
What Kinds of Refactorings are Co-occurred?
An Analysis of Eclipse Usage Datasets

Tsubasa Saika1, Eunjong Choi1, Norihiro Yoshida2, Akira Goto1, Shusuke Haruna1, Katsuro Inoue1
1Graduate School of Information Science and Technology, Osaka University, Japan

{t-saika, ejchoi, a-gotoh, haruna, inoue}@ist.osaka-u.ac.jp
2Graduate School of Information Science, Nagoya University, Japan

yoshida@ertl.jp

Abstract—Refactoring is the process of changing the internal
structure of software without changing its external behavior. So
far, numerous tools have been proposed on that refactoring sup-
port. However, it is difficult for existing refactoring support tools
to support consecutively co-occurred refactorings. To alleviate
this problem, a tool which supports consecutively co-occurred
refactorings is required. In order to develop a tool support of
frequently co-occurred refactorings, this study investigated the
frequency of co-occurred refactorings by analyzing usage data of
Eclipse. As a result of investigation, it turns out that refactoring
pairs (Move, Rename), (Rename, Rename) and (Extract, Move)
were more frequently occurred than other pairs. Furthermore, in
order to support co-occurred refactorings based on the results of
the investigation, this study investigated the detail of co-occurred
refactorings and devised suggestions for improving the automated
refactoring features in Eclipse. In the investigation of refactoring
pair (Move, Rename), we found that program elements were
moved and subsequently the names of those elements were
renamed. According to this finding, we suggest the need of a
tool for supporting this refactoring by recommending appropriate
rename for moved elements.

I. INTRODUCTION

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior [1]
[2]. Although refactoring is a promising way to improve the
maintainability of software, manual refactoring is not only
time-consuming but also error-prone [3]. Nowadays, several
modern IDEs (e.g., Eclipse, IntelliJ IDEA) support many refac-
toring that rename, move, or split program elements including
methods, classes, and packages. The software engineering
community also proposed tool supports for refactoring [4]–[6].

In order to improve refactoring tools, prior studies have
been done on the usage instances of the existing refactor-
ing tools [7]. These studies show that developers use those
refactoring tools mostly for simple refactorings (e.g., Rename,
Extract Local Variable, Move), and often repeat the
same kinds of refactorings. This repetition phenomenon pro-
vides evidence that the existing tools force developers to
repeatedly select, initiate and configure refactoring dialogs, and
implies the need of a tool that allows developers to perform
those refactorings at one time. On the other hand, refactoring
tools also need to support seamless transition among different
kinds of refactorings that frequently co-occurred. However,
existing tools basically force developers to perform those
kinds of refactorings individually. By supporting those co-
occurred refactorings, software development efficiency should
be improved. In order to realize seamless transition among

different kinds of refactorings, a number of usage datasets of
IDE should be investigated to know what kinds of refactorings
frequently co-occurred [8].

In this study, we investigate the frequency of co-occurred
refactoring by analyzing usage data of Eclipse from the Users
and the Mylyn datasets (see Section II), and then discuss future
advancement of the refactoring feature of Eclipse based on the
investigation result.

The main contribution of this paper is as follows:

• We revealed that the refactoring pairs (Move,
Rename), (Rename, Rename) and (Extract,
Move) were more frequently occurred than other
pairs.

• We performed manual analysis of the instances of
above refactoring pairs. As a result, in the case
of refactoring pair (Move, Rename), Rename is
occurred to change the names of program element
that were moved previously. Also, in the case of
refactoring pair (Rename, Rename), Rename refac-
torings are performed together regardless of types of
targeted program elements in many cases. In the case
of refactoring pair (Extract Interface, Move),
extracted interfaces are moved into other packages in
many cases.

• Based on the result of manual analysis, we suggested
the directions for the improvement of the refactoring
feature of Eclipse. For the refactoring pair (Move,
Rename), recommending appropriate new name for
moved elements should be considered. Also, the fea-
ture of simultaneous renaming should be improved for
the refactoring pair (Rename, Rename).

II. ANALYZED DATASETS

To investigate refactoring tool usage, this study selected
two usage datasets of Eclipse named Users and Mylyn. They
are selected because they include usage logs of refactoring
features in Eclipse. Table I shows a summary of the datasets.

