
with the approach that uses only CCFinder with respect to
the detection time. Tables 2, 3, and 4 list detection time

†http://ant.apache.org/
††http://www.kernel.org/
†††http://opensource.samsung.com/index.jsp
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Table 2 Detection time in seconds (Apache Ant).

Approach Names Total detection time Preprocessing Clone detection Post-processing
Approach that uses only CCFinder 716 - - -
Approach with non-normalization 253 3 (1.19%) 248 (97.89%) 2 (0.79%)
IEC Approach 232 17 (7.34%) 103 (44.60%) 111 (48.06%)
ISC Approach 214 13 (6.07%) 100 (46.73%) 101 (47.20%)
INSC Approach 214 14 (6.54%) 100 (46.57%) 100 (46.88%)

Table 3 Detection time in seconds (Linux Kernel).

Approach Names Total detection time Preprocessing Clone detection Post-processing
Approach that uses only CCFinder 1,058 - - -
Approach with non-normalization 175 2 (1.14%) 172 (98.29%) 1 (0.57%)
IEC Approach 336 23 (6.74%) 172 (51.14%) 142 (42.12%)
IEM Approach 344 26 (7.56%) 176 (51.11%) 142 (41.34%)
IEMC Approach 333 22 (6.71%) 172 (51.70%) 138 (41.58%)
ISC Approach 328 18 (5.49%) 168 (51.37%) 141 (43.13%)
NSC Approach 335 21 (6.26%) 172 (51.39%) 142 (42.35%)

Table 4 Detection time in seconds (Samsung Galaxy).

Approach Names Total detection time Preprocessing Clone detection Post-processing
Approach that uses only CCFinder 19,622 - - -
Approach with non-normalization 4,326 7 (0.16%) 4,307 (99.56%) 12 (0.28%)
IEC Approach 8,803 204 (2.31%) 4,686 (53.23%) 3,913 (44.46%)
IEM Approach 9,240 271 (2.93%) 4,601 (49.79%) 4,368 (47.28%)
IEMC Approach 8,711 227 (2.60%) 4,530 (52.01%) 3,954 (45.39%)
ISC Approach 8,513 242 (2.84%) 4,398 (51.67%) 3,873 (45.49%)
INSC Approach 8,894 234 (2.63%) 4,552 (51.18%) 4,108 (46.19%)

of the proposed approach compared to the approach that
uses only CCFinder in Apache Ant, Linux kernel, and Sam-
sung Galaxy respectively. Note that “IEM Approach” and
“IEMC Approach” are conducted based on the macro in C,
thus these approaches only applied to Linux kernel and Sam-
sung Galaxy. In these tables, the column Total detection
time represents detection times needed to complete the each
approach. The columns Preprocessing, Clone detection,
and Post-processing show detection time of each phase. In
these columns, numbers in parenthesis represents their pro-
portion in total detection time. Note that these tables show
average of detection time of three executions.

As shown in these tables, our proposed approaches re-
duce code clone detection time compared with the approach
that uses only CCFinder in any subject system. In particu-
lar, we can observe that the detection time of the proposed
approaches are at least two times faster than that of the ap-
proach that uses only CCFinder. Therefore, we conclude
that our propose approaches are able to detect code clones
faster than the approach that uses only CCFinder.

4.2.2 Comparison of Our Proposed Approaches

To answer RQ2, this study compares detection time between
the proposed approaches and then examines results such as
the number of equivalence classes and code clones. In terms
of the detection time, the approach with non-normalization
is relatively faster than other proposed approaches from Ta-
bles 2, 3, and 4.

Tables 5, 6, and 7 shows the number of instances from
Apache Ant, Linux kernel, and Samsung Galaxy respec-

tively. In these tables, the number of equivalence classes
is shown in the column #Equivalence classes. The col-
umn #Files in equivalence classes represents the number
of files that are contained in the non-singleton equivalence
classes. Meanwhile, the column #Files in singletons repre-
sents the number of files contained in the singleton equiva-
lence classes. The column #Clone sets and #Clone clones
represents the number of detected clone sets and code clones
respectively. In the “Approach with non-normalization”,
these columns show the number of detected clone sets and
code clones by CCFinder. Meanwhile, other approaches de-
scribe the number of clone sets and code clones except for
clone sets and code clones within the identical files in the
same equivalence class.

