
Supporting Clone Analysis with Tag Cloud Visualization

Manamu Sano†, Eunjong Choi†, Norihiro Yoshida‡,Yuki Yamanaka†, Katsuro Inoue†

†Osaka University, Japan ‡Nagoya University, Japan
{m-sano,ejchoi,y-yuuki,inoue}@ist.osaka-u.ac.jp yoshida@ertl.jp

ABSTRACT

So far, a lot of techniques have been developed on the de-
tection of code clones (i.e., duplicated code) in large-scale
source code. Currently, the code clone research community
is gradually shifting its focus of attention from the detection
to the management (e.g., clone refactoring). During clone
management, developers need to understand how and why
code clones are scattered in source code, and then decide
how to handle those code clones. In this paper, we present
a clone analysis tool with tag cloud visualization. This tool
is aimed at helping to understand why code clone are con-
centrated in a part of a software system by generating tag
clouds from a collection of identifier names in source code.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement-Restructuring, reverse engineering, and
reengineering

Keywords

Code clone, Tag cloud

1. INTRODUCTION
A code clone is a code fragment that has identical or sim-

ilar code fragments to it in the source code [16, 18]. If de-
velopers modify a code fragment, they have to determine
whether or not to modify its code clones in source code [21].
In recent decades, a lot of techniques have been developed on
the detection of code clones (i.e., duplicated code) in large-
scale source code [16, 18]. Currently, the code clone research
community is gradually shifting its focus of attention from
the detection to the management (e.g., clone refactoring) [6].
A number of code clones are typically detected from large-

scale source code by a code clone detection tool [16, 18].
During management of those detected code clones, it is dif-
ficult for developers to check all of them manually [19, 24].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
InnoSWDev’14 , November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11 ...$15.00.

However, at the beginning stage of source code reconstruc-
tion for maintainability improvement, it is unnecessary to
check all of them [24]. According to Rieger et al. [24] and
our experience in collaboration with industry, at the begin-
ning stage of source code reconstruction, developers firstly
investigate parts of source code that involve a number of
code clones. And then they consider the reasons why the
parts involve a number of code clones. Finally, they decide
how to handle those code clones. In this process, they have
to focus on only the parts that involve a number of code
clones, and it is unnecessary to check all of the detected
code clones.

For efficient grasp of parts that involve a number of code
clones, several code clone visualization techniques have been
developed so far [19, 24, 17]. Scatterplots (dotplots) is a
two-dimensional plots in which the axes represent the files or
directories of the system or systems and the points represent
the presence or absence of a clone relation between them [7,
9, 27]. Developers readily know in which files or directories
code clones exist by scatterplots.

However, since scatterplot provides only the location in-
formation of code clones, it is difficult for developers to un-
derstand the reason why code clones are concentrated in
parts of source code. In other words, even if developers
use scatterplot, they have to check source files involving
code clones in order to understand the reason why those
code clones exist in the files. Although lexical information
(e.g., variable, function, type names in code clone) can give a
hint for understanding why those fragments are code clones,
existing scatterplots do not use lexical information of code
clones directly.

In this paper, we present a code clone analysis toolClone-

Cloud that supports understanding of code clones based on
tag cloud visualization. In general, tag cloud depicts key-
word metadata for efficient understanding and information
retrieval of given data. In order to support intuitive under-
standing and analysis of code clones, CloneCloud generates
tag cloud from identifier names (e.g., variable, method, type
name) in detected code clones (see Figure 2(b)). A tag cloud
that is generated by CloneCloud helps developers to grasp
implementations that lead code clones, and get a clue to
the reason why code clones exist. Also, once developers get
an idea of the reason for code clones from the tag cloud,
they can retrieve code fragments of code clones by tags (i.e.,
identifier names) and verify their idea.

