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Abstract—Software code review is an inspection of a code
change by an independent third-party developer in order to iden-
tify and fix defects before an integration. Effectively performing
code review can improve the overall software quality. In recent
years, Modern Code Review (MCR), a lightweight and tool-based
code inspection, has been widely adopted in both proprietary
and open-source software systems. Finding appropriate code-
reviewers in MCR is a necessary step of reviewing a code change.
However, little research is known the difficulty of finding code-
reviewers in a distributed software development and its impact on
reviewing time. In this paper, we investigate the impact of reviews
with code-reviewer assignment problem has on reviewing time.
We find that reviews with code-reviewer assignment problem
take 12 days longer to approve a code change. To help devel-
opers find appropriate code-reviewers, we propose REVFINDER,
a file location-based code-reviewer recommendation approach.
We leverage a similarity of previously reviewed file path to
recommend an appropriate code-reviewer. The intuition is that
files that are located in similar file paths would be managed
and reviewed by similar experienced code-reviewers. Through an
empirical evaluation on a case study of 42,045 reviews of Android
Open Source Project (AOSP), OpenStack, Qt and LibreOffice
projects, we find that REVFINDER accurately recommended 79%
of reviews with a top 10 recommendation. REVFINDER also
correctly recommended the code-reviewers with a median rank
of 4. The overall ranking of REVFINDER is 3 times better than
that of a baseline approach. We believe that REVFINDER could
be applied to MCR in order to help developers find appropriate
code-reviewers and speed up the overall code review process.

Keywords—Distributed Software Development, Modern Code
Review, Code-Reviewer Recommendation

I. INTRODUCTION

Software code review has been an engineering best practice
for over 35 years [1]. It is an inspection of a code change
by an independent third-party developer to identify and fix
defects before integrating a code change into a system. While
a traditional code review, a formal code review involving in-
person meetings, has shown to improve the overall quality
of software product [2–4], however, the traditional practice
is limited in the adoption to the globally-distributed software
development [5].

Recently, Modern Code Review (MCR) [6], an informal,
lightweight and tool-based code review methodology, has
emerged as a widely used tool in both industrial software
and open-source software. Generally, when a code change,
i.e., patch, is submitted for review, the author will invite
a set of code-reviewers to review the code change. Then,
the code-reviewers will discuss the change and suggest fixes.
The code change will be integrated to the main version

control system when one or more code-reviewers approve the
change. Rigby et al. [7] find that code reviews are expensive
because they require code-reviewers to read, understand, and
critique a code change. To effectively assess a code change,
an author should find appropriate code-reviewers who have a
deep understanding of the related source code to well examine
code changes and find defects [4]. As a huge amount of
code changes must be reviewed before the integration, finding
appropriate code-reviewers to every piece of code changes can
be time-consuming and labor-intensive for developers [8].

In this paper, we first set out to better understand how
do reviews with code-reviewer assignment problem impact
reviewing time. In particular, we investigate (1) what is the
proportion of reviews with code-reviewer assignment problem;
(2) how do reviews with code-reviewer assignment problem
impact reviewing time; and (3) does a code-reviewer rec-
ommendation tool is necessary in distributed software devel-
opment. We manually examine 7,597 comments from 1,461
representative review samples of four open-source software
systems to identify the reviews with a discussion of code-
reviewer assignment. Our results show that 4%-30% of re-
views have code-reviewer assignment problem. These reviews
significantly take 12 days longer to approve a code change. Our
findings also show that a code-reviewer recommendation tool
is necessary in distributed software developerment to speed up
a code review process.

To help developers find appropriate code-reviewers, we
propose REVFINDER, a file location-based code-reviewer rec-
ommendation approach. We leverage a similarity of previously
reviewed file path to recommend an appropriate code-reviewer.
The intuition is that files that are located in similar file paths
would be managed and reviewed by similar experienced code-
reviewers. In order to evaluate REVFINDER, we perform a case
study on 42,045 reviews of four open-source software systems
i.e., Android Open Source Project (AOSP), OpenStack, Qt
and LibreOffice. The results show that REVFINDER correctly
recommended 79% of reviews with a top 10 recommenda-
tion. REVFINDER is 4 times more accurate than a baseline
approach, indicating that leveraging a similarity of previously
reviewed file path can accurately recommend code-reviewers.
REVFINDER also recommended the correct code-reviewers
with a median rank of 4. The overall ranking of REVFINDER

is 3 times better than that of the baseline approach, indicating
that REVFINDER provides a better ranking of recommended
code-reviewers. Therefore, we believe that REVFINDER can
help developers find appropriate code-reviewers and speed up
the overall code review process.
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The main contributions of this paper are:

• An exploratory study on the impact of code-reviewer
assignment on reviewing time.