We found similar tendencies from these tables. In the
Apache Ant, the least number of equivalence classes, files
in singletons, and code clones are detected by “INSC Ap-
proach” as shown in Table 5. Similarly, in the Linux ker-
nel and Samsung Galaxy, the least number of equivalence
classes, files in singletons, and code clones are detected by
“ISC Approach” and “INSC Approach” as shown in Ta-
bles 6, and 7.

4.3 Discussion

This section discusses the results of the case study described
in Sects. 4.2.1 and 4.2.2. As mentioned in Sect. 4.2.1, the
proposed approaches detect code clones faster than the “Ap-
proach that uses only CCFinder”. This was caused by the
large decrease of the number of unique files. 5.13-21.45%,
9.87-10.77%, and 0.19- 0.22% of the number of unique files
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Table 5 Results of Apache Ant.

Approach names #Equivalence classes #Files in equivalence classes #Files in singletons #Clone sets #Clone clones
Approach that uses only CCFinder - - - 15,626 246,245
Approach with non-normalization 4,174 14,696 (78.55%) 4,012 (21.45%) 14,778 243,211
IEC Approach 3,119 17,652 (94.36%) 1,056 (5.64%) 13,127 234,006
ISC Approach 2,993 17,739 (94.82%) 969 (5.18%) 13,003 233,011
INSC Approach 2,973 17,749 (94.87%) 959 (5.13%) 12,976 232,812

Table 6 Results of Linux Kernel.

Approach names #Equivalence classes #Files in equivalence classes #Files in singletons #Clone sets #Clone clones
Approach that uses only CCFinder - - - 23,031 306,592
Approach with non-normalization 1,516 6,995 (89.23%) 844 (10.77%) 20,356 293,076
IEC Approach 1,513 7,002 (89.32%) 837 (10.68%) 20,346 293,013
IEM Approach 1,517 7,046 (89.88%) 793 (10.12%) 20,248 292,198
IEMC Approach 1,512 7,056 (90.01%) 783 (9.99%) 20,228 292,026
ISC Approach 1,494 7,065 (90.13%) 774 (9.87%) 20,196 291,766
INSC Approach 1,494 7,065 (90.13%) 774 (9.87%) 20,196 291,766

Table 7 Results of Samsung Galaxy.

Approach names #Equivalence classes #Files in equivalence classes #Files in singletons #Clone sets #Clone clones
Approach that uses only CCFinder - - - 274,186 2,529,843
Approach with non-normalization 14,737 29,508 (99.78%) 65 (0.22%) 113,929 2,208,830
IEC Approach 14,735 29,518 (99.81%) 55 (0.19%) 113876 2,208,713
IEM Approach 14,640 29,516 (99.81%) 57 (0.19%) 113853 2,208,619
IEMC Approach 14,611 29,518 (99.81%) 55 (0.19%) 113897 2,208,701
ISC Approach 14,576 29,518 (99.81%) 55 (0.19%) 113797 2,208,363
INSC Approach 14,576 29,518 (99.81%) 55 (0.19%) 113797 2,208,363

are decreased in Apache Ant, Linux kernel and Samsung
Galaxy, respectively.

Among the proposed approaches, the “Approach with
non-normalization” is the fastest in the case of Linux ker-
nel and Samsung Galaxy. Meanwhile, in the case of Apache
Ant, “ISC Approach” and “INSC Approach” are faster than
other proposed approaches. However, the time difference
between the “Approach with non-normalization” is still very
small (39 seconds at maximun). This is because in the case
of Linux kernel and Samsung Galaxy, the number of unique
files are almost same between the approaches. This leads
that the “Approach with non-normalization” that needs the
least processes and post-process compared with the other
approaches is the fastest. Meanwhile, in the case of Apache
Ant, “ISC Approach” and “INSC Approach” output the least
number of files in singletons. This leads the “ISC Ap-
proach” and “INSC Approach” detect code clones faster
than other proposed approaches.

Therefore, It is expected that if the files contain many
unique files, then “ISC Approach” and “INSC Approach”
are the fastest, however, in other cases, the “Approach with
non-normalization” is the fastest among the approaches.