CloneCloud provides also scatterplots for the selection
of interested a single or a pair of directories (see Figure
2(a)). A tag cloud is depicted from identifier names of code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

InnoSWDev’14, November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11...$15.00
http://dx.doi.org/10.1145/2666581.2666586

94

clones in the selected directories (see Figure 2(b)). Each tag
(i.e., identifier name) in the tag cloud is link for opening
the source code view for code clones involving the tag (see
Figure 2(c)). The combination of the scatterplots, the tag
cloud, and the source code view efficiently supports devel-
opers who need to understand the reason why code clones
exist and decide how to handle them. Developers who use
only traditional scatterplots have to investigate a number of
code clones in selected source files without keyword meta-
data that supports instinctive understanding of those code
clones.

2. ARCHITECTURE OF CLONECLOUD
CloneCloud takes source files of Java system as input and

visualizes code clones using Live Scatterplots [7] and tag
cloud based on the detection result of CCFinder. The archi-
tecture of CloneCould is illustrated in Figure 1. As shown
in this figure, CloneCloud provides, three principal views,
Scatterplot View, Tag Cloud View and Source Code View.
When CloneCloud is initially executed, first of all, it in-

ternally invokes CCFinder that detects code clones from the
input source files. Then, based on the results of the detec-
tion, it renders Scatterplot View that represents location and
density of the code clones using Live Scatterplots. After a
pair of directories are selected in the Scatterplot View, Tag
Cloud View and Identifier Table, which represent tag could of
identifier names and information of identifier names in tab-
ular form respectively, are popped up. In Tag Cloud View,
identifier names of red fonts mean that they are included in
code clones. After identifier names is selected in Tag Cloud

View, finally, Source Code View, which shows source code
of code clones that include the selected identifier name, is
opened.
The following subsections explain the detailed of Scatter-

plot View, Tag Cloud View and Source Code View in Clone-
Cloud.

2.1 Scatterplot View
Figure 2(a) shows Scatterplot View that represents result

of Apache Ant revision 1486439. For better overview, we
labeled the important features in this figure.
Scatterplot View provides scatterplot (label 2) of the in-

put source files using Live Scatterplots. In the scatterplot,
both the vertical and horizontal axes represent directories of
the input system. When code clone exists between the ver-
tical and horizontal directories, the cell where the vertical
and horizontal directories are met is colored based on the
Clone Density between vertical and horizontal directories.
Suppose that LENClone represents the number of token se-
quences of code clones between the directories, LENAll rep-
resents the number of token sequences of overall source code
between the directories, then, the Clone Density between
the directories is calculated as follows:

Clone Density =
LENClone

LENAll

In the scatterplot, blue cell represents that Clone Density
is lower than others. Meanwhile, red cell represents higher.
Moreover, absolute paths of the vertical and horizontal di-
rectories where mouse is located in scatterplot are shown
in (label 1). Scatterplot View provides two customization
options, Clone Density and RNR(S) metric [13]. RNR(S)
metric is proposed by our laboratory. Higo et al. found out

that RNR(S) metric is effective to filter out uninteresting
code clones (i.e., a code clone whose existence information
is useless when using code clone information in software de-
velopment or maintenance) [13]. Moreover they found that
f-value reached its greatest when the threshold was 0.7. It
is the ratio of non-repeated code sequence in clone set (i.e.,
a set of code clones that are identical or similar to each
other) between vertical and horizontal directories. Suppose
that the clone set S includes n code clones, c1, c2 . . . , cn,
LOSwhole(fi) represents the length of whole token sequence
of code clone ci, and LOSn−repeated(fi) represents the length
of non-repeated token sequence of code clones ci, then,

RNR(S) =

n∑

i=1

LOSn−repeated(ci)

n∑

i=1

LOSwhole(ci)

× 100

A clone set whose RNR(S) is lower means that code frag-
ments in clone set S mostly consist of repeated token se-
quences. In most cases, repeated token sequences are in-
volved in language-dependent clones (e.g., code clones that
involve consecutive if or if-else blocks, case entries, variable
declarations). The threshold for Clone Density and RNR(S)
can be changed by moving scroll bar in (label 3, 4) respec-
tively. This view also provides customizing options (label 5)
for Tag Cloud View as follows:

• The maximum number of identifier names shown in
Tag Could View.