The first dataset is called Users which contains the refac-
toring history of 41 developers from July 2005 to September
2005. It contains total 3494 refactoring instances that were
comprised of 22 types of refactoring.

The second dataset is called Mylyn which contains the
refactoring history of 8 developers from February 2006 to

2014 6th International Workshop on Empirical Software Engineering in Practice

978-1-4799-6666-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IWESEP.2014.15

31

TABLE I. STATISTICS OF THE DATASETS

Name # Developers Period

Refactoring

Instances

Types of

Refactoring

Users 41 Jul. 2005-Sep. 2005 3494 22

Mylyn 8 Feb. 2006-Aug. 2009 4637 19

TABLE II. REFACTORINGS IN THE Users DATASET

Refactoring Type # Instances Proportion

Rename 1992 57.0%
Extract Local Variable 449 12.9%
Extract Method 305 8.7%
Move 180 5.2%
Inline 174 5.0%
Promote Local Variable 95 2.7%
Extract Constant 59 1.7%
Modify Parameters 40 1.1%
Pull Up 36 1.0%
Convert Local To Field 29 0.8%
Convert Anonymous To Nested 29 0.8%
Introduce Parameter 25 0.7%
Extract Interface 24 0.7%
Change Method Signature 16 0.5%
Move Static Member 12 0.3%
Convert Member Type to Top Level 8 0.2%
Encapsulate Field 8 0.2%
Use Supertype 6 0.2%
Externalize Strings 4 0.1%
Change Type 1 0.0%
Generalize Type 1 0.0%
Infer Type Arguments 1 0.0%

Total 3494 100.0%

August 2009. It contains total 4637 refactoring instances that
were comprised of 19 types of refactoring.

The details of each dataset are described in the following
subsections.

A. Users Dataset

Users dataset contains refactoring histories of the 41 devel-
opers who uses Eclipse for developing. It is originally collected
by Gail Murphy at el. [9]. Developers in this dataset work at
different organizations with various backgrounds. We expect
this dataset shows general tendency of software development
since the developers are not specialists of refactoring.

The format of histories in this data is an XML file that is
created separately for each commit by the Mylyn monitor tool.
This includes histories of configuration changes of develop-
ment environment, implementations of commands, editions of
source codes, and other actions. For each refactoring recorded
in this dataset, its types and when it was performed can
be found. However, the information about program elements
affected by the refactorings was unavailable in this dataset.

Table II shows the number of instances of refactoring
performed in the Users dataset and the proportion to the total in
descending order to the numbers of instances. As shown in this
table, the most frequently occurred refactoring in Users dataset
is Rename which changes a name of a program element and
its references. It is commonly known as the most popular type
of refactoring.

B. Mylyn Dataset

Mylyn dataset contains refactoring histories of the develop-
ers who maintain the Mylyn monitor tool, the task management

TABLE III. REFACTORINGS IN THE Mylyn DATASET

Refactoring Type # Instances Proportion

Rename 2401 51.8%
Move 691 14.9%
Extract Method 305 6.6%
Extract Local Variable 254 5.5%
Extract Constant 245 5.3%
Move Static Member 235 5.1%
Change Method Signature 191 4.1%
Inline 110 2.4%
Convert Member Type to Top Level 44 0.9%
Infer Type Arguments 30 0.6%
Extract Interface 29 0.6%
Encapsulate Field 29 0.6%
Convert Anonymous To Nested 23 0.5%
Extract Superclass 16 0.3%
Promote Local Variable 15 0.3%
Pull Up 14 0.3%
Push Down 3 0.1%
Use Supertype 1 0.0%
Introduce Parameter 1 0.0%

Total 4637 100.0%

plug-in for Eclipse. Developers in this dataset may not be ex-
perts of refactoring. However, we assume that they know much
about refactoring features of Eclipse than general developers
because they develop Mylyn monitor tool.

We use database which is originally collected by Emerson
Murphy-Hill at el. [7]. This database contains details of each
refactoring instance such as type, date and time, and affected
program elements. In addition to this, we also check Git
repository of Mylyn project for the detailed analysis.