• REVFINDER, a file location-based code-reviewers recom-
mendation approach, with promising evaluation results
to automatically suggest appropriate code-reviewers for
MCR.

• A rich data set of reviews data in order to encourage
future research in the area of code-reviewer recommen-
dation.1

The remainder of the paper is organized as follows. Sec-
tion II describes a background of MCR process and related
work. Section III presents an exploratory study of the impact
of code-reviewer assignment on reviewing time. Section IV
presents our proposed approach, REVFINDER. Section V de-
scribes an empirical evaluation of the approach. Section VI
presents the results of our empirical evaluation. Section VII
discusses the performance and applicability of REVFINDER,
and addresses the threats to validity. Finally, Section VIII
draws our conclusion and future work.

II. BACKGROUND AND RELATED WORK

A. Modern Code Review

Code review is the manual assessment of source code
by humans, mainly intended to identify defects and quality
problems [9]. However, the traditional code review practice
is limited in the adoption to the globally-distributed software
development [5]. In recent years, Modern Code Review (MCR)
has been developed as a tool-based code review system which
is less formal than the traditional one. MCR becomes popular
and widely used in both proprietary software (e.g., Google,
Cisco, Microsoft) and open-source software (e.g., Android, Qt,
LibreOffice) [6]. Below, we briefly describe the Gerrit-based
code review system, which is a prominent tool and widely used
in previous studies [10–13].

To illustrate the Gerrit-based code review system, we use
an example of Android reviews ID 187672 (see Figure 1).
The developers’ information are blinded for privacy reasons.
In general, there are four steps as following:

1) An author (Smith) creates a change and submits it for
review.

2) The author (Smith) invites a set of reviewers (i.e., Code-
reviewers and Verifiers) to review the patch.

3) A code-reviewer (Alex) will discuss the change and
suggest fixes. A verifier (John) will execute tests to
ensure that: (1) patch truly fix the defect or add the feature
that the authors claim to, and (2) do not cause regression
of system behavior. The author (Smith) needs to revise
and re-submit the change to address the suggestion of the
reviewers (Alex and John).

4) The change will be integrated to the main repository when
it receives a code-review score of +2 (Approved) from a
code-reviewer and a verified score of +1 (Verified) from
a verifier. Then, the review will be marked as “Merged.”
Otherwise, the change will be automatically rejected if

1http://github.com/patanamon/revfinder
2https://android-review.googlesource.com/#/c/18767/

Fig. 1: An example of Gerrit code reviews in Android Open Source
Project.

it receives a code-review score of -2 (Rejected) and the
review will be marked as “Abandoned.”

From the example in Figure 1, we observe that finding
appropriate code-reviewers is a tedious task for developers.
The author (Smith) has a code-reviewer assignment problem
since he cannot find code-reviewers to review his change. To
find code-reviewers, the author (Smith) asks other developers
in the discussion:“Can you please add appropriate reviewers
for this change?” Finding an appropriate code-reviewer can
increase the reviewing time and decrease the effectiveness of
MCR process. Therefore, an automatic code-reviewer recom-
mendation tool would help developers reduce their time and
effort.

B. Related Work

We discuss the related work with respect to code review in
distributed software development and expert recommendation.

Software Code Review. Understanding software code review
practices receive much attention in the last few years. Rigby et
al. [14] empirically investigate the activity, participation, re-
view interval and quality of code review process in an open-
source software. They observe that if a code change is not
reviewed immediately, it will not likely be reviewed. Weiger-
ber et al. [15] examine the characteristics of patch acceptance
and found that smaller code changes are more likely to be
accepted. They also observed that some code changes need
more than two weeks until being merged. Rigby and Bird [11]
also observe that 50% of reviews have reviewing time almost
30 days. A recent study by Tsay et al. [16] also find that some
code changes are awaiting to be merged for 2 months.

To better understand what influences code review interval,
Jiang et al. [17] empirically investigate the characteristics of
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TABLE I: A statistical summary of datasets for each studied system.