• A criterion that decides the size of identifier names in
Tag Could View (The criteria are frequencies of iden-
tifier names, TF-IDF (Term Frequency Inverse Docu-
ment Frequency), and arbitrary).

• The minimum sequence length of identifier names shown
in Tag Could View.

• The minimum IDF values of identifier names shown in
Tag Could View

Using Scatterplot View, a user can comprehend the den-
sity of code clones in the directories. Consequently, she can
find out candidates for clone refactoring by focusing on the
directories where code clones are highly concentrated such
as red cell in Figure 2(c).

2.2 Tag Cloud View
Tag Cloud View shows identifier names in the selected di-

rectories in Scatterplot View using tag cloud 1. Using tag
cloud, readability of this view can be improved, because
tag cloud effectively displays frequency of identifier name
with different color. Figure 2(b) shows Tag Cloud View for
“optional\clearcase” directory. This view displays identifier
names in source code for the directories. Among them, iden-
tifier names of black font mean that they are contained only
in the source code of the directories. Meanwhile, identifier
names of red font mean that they are included in code clones
in the directories. Only these identifiers names provide hy-
perlink to the Source Code View.

1implemented by WordCram http://wordcram.org/

95

Scatterplot View Tag Cloud View

Jar
File

getResource

CloneCould

CCFinder

Source files

Code Clone

Detection Tool

Source Code View

Figure 1: Architecture of CloneCloud

Using the Tag Cloud View, a user instinctively understands
the role of the directories containing code clones. For exam-
ple, in Figure 2(b), a user can take a cue for understanding
of source files in “optional\clearcase” directory implement
the functionality for ClearCase command. Moreover, she
can take a cue for understanding of code clones that are in-
cluded in the source code of argument creation for command
line by identifiers ‘Commandline’ and ‘createArgument’.

2.3 Source Code View
Source Code View shows the source code of the code clones

that include the selected identifier names in the Tag Cloud

View. Source Code View about identifier ‘createArgument’
is illustrated in Figure 2(c).
This view displays the absolute path of the directories

which contain the select identifier names. It also provides in-
formation of code clones which contain the selected identifier
name and source code of the selected code clones. Moreover,
information of code clones who are belong the same clone set
of the selected code clones are shown with source code of the
selected code clone. In the source code, selected identifiers
are shown in red font. In addition, identifiers that are also
represented in the Tag Cloud View are shown in green font.
Using Source Code View, a user can confirm the source

code that includes the selected identifier name. Accordingly,
once she read the source code in this view, she can take a cue
for understanding of the code clones that she is interested
in.

3. USAGE EXAMPLE
We assume that a developer would like to perform re-

construction of large-scale Java system. She dose not know
about the source code, therefore, at first, she would like to
identify the similar parts of the source code in course-grained
level. She decides to find the directory-level similarity be-
cause directory-level similarity provides two valuable options
to her; the first option is that if she finds a similar directory
pair, she can merge the pair into one directory. The other
option is that if she figures out a directory that includes a
great amount of code clones, she can remove these clones.
In order to find similar directories, she executes Clone-

Cloud. Scatterplot View is rendered based on the result of
the clone detection from CCFinder. She can change the
threshold of RNR(S) and Clone Density in the Scatterplot

View to find out the target directories for reconstruction.

Next, she selects the cell with red color because this direc-
tory contains a higher number of code clones compared to
the other directories.

After she selects the target directory, she can comprehend
identifier names in the selected directories via Tag Cloud

View. Also, she can refer Identifier Table that shows the de-
tailed information of the identifier names. With the Tag

Cloud View and Identifier Table, she understands the role of
the selected directories as well as code clones in the directo-
ries.