Table III shows the number of instances of refactoring in
the Mylyn dataset and the proportion to the total. This table is
also sorted according to the numbers of refactoring instances.

III. INVESTIGATION STEP

This section illustrates our investigation in order to devise
suggestions for developing tools that support frequently co-
occurred refactorings. The investigation is comprised of two
steps. In the first step, we investigated the number of in-
stances for all combinations of co-occurred refactorings from
the datasets. In the second step, we further investigated the
instances by manual analysis of the commit logs as well as
source code.

Step1. Investigating frequencies of co-occurred refac-
torings

In this step, we identified consecutively co-occurred refac-
torings based on time stamps which indicate when each refac-
toring was performed. Then, we investigated frequency for all
combinations of co-occurred refactorings found in the datasets.
In this step, if refactorings were occurred within 90 seconds,
we defined them as co-occurred refactorings. We set up 90
seconds as threshold of determining co-occurred refactorings
based on the our preliminary experiment.

In the preliminary experiment, we investigated repeatedly
performed different kinds of refactoring in relation to time-
interval. We found that it seems to be too short to complete
the refactoring in less than 60 seconds and also longer time-
interval is likely to include falsely refactorings. We also found
that types of refactorings appeared within 60, 90, and 120
seconds are similar to each other. Therefore, we selected 90

32

seconds as the time-interval because it is long enough to extract
about 60 presents of all refactorings consecutively performed
in the data sets.

However, there is a possibility the refactorings consecu-
tively performed may not be refactorings which the developer
performed as one task. To alleviate this problem, we further
investigated relationship between co-occurred refactorings by
analyzing their details in the next step.

Step2. Investigating detailed work of frequently co-
occurred refactoring

In this step, we investigated the detailed works of fre-
quently co-occurred refactorings. We analyzed how program
elements, the targets of co-occurred refactorings, were modi-
fied. The goal of this investigation is to identify how developers
changed program with the combinations of refactorings and to
consider support for performing those refactorings. However,
this investigation was carried out only for the Mylyn dataset
because information such as the target of refactoring has not
been included in the Users dataset as mentioned in Section
II-A. We analyzed targets of co-occurred refactorings by
investigating 10 instances of detailed refactoring histories for
each combination of the top 10 high frequencies. Moreover, we
examined the targets of co-occurred refactorings are whether
the same or whether or not related. A combination of co-
occurred refactorings is determined to be related when their
targets have similar name or belong to the same class or
package.

IV. RESULTS

This section shows results of our investigation. Section IV-
A explains the results of the investigation on frequencies of co-
occurred refactorings. Then, Section IV-B explains the results
of the investigation on the detailed work of frequently co-
occurred refactorings.

A. Frequently Co-occurred Refactorings

This section describes the results of Step1 which investi-
gates frequencies of co-occurred refactorings. Table IV and V
shows the investigation result of the Users dataset and Mylyn
dataset respectively. In both tables, “Refactoring Type” column
shows types of co-occurred refactorings. “# Instances” column
represents the number of refactoring instances of each combi-
nations. Note that these tables are sorted in descending order
of the number of refactoring instances and only show the top
ten frequently occurred pairs in terms of frequency, because we
are only interested in more frequently co-occurred refactorings.
As shown in both tables, in most cases, refactorings were
subsequently occurred twice. In fact, the numbers of instances
of any combinations which are consisted of three or more
refactorings are less than five times. These two tables show
similar combinations of co-occurred refactorings. That is, most
combinations of co-occurred refactorings contain at least one
of Rename, Move, and Extract. These refactoring types are
also shown as the most frequently occurred refactoring types
in Table II and III.