Android OpenStack Qt LibreOffice

Studied Period 10/2008 - 01/2012 07/2011 - 05/2012 05/2011 - 05/2012 03/2012 - 06/2014

# Selected Reviews 5,126 6,586 23,810 6,523

# Code-reviewers 94 82 202 63

# Files 26,840 16,953 78,401 35,273

Avg. Code-reviewers per Review 1.06 1.44 1.07 1.01

Avg. Files per Review 8.26 6.04 10.64 11.14

accepted code changes and its reviewing time on a Linux
case study. They found that reviewing time is impacted by
submission time, the number of affected subsystem, the num-
ber of code-reviewers and developer’s experience. Bosu et
al. [18] also found that the reviewing time of a code change
submitted by core developers is shorter than peripheral de-
velopers. Pinzger et al. [19] also found that the reviewing
time in Github is influenced by the developer’s contribution
history, the size of the project, and its test coverage, and the
project’s openness to external contriubtions. However, none
of these studies addresses the difficulty of finding appropriate
code-reviewers nor do they investigate the impact of reviews
with code-reviewer assignment problem on reviewing time. In
this paper, we conduct an exploratory study to investigate the
impact of reviews with code-reviewer assignment problem on
reviewing time.

Expert Recommendation. Finding relevant expertise is a
critical need in collaborative software engineering, particularly
in geographically distributed developments [20]. We briefly
address two closely related research areas i.e., expert rec-
ommendation for bug fixing process and MCR process. To
recommend experts for bug fixing process, Anvik et al. [21]
propose an approach based on machine learning techniques to
recommend developers to fix a new bug report. Shokripour et
al. [22] propose an approach to recommend developers based
on information in bug report and history of fixed files. Xia et
al. [23] propose a developer recommendation using bug report
and developer information. Surian et al. [24] propose a devel-
oper recommendation using developers’ collaboration network.
In a recent study, Tian et al. [25] propose an expert recom-
mendation system for Question & Answer community using
topic modeling and collaborative voting scores. In contrast, we
focus on the code review process which has limited textual
information in the code review systems.

To recommend experts for code review process, Jeong et
al. [26] extract features from patch information and build
prediction model using Baysian network. Yu et al. [27] use
social relationship among developers to recommend code-
reviewers for Github systems. Balachandran et al. [28] use
a modification history in line-by-line of source code to recom-
mend code-reviewers for industrial environment of VMware,
called REVIEWBOT. Our prior study has shown that the
performance of the REVIEWBOT is limited in other software
systems with no or little modification history in line-by-line of
source code [29]. Therefore, code-reviewer recommendation
approaches can be further improved. In this paper, we use a
similarity of previously reviewed file pathto recommend code-
reviewers.

III. AN EXPLORATORY STUDY OF THE IMPACT OF

CODE-REVIEWER ASSIGNMENT ON REVIEWING TIME

In this section, we report the results of our exploratory
study on the difficulty of finding code-reviewers in a dis-
tributed software development and its impact on reviewing
time.

(RQ1) How do reviews with code-reviewer assignment prob-
lem impact reviewing time?

Motivation. Little is known about the difficulty of finding
code-reviewers in a distributed software development and
its impact on reviewing time. We suspect that reviews with
code-reviewer assignment problem are likely to require more
time and discussion in order to identify an appropriate code-
reviewer. Hence, we set out to empirically investigate the
impact of reviews with code-reviewer assignment problem has
on reviewing time as compared to the reviews without code-
reviewer assignment problem. In particular, we investigate:
(1) what is the proportion of reviews with code-reviewer
assignment problem; (2) how do reviews with code-reviewer
assignment problem impact reviewing time; and (3) does a
code-reviewer recommendation tool is necessary in distributed
software development.

Approach. To address RQ1, we first select a representative
sample of reviews. We then manually examine the discus-
sion to identify the reviews with code-reviewer assignment
problem. We then calculate the reviewing time of the review
samples. The results are then analyzed and discussed. We
describe how we perform each step in particular below.

(Step 1) Data Collection: We use the review data of
Android Open Source Project (AOSP), OpenStack and Qt
projects provided by Hamasaki et al. [30]. We also expand
the dataset to include the review data of LibreOffice project
using the same collection technique [30]. After collecting
reviews, we select them in the following manner; (1) Reviews
are marked as “Merged” or “Abandoned”; and (2) Reviews
contain at least one code change to conform the purpose
of code review practice [13]. Table I shows the statistical
summary for each studied systems.