5. Threats to Validity

We identified the following threats to the validity of this
study. Our proposed approaches rely on the quality of the
underlying clone detection tool and hash function to detect
code clones. We countered this threat by a careful selection
of clone detection tool and hash function. We settled on us-
ing CCFinder, which is recognized as a widely-used clone

detection tool that is having high accuracy to detect code
clones and MD5 hash function is very unlikely to collide.

As case study, we picked three different sizes of OSS
systems from diverse domains to achieve generalities of re-
sults. However, our results of case study might be different
in the other software systems. To alleviate this limitation,
we plan to apply our proposed approaches to additional soft-
ware systems to achieve generality of results of case study.

6. Related Work

Many studies have been proposed for detecting code clones.
Baker proposed an approach for detecting code clones
then developed a tool named Dup. It detects Type-1 (see
Sect. 2.1) and Type-2 code clones based on the similari-
ties of token sequences. CP-Miner detects Type-1, Type-
2, and Type-3 code clones based on the similarities of to-
ken sequences.. To detect code code clones, it adopted fre-
quent subsequent mining which is an association analysis
approach to discover frequent subsequences in a collection
of sequences [9].

Several approaches using CCFinder have been pro-
posed. Sasaki et al. proposed an approach that detects identi-
cal files and then investigate the characteristics of them [18].
This study identifies identical files without any (or just
slight) modifications in comments or headers using MD5
hash values of the tokenized files. Our proposed approaches
are similar to this study. We also compute MD5 hash values
of the input source files for partitioning equivalence classes.
The essential difference between their work and our study
is that the goal of their study is to investigating the identi-
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cal files but our this study is focus on the proposing the ap-
proaches with preprocessing input source files with different
degrees of normalizations and then compare them to find out
the faster one. A tool named D-CCFinder implemented by
Livieri et al. detects code clones at distributed environment
based on CCFinder [17]. D-CCFinder partitions the clone
search for very large systems into smaller pieces to be dis-
tributed to detect code clones with high speed. This goal of
study is the same between their study and this study, but our
approaches detect code clones on the single PC, whereas D-
CCFinder uses distributed approach. To achieve the fast de-
tection time, we consider extending our proposed approach
by distributed approach.

Some studies that use MD5 hash function to detect code
clones have been proposed. Hummel et al. proposed index-
based code clone detection approach [19]. It detects Type-
1 and Type-2 clones using MD5 hash function to calculate
hash values from normalized statements. After a hash value
is computed for each input source file, code clones are re-
trieved from the databases where the hash values are stored.
Koschke proposed code clone detection approach using suf-
fix tree and MD5 hash function [20]. The goal of his re-
search is to detect code clones between a subject systems
and a set of other systems for finding potential license vio-
lations. This study generates suffix tree for smaller system
between a subject systems and a set of other systems and
then compares every file of corpus with the generated suffix
tree to detect Type-1 and Type-2 code clones.

7. Conclusion and Future Work

In this paper, we proposed code clone detection approaches
with preprocessing input source files using different degrees
of normalizations to investigate how the normalizations im-
pact the code clone detection. The proposed approaches per-
form equivalence class partitioning to the input source files
based on the MD5 hash values in the preprocessing. Af-
ter preprocessing, code clones are only detected from a set
of files that are selected from each equivalence class. To
detect code clones, this study uses CCFinder which is a
token-based code clone detection tool. These approaches
can be categorized into two types, approaches with non-
normalization and normalization. The former is the detec-
tion of code clones based on identical files without any nor-
malization. Meanwhile, the latter category is the detection
of code clones based on identical files with different degrees
of normalizations such as removal of all lines containing
macros.

In case study, we applied the proposed approaches as
well as the approach that uses only CCFinder to different
versions of three OSS systems and evaluated them with re-
spect to the code clone detection time. For the case study, we
found out that our proposed approaches detect code clones
faster than the approach that uses only CCFinder. We also
discover the approach with non-normalization is the fastest
among the proposed approaches in many cases.

As future work, we plan to apply the proposed ap-

proaches to various size of software systems in different do-
mains to achieve more accurate results. In addition to that,
we consider introducing other code clones detection tools
and hash function to extend to this study. Finally, we plan to
extend the proposed approaches by adopting the distributed
approach to achieve execute time with high speed.
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product evolution: A qualitative survey on the state of practice,” J.
Softw. Maint. Evol.: Res. Pract., vol.15, no.1, pp.41–59, 2003.