In terms of Mylyn dataset, this dataset includes
information about targets of all refactoring instances.
Therefore, we classified Rename refactorings into sev-
eral types: Rename Type(Class), Rename Package,

TABLE IV. FREQUENTLY CO-OCCURRED REFACTORINGS IN THE

Users DATASET

Refactoring Type
Refactoring 1 Refactoring 2 # Instances

Extract Method Rename 35
Extract Local Variable Rename 22
Extract Local Variable Extract Method 19
Rename Extract Method 17
Rename Move 15
Extract Method Inline 14
Extract Local Variable Inline 14
Inline Extract Local Variable 14
Extract Local Variable Promote Local Variable 12
Move Rename 12

TABLE V. FREQUENTLY CO-OCCURRED REFACTORINGS IN THE Mylyn
DATASET

Refactoring Type
Refactoring 1 Refactoring 2 # Instances

Move Rename 88
Rename Move 62
Extract Interface Move 12
Extract Constant Rename 11
Extract Constant Move 10
Extract Method Rename 9
Extract Method Extract Local Variable 6
Extract Local Variable Rename 6
Rename Change Method Signature 5
Inline Rename 5

TABLE VI. FREQUENTLY CO-OCCURRED REFACTORINGS IN THE

Mylyn DATASET IN THE CASE WHERE TARGETS OF REFACTORING ARE

CLASSIFIED FOR Rename AND Move

Refactoring Type
Refactoring 1 Refactoring 2 # Instances

Rename Type Move 30
Move Rename Type 28
Rename Field Rename Method 26
Rename Method Rename Field 22
Move Rename Package 19
Rename Type Rename Method 16
Rename Method Rename Type 16
Rename Type Rename Field 13
Rename Field Rename Type 13
Extract Interface Move 12

Rename Field, Rename Method, and Rename Local
Variable. Table VI shows the result of this classification.
This table also shows combinations which are occurred more
than 10 times. The result of this classification shows that
Rename refactorings are performed together regardless of
types of modified program elements in many cases.

B. Detailed Co-occurred Refactoring Instances

In this section, we explain the results of Step 2. which
investigated the detailed works for frequently co-occurred
refactorings of the Mylyn dataset. We invetigated the details of
work of the top 10 most frequently co-occurred refactorings.
We checked targets of refactoring and classified them into three
types (same, related, and others). In some cases, targets of co-
occurred refactorings are the same program element. In other
cases, targets are determined as related program elements if
they have similar name or belong to the same package or class.
In the rest cases, we could not identify the relationship between
targets.

Table VII shows the result of investigation on the detailed
work for frequently co-occurred refactoring. The order of

33

TABLE VII. A SUMMARY OF INVESTIGATION INTO DETAIL WORKS OF FREQUENTLY CO-OCCURRED REFACTORINGS IN THE Mylyn DATASET

Refactoring Type
Refactoring 1 Refactoring 2 # Performed # Investigated # Same # Related

Move Rename Type 58 10 4 1
Rename Field Rename Method 48 10 0 5
Rename Type Rename Method 32 10 0 4
Move Rename Package 29 10 1 7
Rename Type Rename Field 26 10 0 3
Move Static Member Rename Field 15 10 6 0
Extract Interface Move 14 10 7 1
Rename Local Variable Rename Field 12 10 0 6
Move Move Static Member 12 10 0 2
Move Rename Field 12 10 0 0

Renames the class name

org.eclipse.mylyn.tasks.ui

ProjectPreferences
LinkProvider.java

org.eclipse.mylyn.internal.tasks.ui.properties

ProjectProperties
LinkProvider.java

Move

ProjectPreferences
LinkProvider.java

org eclipse
Package

Class

ppppp

ope

Rename

M

Moves the class
to other Package

Fig. 1. An Instance of Detailed Work for (Move,Rename) from the Mylyn
Dataset

each combination is ignored. Same as shown in the Table
VI in Section IV-A, Rename and Move refactorings are
classified according to their applied types. The numbers of
performed refactoring, investigated refactoring, same targets,
and related targets are shown in Table VII. More than half of
all investigated refactoring-pairs are same or related.

Hereinafter, we summarize an overview of the detailed
works for the most frequently co-occurred refactorings: (Move,
Rename), (Rename, Rename), and (Extract, Move).