(Step 2) Representative Sample Selection: To identify the
proportion of reviews with code-reviewer assignment problem,
we select a representative sample of reviews for manual
analysis, since the full set of reviews is too large to study
entirely. To obtain proportion estimates that are within 5%
bounds of the actual proportion with a 95% confidence level,

we use a sample size s = z2p(1−p)
0.052 , where p is the proportion

that we want to estimate and z = 1.96. Since we did not know
the proportion in advance, we use p = 0.5. We further correct
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Fig. 2: A comparison of the code reviewing time (days) of reviews with and without code-reviewer assignment problem. The horizontal lines
indicate the average (median) review time (days).

for the finite population of reviews P using ss = s

1+ s−1

P

to obtain our sample for manual analysis. Table II shows
the numbers of samples for manual analysis of 357 Android
reviews, 363 OpenStack reviews, 378 Qt reviews, and 363
LibreOffice reviews. In total, we manually examine 7,597
comments of 1,461 review samples.

(Step 3) Review Classification: To determine whether a
review has a code-reviewer assignment problem, we manually
classify the reviews by examining through each of their com-
ments. Since the comments are written in natural language,
it is very difficult to automatically analyze them. We define
that reviews with code-reviewer assignment problem are the
reviews that their discussions address an issue about who
should review these code changes.

(Step 4) Data Analysis: Once we manually examine the
review samples, we calculate the reviewing time of the review
samples. Reviewing time is the time difference from the time
that a code change has been submitted to the time that the
code changes are approved or abandoned. We then compare the
distributions of the reviewing time between reviews with and
without code-reviewer assignment problem using beanplots
[31]. Beanplots are boxplots in which the vertical curves sum-
marize the distributions of different data set. The horizontal
lines indicate the average (median) reviewing time (days).
We use a Mann-Whitney’s U test (α = 0.05), which is a
non-parametric test, to statistically determine the difference
of the reviewing time distributions. Since reviewing time can
be influenced by patch size [15, 19], we divide the reviewing
time by the patch size before performing a statistical test.

Results. 4%-30% of reviews have code-reviewer assign-
ment problem. The percentage of reviews with code-reviewer
assignment problem is shown in Table II. From our empirical
investigation, we found that, for Android, OpenStack, Qt, and
LibreOffice, 10%, 5%, 30%, and 4% of reviews have code-
reviewer assignment problem, respectively. We observe that
Qt has the highest proportion of reviews with code-reviewer
assignment problem. It may in part be due to the size of the
community and software system (i.e., the amount of reviews,
code-reviewers, and files). This indicates that the larger the
system is, the more difficult of finding appropriate code-
reviewers it is.

On average, reviews with code-reviewer assignment
problem require 12 days longer to approve code changes.
Figure 2 shows that reviews with code-reviewer assignment
problem require 18, 9, 13, and 6 days to make an integration
decision of code changes for Android, OpenStack, Qt, and

TABLE II: The numbers of statistical representative samples for each
studied projects and the percentage of reviews with code-reviewer
assignment problem with a 95% confidence level and a confidence
interval of ± 5%.

Android OpenStack Qt LibreOffice

# Review 357 363 378 363

Percentage 10% 5% 30% 4%

LibreOffice, respectively. In contrast, reviews without code-
reviewer assignment problem can be integrated within one
day. Mann-Whitney U tests confirm that the differences are
statistically significant (p-value < 0.001 for Android, Open-
Stack, and Qt, and p-value < 0.01 for LibreOffice). This
finding indicates that most of reviews with code-reviewer
assignment problem could slow down the code review process
of distributed software development.

A code-reviewer recommendation tool is necessary in
distributed software development to speed up the code
review process. During our manual examination, we find that
finding a code-reviewer is truly a necessary step of MCR
process. For example, a Qt developer said: “You might want
to add some approvers to the reviewers list if you want
it reviewed/approved.”3 Additionally, developers often ask a
question of finding appropriate code-reviewers. For example,
a Qt developer said that; “Feel free to add reviewers, I am not
sure who needs to review this...”4 One of the Android develop-
ers also said; “Can you please add appropriate reviewers for
this change?”5 Therefore, finding an appropriate code-reviewer
to review a code change is a tedious task for developers and
posses a problem in distributed software development in recent
years. Moreover, a Qt developer suggested an author to add
code-reviewers to speed up the code review process: “for the
future, it speeds things up often if you add reviewers for your
changes :)”6

4%-30% of reviews have code-reviewer assignment
problem. These reviews significantly take 12 days longer

to approve a code change. A code-reviewer
recommendation tool is necessary in distributed software

development to speed up a code review process.