[4] C.K. Roy, J.R. Cordy, and R. Koschke, “Comparison and evalua-
tion of code clone detection techniques and tools: A qualitative ap-
proach,” Sci. Comput. Program., vol.74, no.7, pp.470–495, 2009.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Trans. Softw.
Eng., vol.33, no.9, pp.577–591, 2007.

[6] B.S. Baker, “On finding duplication and near-duplication in large
software systems,” Proc. of WCRE, pp.86–95, 1995.

[7] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguis-
tic token-based code clone detection system for large scale source
code,” IEEE Trans. Softw. Eng., vol.28, no.7, pp.654–670, 2002.

[8] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of
clone detection by string matching: Research articles,” J. Softw.
Maint. Evol.: Res. Pract., vol.18, no.1, pp.37–58, 2006.

[9] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans.
Softw. Eng., vol.32, no.3, pp.176–192, 2006.

[10] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A.E.
Hassan, “An empirical study on inconsistent changes to code clones
at release level,” Proc. of WCRE, pp.85–94, 2009.

[11] T.T. Nguyen, H.A. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen,
“Clone-aware configuration management,” Proc. of ASE, pp.123–
134, 2009.

[12] J. Li and M.D. Ernst, “CBCD: Cloned buggy code detector,” Proc.
of ICSE, pp.310–320, 2012.

[13] L. Barbour, F. Khomh, and Y. Zou, “An empirical study of faults
in late propagation clone genealogies,” J. Softw. Evol. and Proc.,
vol.25, no.11, pp.1139–1165, 2013.

[14] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” Proc. of ESEC/FSE, pp.187–196, 2005.

[15] P. Weissgerber and S. Diehl, “Identifying refactorings from source-
code changes,” Proc. of ASE, pp.231–240, 2006.

[16] D. Gusfield, Algorithms on strings, trees, and sequences: Computer
science and computational biology, Cambridge University Press,
1997.

[17] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed CCFinder: D-CCFinder,” Proc. of ICSE, pp.106–115,
2007.

[18] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file
clones in FreeBSD ports collection,” Proc. of MSR, pp.102–105,
2010.

[19] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-
based code clone detection: Incremental, distributed, scalable,”
Proc. of ICSM, pp.1–9, 2010.

[20] R. Koschke, “Large-scale inter-system clone detection using suffix
trees and hashing,” J. Softw. Evol. and Proc., vol.26, no.8, pp.747–
769, 2014.



CHOI et al.: PROPOSING AND EVALUATING CLONE DETECTION APPROACHES WITH PREPROCESSING INPUT SOURCE FILES
333

Eunjong Choi received her Master from
Osaka University in 2011. She is a Ph.D. can-
didate at Osaka University since 2012. Her re-
search interests include code clone analysis and
refactoring detection. She is a member of the
ACM and IPSJ.

Norihiro Yoshida received his B.E. from
the Kyushu Institute of Technology in 2004 and
his Master and Ph.D. from Osaka University in
2006 and 2009, respectively. He is an associate
professor at Nagoya University. Before joining
Nagoya University in 2014, he was an assistant
professor at the Nara Institute of Science and
Technology from 2010. His research interests
include program analysis and software develop-
ment environment. He is a member of the IEEE,
the IEEE Computer Society, and the ACM.

Yoshiki Higo received his master’s degree
and Ph.D. degree in information science and
technology from Osaka University in 2004 and
2006, respectively. At present he is an assistant
professor at Osaka University. His research in-
terests include code clone analysis, mining soft-
ware repositories, software metrics, and refac-
toring support techniques. He is a member of
the IEEE, IPSJ, IEICE, and JSSST.

Katsuro Inoue received the B.E., M.E., and
D.E. degrees in information and computer sci-
ences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He was an as-
sistant professor at the University of Hawaii at
Manoa from 1984-1986. He was a research
associate at Osaka University from 1984-1989,
an assistant professor from 1989-1995, and is a
professor beginning in 1995. His interests are
in various topics of software engineering such
as software process modeling, program analy-

sis, and software development environment. He is a member of the IEEE,
the IEEE Computer Society, and the ACM.