1) (Move, Rename)

About refactoring pair of Move and Rename, it
turned out that Rename are occurred to change the
names of program element that were moved previ-
ously. In the case where targets of Move and Rename
refactorings were the same program element, program
elements such as packages, classes, and fields were
renamed immediately after they were moved. In the
case where targets of Move and Rename refactorings
had similar name or belong to the same package
or class, the names of classes and packages were
changed after program elements such as classes fields,
and methods were moved into it.
Figure 1 depicts an instance of detailed work
of Move and Rename Type refactorings
simultaneously performed in Mylyn project.
This instance is found from a commit recorded
in the Git repository of Mylyn project1. In
this figure, a class named ProjectPreferences-
LinkProvider was moved from package named

1http://git.eclipse.org/c/mylyn/org.eclipse.mylyn.tasks.git/
tree/org.eclipse.mylyn.tasks.ui/src/org/eclipse/mylyn/internal/
tasks/ui/properties/ProjectPropertiesLinkProvider.java?id=
a4907cc0d72cdc9e6eb7c1e62234edd01214b072

TaskElementLabelProvider(…){

…
compositeImages
…

}

wideImages

org.eclipse.mylyn.internal.tasks.ui.views

compositeImages wideImages

Rename

Rename

TaskElementLabelProvider.java

compo
Field

compositeImag
Local Variable

T

cc

L

Fig. 2. An Instance of Detailed Work for (Rename,Rename) from the Mylyn
Dataset

org.eclipse.mylyn.tasks.ui to package named
org.eclipse.mylyn.internal.tasks.ui.properties.
Moreover, its class name is changed
from ProjectPreferencesLinkProvider
to ProjectPropertiesLinkProvider using
Rename Type refactoring. Its new name
includes a word properties (shown in red
font) come from its new package named
org.eclipse.mylyn.internal.tasks.ui.properties.

2) (Rename, Rename)
About refactoring pair of Rename and Rename, it
turned out that Rename refactorings are performed
together regardless of types of targeted program el-
ements in many cases. In addition, those program
elements tend to have similar names and some rela-
tionship. For example, a local variable of constructor,
setter method, or getter method and a relating field
variable are often renamed together.
Figure 2 shows an instance where Rename Field,
Rename Local Variable refactorings were
used together in Mylyn project. This instance is found
from a commit recorded in the Git repository of
Mylyn project2 In this figure, a field variable named
compositeImages is renamed to wideImages

2http://git.eclipse.org/c/mylyn/org.eclipse.mylyn.tasks.
git/diff/org.eclipse.mylyn.tasks.ui/src/org/eclipse/mylyn/
internal/tasks/ui/views/TaskElementLabelProvider.java?id=
62f11037485847c03b5e9f7c309ac1f25ee9a242

34

using Rename Field refactoring. Moreover, a
local variable also named compositeImages is
similarly renamed to wideImages using Rename
Local Variable refactoring.

3) (Extract Interface, Move)

About refactoring pair of Extract Interface
and Move, it turned out that extracted interfaces are
moved into other packages in many cases.

V. DISCUSSION

As a result of the investigation, the most frequently co-
occurred refactoring is revealed. Based on the investigation
results, this section explains our suggestions for improving
refactoring features of Eclipse as follows.

1) (Move, Rename)

Based on the results of the investigation, a refactoring
tool needs to supports developers to consecutively
perform Rename refactoring after Move refactoring.
Currently, Eclipse does not provide interaction
between Move and Rename refactorings. Therefore,
developers need to perform Move and Rename
refactoring separately and configuration dialog
appear twice even though developers often do not
configure refactoring tools [7]. For supporting this
combinations of refactorings, making a new menu
which simultaneously performs Move and Rename
refactorings in Eclipse can be useful. If the name of
the program element can be changed in the dialog
of Move refactoring, it is unnecessary to perform
Rename refactoring separately. Recommending
appropriate new name for moved elements is also
can be useful for supporting this combinations.

2) (Rename, Rename)

For supporting these refactorings, tool should support
rename several program elements regardless of their
types can be useful for supporting this refactoring
pair. In the current specification of refactorings of
Eclipse, for only the Rename refactoring intended
for class, elements with the similar names can be
automatically renamed together. However, there is
no such support for Rename refactoring intended
for other types of program elements such as fields or
methods. Therefore, it is necessary to support them
in the same way.