3Qt-16803 https://codereview.qt-project.org/#/c/16803
4Qt-40477 https://codereview.qt-project.org/#/c/40477
5AOSP-18767 https://android-review.googlesource.com/#/c/18767/
6Qt-14251 https://codereview.qt-project.org/#/c/14251
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IV. REVFINDER: A FILE LOCATION-BASED

CODE-REVIEWER RECOMMENDATION APPROACH

A. An Overview of REVFINDER

REVFINDER is a combination of recommended code-
reviewers from the Code-Reviewers Ranking Algorithm.
REVFINDER aims to recommend code-reviewers who have
previously reviewed similar functionality. Therefore, we lever-
age a similarity of previously reviewed file path to recommend
code-reviewers. The intuition is that files that are located in
similar file paths would be managed and reviewed by similar
experienced code-reviewers. REVFINDER has two main parts
i.e., the Code-Reviewers Ranking Algorithm and the Combi-
nation Technique.

The Code-Reviewers Ranking Algorithm computes code-
reviewer scores using a similarity of previously reviewed file
path. To illustrate, we use Figure 3 as a calculation example
of the algorithm. Given a new review R3; and two previously
closed reviews R1 and R2, the algorithm first calculates a
review similarity score for each of previous reviews (R1,R2)
by comparing file paths with the new review R3. Therefore,
we will have two review similarity scores of (R3, R1) and
(R3, R2). To compute a review similarity score, we use a
state-of-the-art string comparison technique [32], which is
successfully used in computational biology. In this example, it
is obvious that the file path of R3 and R2 share some common
keywords (video,src) more than a pair of R3 and R1.
We presume that the review similarity score of (R3, R1) is
0.1 and that of (R3, R2) is 0.5. Then, these review similarity
scores are propagated to each code-reviewer who has involved
in i.e., Code-Reviewer A earns review similarity scores of
0.5 + 0.1 and Code-Reviewer B earns a review similarity
score of 0.1. Finally, the algorithm will produce a list of
code-reviewers along with their scores. Since there are many
well-known variants of string comparison techniques [32],
REVFINDER combines the different lists of code-reviewers
into a unified list of code-reviewers. By combining, the truly-
relevant code-reviewers are likely to “bubble up” to the top of
the combined list, providing code-reviewers with fewer false
positive matches to recommend.

Below, we explain the calculation of Code-Reviewers
Ranking Algorithm, String Comparison Techniques and the
Combination Technique.

B. The Code-Reviewers Ranking Algorithm

The pseudo-code of the Code-Reviewers Ranking Algo-
rithm is shown in Algorithm 1. It takes as input a new review
(Rn) and produces a list of code-reviewer candidates (C) with
code-reviewer scores. The algorithm begins with retrieving the
reviews before Rn as pastReviews and sorts them by their cre-
ation date in reverse chronological order (Lines 7 and 8). We
note that the pastReviews are previously closed reviews that
are marked as “Merged” or “Abandoned” and must be created
before Rn. The algorithm calculates a review similarity score
between each of pastReviews and the new review (Rn). Then,
the review similarity scores are propagated to code-reviewers
who involved in (Lines 9 to 24). For each review (Rp) of
the pastReviews, the review similarity score (ScoreRp

) is an
average of file path similarity value of every file path in Rn

Review R3 

Files 

‐ video/src/a.java 

‐ video/src/b.java 

Code‐Reviewers 

Previous Reviews 

Review R2 

Files  

‐ video/src/x.java 

‐ video/src/y.java 

Code‐Reviewers 

A 

Review R1 

Files  

‐ video/resource/

a.xml 

Code‐Reviewers 

A  B 

Review 

Similarity 

?  ?  ? 

1 

2 

Code‐Reviewers Scores 

A 

B 

= ReviewSimilarity(R3,R1) + ReviewSimilarity (R3,R2) = 0.1 + 0.5 = 0.6  

= ReviewSimilarity (R3,R1) = 0.1 

Review History 

Review 

Similarity 

Fig. 3: A calculation example of the Code-Reviewers Ranking
Algorithm.

Algorithm 1 The Code-Reviewers Ranking Algorithm

1: Code-ReviewersRankingAlgorithm
2: Input:
3: Rn : A new review
4: Output:
5: C : A list of code-reviewer candidates
6: Method:
7: pastReviews← A list of previously closed reviews
8: pastReviews← order(pastReviews).by(createdDate)
9: for Review Rp ∈ pastReviews do

10: Filesn ← getFiles(Rn)
11: Filesp ← getFiles(Rp)
12: # Compute review similarity score between Rn and Rp

13: ScoreRp ← 0
14: for fn ∈ Filesn do
15: for fp ∈ Filesp do
16: ScoreRp ← ScoreRp + filePathSimilarity(fn, fp)
17: end for
18: end for
19: ScoreRp ← ScoreRp / (length(Filesn)× length(Filesp))
20: # Propagate review similarity scores to code-reviewers who

involved in a previous review Rp

21: for Code-Reviewer r : getCodeReviewers(Rp) do
22: C[r].score← C[r].score+ ScoreRp

23: end for

24: end for
25: return C

and Rp using filePathSimilarity(fn, fp) function (Lines 13 to
19). After calculating the review similarity score, every code-
reviewer in Rp is added to the list of code-reviewer candidates
(C) with their review similarity score (ScoreRp

) (Lines 21 to
23). If a code-reviewer is already in C, the code-reviewer score
will be cumulated with the previous code-reviewer score.