After that, she can select the identifier names in the Tag

Cloud View. She can select identifier name that is shown
in bigger font compared to the others. An identifier name
with bigger font means frequently appeared one. For exam-
ple, identifiers ‘Commandline’, ‘cmd’ and ‘createArgument’
in Figure 2(b) is promising to be important keywords. By
selecting a specific identifier name in the Tag Cloud View,
Source Code View is popped up. In this view, she can un-
derstand source code of code clones that include the selected
identifier names in-detail. It helps her to identify a single or
pair of directories to be reconstructed.

4. RELATED WORK
Many studies have been proposed for detecting code clones.

Baker proposed an approach for detecting code clones then
developed a tool named Dup. It detects Type-1 and Type-2
code clones based on the similarities of token sequences [3].
CP-Miner detects Type-1, Type-2, and Type-3 code clones
based on the similarities of token sequences [3]. To detect
code code clones, it adopted frequent subsequent mining
which is an association analysis approach to discover fre-
quent subsequences in a collection of sequences [22].

Several approaches using CCFinder have been proposed.
Sasaki et al. proposed an approach that detects identi-
cal files and then investigate the characteristics of them
[25]. This study identifies identical files without any (or
just slight) modifications in comments or headers using MD5

hash values of the tokenized files. A tool named D-CCFinder

implemented by Livieri et al. detects code clones at dis-
tributed environment based on CCFinder [23]. D-CCFinder

partitions the clone search for very large systems into smaller
pieces to be distributed to detect code clones with high
speed. This goal of study is the same between their study
and this study, but our approaches detect code clones on the
single PC, whereas D-CCFinder uses distributed approach.

96

2

1

3

4

5

(a) Scatterplot View

(b) Tag Cloud View

(c) Source Code View

Figure 2: Screenshot of CloneCloud

97

Several approaches have been proposed on the identifica-
tion and the categorization of clone refactoring opportunities
in source code. Balazinska et al. [1] proposed an approach
for supporting clone refactoring by categorizing code clones
based on the differences of them. Baxter et al. [2] have de-
veloped a clone detection tool CloneDR based on AST sim-
ilarity. CloneDR derives only syntactically-complete clones
that can be easily refactored. Hotta et al. [15] focused on
Form Template Method refactoring pattern [10], and pro-
posed a specialized approach to identifying its opportuni-
ties. For the prioritization of clone refactoring opportunities,
Higo et al. [14] and Choi et al. [5] proposed metric-based
approaches respectively. Also, search-based approaches have
been proposed for scheduling clone refactoring based on its
benefit and effort [4, 20, 28].
Lucia et al. investigated how source code artifact labeling

performed by information retrieval techniques would over-
lap from labeling performed by humans[8]. Haiduc et al.
investigated the suitability of several automated text sum-
marization techniques[26], mostly based on text retrieval
methods, to capture source code semantics in a way similar
to how developers understand it[12]. Gethers et al. devel-
oped CodeTopics, an Eclipse plug-in that shows the sim-
ilarity between source code and high-level artifacts (e.g.,
requirements) also highlights to what extent the code un-
der development covers topics described in high-level arti-
facts[11].

5. SUMMARY AND FUTURE WORK
In this paper, we presented a code clone analysis tool

CloneCloud that supports understanding of code clones based
on tag cloud visualization. In order to support intuitive un-
derstanding and analysis of code clones, CloneCloud gener-
ates tag cloud from identifier names (e.g., variable, method,
type name) in detected code clones (see Figure 2(b)). A tag
cloud that is generated by CloneCloud helps developers to
grasp implementations that lead code clones, and get a clue
to the reason why code clones exist.
As future work, we need to perform an experiment for

confirming the usefulness of CloneCloud. We plan to com-
pare the behaviors of participants who use CloneCloud and
the existing clone visualizers.

6. ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Num-

bers 25220003 and 26730036.