3) (Extract Interface, Move)

Based on the investigation results, a refactoring
tool needs to supports developers to consecu-
tively perform Move refactoring after Extract
Interface refactoring. In the current specification
of refactorings of Eclipse, Move refactoring of a
java file can be carried out easily with drag-and-drop
from the Package Explorer. Therefore, it is considered
that sufficient support is being made already for

this combination. But if the location to create new
Java file can be selected in the dialog of Extract
Interface refactoring, it is unnecessary to perform
Move refactoring separately.

Some limitations exist in this study because we investigated
the data sets in the period of 2005 to 2009. Refactoring features
in version of Eclipse at the time would be different from those
of the latest version. Therefore, we need to investigate a recent
data set to examine how developers have changed the way of
refactoring. However, the usability problems revealed in this
study still exists in the current version of Eclipse.

VI. RELATED WORK

Murphy et al. reported on usage data collected from 41
Java software developers using Eclipse, providing a glimpse
into their work habits [9]. According to their report, the
most common refactoring commands were Rename, Move,
and Extract. Murphy-Hill and Black observed 11 program-
mers perform a number of Extract Method refactorings,
and then revealed room for two types of improvements to
Extract Method refactoring tools [10]. First, to prevent
a large number of errors in the first place, programmers
need support in making a valid selection. Second, to help
programmers successfully recover from violated preconditions,
programmers need expressive, distinguishable, and understand-
able feedback that conveys the meaning of precondition viola-
tions. Based on the revealed room, they presented three tools
that help programmers avoid selection errors and understand
refactoring precondition violations. Also, Murphy-Hill et al.
revealed that programmers often repeat the same types of
refactorings [7]. According to their investigation, about 40% of
refactorings performed using tool occur in batches. Also, they
found that about 90% of configuration defaults in refactoring
tools are not changed when programmers use the tools. We in-
vestigated repeatedly performed different kinds of refactorings
based on the usage instances of the existing refactroing tools.

Vakilian et al. collected a set of interaction data from about
1268 hours of programming using our minimally intrusive data
collectors [11]. Their quantitative data shows that programmers
prefer lightweight methods of invoking refactorings, usually
perform small changes using the refactoring tool, proceed with
an automated refactoring. They found that programmers use
predictable automated refactorings even if they have rare bugs
or change the behavior of the program. Vakilian and Johnson
proposed an approach to discovering the usability problem on
the refactoring feature of Eclipse by collecting alternate refac-
toring paths (i.e., a sequence of user interactions that contains
cancellations, reported messages, or repeated invocations of
the refactoring tool) [12]. Their approach revealed 15 usability
problems, 13 of which were previously unknown. We would
like to investigate whether or not our suggestion in Section
V is able to reduce the usability problem on the refactoring
feature of Eclipse.

Kim et al. presented a field study of refactoring benefits
and challenges at Microsoft [13]. Their survey found that the
refactoring definition in practice is not confined to a rigorous
definition of semantics-preserving code transformations. We
need to investigate refactoring instances in industrial projects
as well as in OSS projects. Also, Kim et al studied API-level

35

refactorings and bug fixes in three large open source projects,
totaling 26523 revisions of evolution [14]. One of their findings
is that an increase is confirmed in the number of bug fixes after
API-level refactorings. We hope to investigate whether or not
co-occurred refactorings affect bug fixes.

Several studies have been done on seamless support for
refactoring [5], [6], [15], [16]. BeneFactor [6], GhostFactor
[16] and WitchDoctor [5] monitor code modification on the
fly, and then dynamically utilize the monitoring result for
refactoring support. They detect the beginning of refactoring,
and pro-actively recommend a series of code transformation to
complete the refactoring. Lee et al. proposed Drag-and-Drop
Refactoring, which allows programmers to directly manipulate
program elements (e.g., variables, expressions, statements,
methods) in IDE [15]. We suggested seamless support for co-
occurred refactorings in Section V.

VII. SUMMARY

To develop a tool that supports different kinds of co-
occurred refactorings, this study preliminary investigates re-
peatedly performed different kinds of refactorings based on
the developers’ refactoring tool usage.