To compute file path similarity value between file fn and
file fp, the filePathSimilarity(fn, fp) function is calculated
as follows:

filePathSimilarity(fn, fp) =
StringComparison(fn, fp)

max(Length(fn),Length(fp))
(1)

We split file path into components using a slash character as
a delimiter. The StringComparison(fn, fp) function compares
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TABLE III: A description of file path comparison techniques and examples of calculation. The examples are obtained from the review history
of Android for LCP, LCSubstr, and LCSubseq techniques; and Qt for LCS techniques. For each technique, the example files were reviewed
by the same code-reviewer.

Functions Description Example

Longest Common Prefix
(LCP)

Longest consecutive path components
that appears in the beginning of both
file paths.

f1 =“src/com/android/settings/LocationSettings.java”
f2 = “src/com/android/settings/Utils.java”

LCP(f1, f2) = length([src, com, android, settings]) = 4

Longest Common Suffix
(LCS)

Longest consecutive path components
that appears in the end of both file
paths

f1 = “src/imports/undo/undo.pro”
f2 = “tests/auto/undo/undo.pro”

LCS(f1, f2) = length([undo, undo.pro]) = 2

Longest Common
Substring (LCSubstr)

Longest consecutive path components
that appears in both file paths

f1 = “res/layout/bluetooth_pin_entry.xml”
f2 = “tests/res/layout/operator_main.xml”

LCSubstr(f1, f2) = length([res, layout]) = 2

Longest Common
Subsequence
(LCSubseq)

Longest path components that appear
in both file paths in relative order but
not necessarily contiguous

f1 =“apps/CtsVerifier/src/com/android/cts/verifier/
sensors/MagnetometerTestActivity.java”
f2 =“tests/tests/hardware/src/android/hardware/cts/
SensorTest.java”

LCSubstr(f1, f2) = length([src, android, cts]) = 3

file path components of fn and fp and returns a number of the
common components that appear in both files. Then, the value
of filePathSimilarity(fn, fp) is normalized by the maximum
length of fn and fp i.e., the number of file path components.
The details of string comparison techniques will be presented
in the next subsection.

C. String Comparison Techniques

To compute file path similarity score (filePathSimilarity),
we use four state-of-the-art string comparison techniques [32]
i.e., Longest Common Prefix (LCP), Longest Common Suffix
(LCS), Longest Common Substring (LCSubstr), and Longest
Common Subsequence (LCSubseq). Table III presents the
definitions and a calculation example for these techniques.
We briefly explain the rationale of these techniques below.

Longest Common Prefix. Files under the same directory
would have similar or related functionality [33]. LCP calcu-
lates the number of common path components that appears in
both file paths from the beginning to the last. This is the most
simple and efficient way to compare two strings.

Longest Common Suffix. Files having the same name would
have the same functionality [32]. LCS calculates the number
of common path components that appears from the end of both
file paths. This is a simply reverse calculation of LCP.

Longest Common Substring. Since the file path can repre-
sent their functionality [34], the related functionality should
be under the same directory structure. However, their root
directories or filename might not be the same. LCSubstr
calculates the number of path components that appears in both
file path consecutively. The advantage of this technique is that
the common paths can be appeared at any position of file path.

Longest Common Subsequence. Files under similar direc-
tory structure would have similar or related functionality [32].
LCSubseq calculates the number of path components that
appears in both file paths which is in the same relative order.
The advantage of this technique is that the common paths of
this technique are not necessary to be contiguous.