7. REFERENCES
[1] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and

K. Kontogiannis. Measuring clone based reengineering
opportunities. In Proc. of METRICS ’99, pages
292–303, 1999.

[2] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Proc. of ICSM ’98, pages 368–377, 1998.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Trans. Softw. Eng.,
33(9):577–591, 2007.

[4] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler. A
novel approach to optimize clone refactoring activity.
In Proc. of GECCO, pages 1885–1892, 2006.

[5] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano.
Extracting code clones for refactoring using
combinations of clone metrics. In In Proc. of IWSC,
pages 7–13, 2011.

[6] R. K. C.K. Roy, M. F. Zibran. The vision of software
clone management: Past, present and future. In Proc.
of IEEE CSMR/WCRE, pages 18–33, 2014.

[7] J. R. Cordy. Live scatterplots. In Proc. of IWSC,
pages 79–80, 2011.

[8] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella. Using ir methods for labeling source
code artifacts: Is it worthwhile? In Proc. of ICPC,
pages 193–202, 2012.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Proc. of ICSM, pages 109–118, 1999.

[10] M. Fowler. Refactoring: improving the design of
existing code. Addison Wesley, 1999.

[11] M. Gethers, T. Savage, M. Di Penta, R. Oliveto,
D. Poshyvanyk, and A. De Lucia. CodeTopics: Which
topic am I coding now? In Proc. of ICSE, pages
1034–1036, 2011.

[12] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques
for summarizing source code. In Proc. of WCRE,
pages 35–44, 2010.

[13] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Method and implementation for investigating code
clones in a software system. Inf. Softw. Technol.,
49(9-10):985–998, sep 2007.

[14] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based
approach to identifying refactoring opportunities for
merging code clones in a Java software system.
Journal of Software Maintenance and Evolution,
20(6):435–461, 2008.

[15] K. Hotta, Y. Higo, and S. Kusumoto. Identifying,
tailoring, and suggesting form template method
refactoring opportunities with program dependence
graph. In Proc. of CSMR, pages 53–62, 2012.

[16] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: scalable and accurate tree-based
detection of code clones. In Proc. of ICSE, pages
96–105, 2007.

[17] E. Juergens. Why and How to Control Cloning in
Software Artifacts. PhD thesis, Technische Universität
München, 2011.

[18] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654–670, 2002.

[19] C. Kapser and M. Godfrey. Improved tool support for
the investigation of duplication in software. In Proc. of
ICSM, pages 305–314, 2005.

[20] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R.
Kwon. Automated scheduling for clone-based
refactoring using a competent GA. Journal of
Software: Practice and Experience, 41(5), 2011.

[21] J. Li and M. D. Ernst. CBCD: Cloned Buggy Code
Detector. In Proc. of ICSE, pages 310–320, 2012.

[22] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
finding copy-paste and related bugs in large-scale

98

software code. IEEE Trans. Softw. Eng.,
32(3):176–192, 2006.

[23] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue.
Very-large scale code clone analysis and visualization
of open source programs using distributed CCFinder:
D-CCFinder. In Proc. of ICSE, pages 106–115, 2007.

[24] M. Rieger, S. Ducasse, and M. Lanza. Insights into
system-wide code duplication. In Proc. of WCRE,
pages 100–109, 2004.

[25] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue.
Finding file clones in FreeBSD ports collection. In
Proc. of MSR, pages 102–105, 2010.

[26] K. Spärck Jones. Automatic summarising: The state
of the art. Inf. Process. Manage., 43(6):1449–1481,
Nov. 2007.

[27] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue.
Gemini: Maintenance support environment based on
code clone analysis. In Proc. of METRICS, pages
67–76, 2002.

[28] M. F. Zibran and C. K. Roy. A constraint
programming approach to conflict-aware optimal
scheduling of prioritized code clone refactoring. In
Proc. of SCAM, pages 105–114, 2011.

99