In summary, the most co-occurred refactorings are (Move,
Rename), (Rename, Rename), and (Extract, Move).
Moreover, based on the investigation of the detailed works for
these co-occurred refactorings, we suggested several improve-
ments of refactoring feature in Eclipse for supporting them.
In order to support the refactoring pair (Move, Rename),
the refactoring feature needs to support developers to simul-
taneously perform this combination. For the refactoring pair
(Rename, Rename), the tool must be able to perform multiple
Rename refactorings together regardless of types of their
targeted program elements.

As future work, it is necessary to clarify benefits of
supporting co-occurred refactorings. We expect that supporting
co-occurred refactorings certainly improves software develop-
ment efficiency. However, it has not been investigated yet
for the effect on occurrence of bugs. Also, we are going
to analyze additional software systems to achive generality
of our findings. In addition, we are interested in comparing
batched refactorings between legacy software projects includ-
ing a number of bad smells and well-maintained software
project. We expect that such legacy project tends to cause
higher number of batched refactorings compared to well-
maintained projects. Especially, we would like to investigate
whether or not combined bad smells [17] and/or the amount of
code clones [18] increase the number of batched refactorings.
Also, industrial filed study [13] on batched refactorings is an
interesting challenge. Finally, we would like to develop a tool
for supporting refactoring according to the findings from the
investigations.

VIII. ACKNOWLEDGMENT

We express our great thanks to Dr. Gail C. Murphy, Dr. Mik
Kersten and Dr. Leah Findlater at the University of British
Columbia for providing the Users dataset, and Dr. Emerson
Murphy-Hill at North Carolina State University, Dr. Chris
Parnin at the Georgia Institute of Technology and Dr. Andrew
P. Black at Portland State University for providing the Mylyn

dataset. This work was supported by JSPS KAKENHI Grant
Numbers 25220003 and 26730036.

REFERENCES

[1] M. Fowler, Refactoring:Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

[2] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 1992.

[3] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in Proc. of SCAM, 2012, pp. 104–113.

[4] R. Tairas and J. Gray, “Increasing clone maintenance support by
unifying clone detection and refactoring activities,” Inf. Softw. Technol.,
vol. 54, no. 12, pp. 1297–1307, 2012.

[5] S. R. Foster, W. G. Griswold, and S. Lerner, “WitchDoctor: IDE support
for real-time auto-completion of refactorings,” in Proc. of ICSE, 2012,
pp. 222–232.

[6] X. Ge, Q. L. DuBose, and E. R. Murphy-Hill, “Reconciling manual and
automatic refactoring,” in Proc. of ICSE, 2012, pp. 211–221.

[7] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 5–18, 2012.

[8] M. Vakilian, N. Chen, R. Z. Moghaddam, S. Negara, and R. E. Johnson,
“A compositional paradigm of automating refactorings,” in Proc. of
ECOOP, 2013, pp. 527–551.

[9] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the Eclipse IDE?” IEEE Softw., vol. 23, no. 4, pp.
76–83, 2014.

[10] E. Murphy-Hill and A. P. Black, “Breaking the barriers to successful
refactoring: observations and tools for extract method,” in Proc. of ICSE,
2008, pp. 421–430.

[11] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, disuse, and misuse of automated refactorings,” in
Proc. of ICSE, 2012, pp. 233–243.

[12] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal
usability problems,” in Proc. of ICSE, 2014, pp. 1106–1116.

[13] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refac-
toring challenges and benefits,” in Proc. of FSE, 2012, pp. 1–11.

[14] M. Kim, D. Cai, and S. Kim, “An empirical investigation into the role
of api-level refactorings during software evolution,” in Proc. of ICSE,
2011, pp. 151–160.

[15] Y. Y. Lee, N. Chen, and R. E. Johnson, “Drag-and-drop refactoring:
Intuitive and efficient program transformation,” in Proc. of ICSE, 2013,
pp. 23–32.

[16] X. Ge and E. Murphy-Hill, “Manual refactoring changes with automated
refactoring validation,” in Proc. of ICSE, 2014, pp. 1095–1105.

[17] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: an empirical study,” in Proc. of
ICSE, 2013, pp. 682–691.

[18] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, 2002.

36