D. Combination Technique

A combination of the results of individual techniques
has been successfully shown to improve the performance in
the data mining and software engineering domains [35, 36].
Since we used variants of string comparison techniques [32],
REVFINDER combines the different lists of code-reviewers
into a unified list of code-reviewers. Therefore, the truly-
relevant code-reviewers are likely to “bubble up” to the top of
the combined list, providing code-reviewers with fewer false
positive matches to recommend. We use the Borda count [37]
as a combination technique. It is a voting technique that simply
combine the recommendation lists based on the rank. For each
code-reviewer candidate ck, the Borda count method assigns
points based on the rank of ck in each recommendation list.
The candidate with the highest rank will get the highest score.
For example, if a recommendation list of RLCP votes candi-
date c1 as the first rank and the number of total candidates are
M , then ck would get a score of M . The candidate c10 (ranked
10th) would get a score of M − 10. Given a set of recom-
mendation lists R ∈ {RLCP , RLCS , RLCSubstr, RLCSubseq},
a score for a code-reviewer candidate ck is defined as follow:

Combination(ck) =
∑

Ri∈R

Mi − rank(ck|Ri) (2)

, where Mi is the total number of code-reviewer candidates
that received a non-zero score in Ri, and rank(ck|Ri) is the
rank of code-reviewer candidate ck in Ri. Finally, the code-
reviewer recommendations of REVFINDER is a list of code-
reviewer candidates that are ranked according to their Borda
score.

V. EMPIRICAL EVALUATION

We perform an empirical study to evaluate the effectiveness
of REVFINDER. First, we describe the goal and the research
questions we addressed. Second, we describe the studied
systems that we used to evaluate. Third, we present evalua-
tion metrics. Last, we briefly describe a baseline comparison
approach.
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A. Goal and Research Questions

The goal of our empirical study is to evaluate the effec-
tiveness of REVFINDER in terms of accuracy and ranking of
the correct code-reviewers. The results of REVFINDER are then
compared with REVIEWBOT [28] as a baseline approach since
it is the only existing code-reviewer recommendation approach
for MCR.

To achieve our goal, we address the following two research
questions:

(RQ2) Does REVFINDER accurately recommend code-
reviewers?
Motivation: We propose REVFINDER to find appropri-
ate code-reviewers based on a similarity of previously
reviewed file path. We aim to evaluate the performance
of our approach in terms of accuracy. Better perform-
ing approaches are of great value to practitioners since
they allow them to take better informed decisions.

(RQ3) Does REVFINDER provide better ranking of recom-
mended code-reviewers?
Motivation: Recommending correct code-reviewers in
the top ranks could ease developer as well as avoid
interfering unrelated code-reviewers. The higher ranks
of the correct code-reviewers that the approach can
recommend, the more effective it is [38]. We set out
this research question to evaluate the overall perfor-
mance of our approach in the view of ranking for a
recommendation.

B. Studied Systems

To evaluate REVFINDER, we use four open-source software
systems, i.e. Android, OpenStack, Qt, and LibreOffice. We
choose these systems mainly for three reasons. First, these
systems use Gerrit system as a tool-based for their code review
process. Second, these systems are large, active, real-world
software, which allow us to perform a realistic evaluation of
REVFINDER. Third, each systems carefully maintains code
review system, which allows us to build our oracle datasets
to evaluate REVFINDER. Table I shows a statistical summary
of the studied systems. Note that we use the same datasets as
in RQ1.

Android Open Source Project (AOSP)7 is a mobile oper-
ating system developed by Google. Qt8 is a cross-platform
application and UI framework developed by Digia Plc. Open-
Stack9 is a free and open-source software cloud computing
software platform supported by many well-known companies
e.g., IBM, VMware, and NEC. LibreOffice10 is a free and open
source office suite.

C. Evaluation Metrics

To evaluate our approach, we use the top-k accuracy
and the Mean Reciprocal Rank (MRR). These metrics are
commonly used in recommendation systems for software en-
gineering [28, 39, 40]. Since most of reviews have only one
code-reviewer (cf. Table I), other evaluation metrics (e.g. Mean

7https://source.android.com/
8http://qt-project.org/
9http://www.OpenStack.org/
10http://www.libreoffice.org/

Average Precision) that consider all of the correct answer
might not be appropriate for this evaluation.

Top-k accuracy calculates the percentage of reviews that
an approach can correctly recommend code-reviewers and
the total number of reviews. Given a set of reviews R,
the top-k accuracy can be calculated using Equation 3. The
isCorrect(r,Top-k) function returns value of 1 if at least
one of top-k code-reviewers actually approve the review r;
and returns value of 0 for otherwise. For example, a top-10
accuracy value of 75% indicates that for 75% of the reviews,
at least one correct code-reviewer was returned in the top 10
results. Inspired by the previous studies [28, 39, 40], we choose
the k value to be 1, 3, 5, and 10.

Top-k accuracy(R) =

∑
r∈R

isCorrect(r,Top-k)

|R|
× 100% (3)

Mean Reciprocal Rank (MRR) calculates an average of
reciprocal ranks of correct code-reviewers in a recommenda-
tion list. Given a set of reviews R, MRR can be calculated
using Equation 3. The rank(candidates(r)) returns value of
the first rank of actual code-reviewers in the recommendation
list candidates(r). If there is no actual code-reviewers in the
recommendation list, the value of 1

rank(candidates(r)) will be 0.

Ideally, an approach that can provide a perfect ranking should
achieve a MRR value of 1.

MRR =
1

|R|

∑

r∈R

1

rank(candidates(r))
(4)

D. REVIEWBOT: A Baseline Approach

We re-implement REVIEWBOT [28] as our baseline. RE-
VIEWBOT is a code-reviewer recommendation approach based
on the assumption that “the most appropriate reviewers for a
code review are those who previously modified or previously
reviewed the sections of code which are included in the current
review” [28, p.932]. Thus, REVIEWBOT finds code-reviewers
using a modification history in line-by-line of source code.
The calculation of REVIEWBOT can summarized as follows:
Given a new review, 1) it computes line change history, a list
of past reviews that relate to the same changed lines in the new
review. 2) The code-reviewers in line change history will be
code-reviewer candidates for the new review. Each candidate
receives a point based on her frequency of reviews in line
change history. 3) The candidates who recent reviewed and
have the highest scores will be recommended as appropriate
code-reviewers. To conserve space, a full description of RE-
VIEWBOT is provided in [28].

VI. RESULTS

In this section, we present the results of our empirical
evaluation with respect to our two research questions. For each
research question, we present its approach, and results.
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TABLE IV: The results of top-k accuracy of our approach RevFinder and a baseline ReviewBot for each studied system. The results show
that RevFinder outperforms ReviewBot.

System
REVFINDER REVIEWBOT

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Android 46 % 71 % 79 % 86 % 21 % 29 % 29 % 29 %

OpenStack 38 % 66 % 77 % 87 % 23 % 35 % 39 % 41 %

Qt 20 % 34 % 41 % 69 % 19 % 26 % 27 % 28 %

LibreOfiice 24 % 47 % 59 % 74 % 6 % 9 % 9% 10 %

Android OpenStack Qt LibreOffice
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Fig. 4: A rank distribution of the first correct code-reviewers recommended by RevFinder and ReviewBot. The results show that RevFinder
provide a better ranking of recommended code-reviewers.

(RQ2) Does REVFINDER accurately recommend code-
reviewers?

Approach. Since REVFINDER leverages a review history to
recommend code-reviewers, we perform an experiment based
on realistic scenario. To address RQ2, for each studied system,
we execute REVFINDER for every reviews in chronological
order to obtain the lists for recommended code-reviewers.
To evaluate how accurately the REVFINDER can correctly
recommended code-reviewers, we compute the top-k accuracy
for each studied system. We also compare the results of our
approach with REVIEWBOT.

Result. On average, for 79% of reviews, REVFINDER

correctly recommended code-reviewers with a top-10 rec-
ommendation. Table IV presents the results of top-1, top-3,
top-5 and top-10 accuracy of REVFINDER and REVIEWBOT

for each studied system. The REVFINDER achieves the top-
10 accuracy of 86%, 87%, 69%, and 74% for Android,
OpenStack, Qt, and LibreOffice, respectively. This indicates
that leveraging a similarity of previously reviewed file path can
accurately recommend code-reviewers.

On average, REVFINDER is 4 times more accurate than
REVIEWBOT. Table IV shows that, for every studied system,
REVFINDER achieves higher top-k accuracy than REVIEW-
BOT. The top-10 accuracy values of REVFINDER are 2.9, 2.1,
2.5, and 7.4 times higher than that of REVIEWBOT for An-
droid, OpenStack, Qt, and LibreOffice, respectively. We also
find similar results for other top-k accuracy metrics, indicating
that REVFINDER considerably outperforms REVIEWBOT.

REVFINDER correctly recommended 79% of reviews with
a top-10 recommendation. REVFINDER is 4 times more

accurate than REVIEWBOT. This indicates that
leveraging a similarity of previously reviewed file
path can accurately recommend code-reviewers.

TABLE V: The results of Mean Reciprocal Rank (MRR) of our
approach RevFinder and a baseline ReviewBot. Ideally, a MRR value
of 1 indicates a perfect recommendation approach.

Approach Android OpenStack Qt LibreOffice

REVFINDER 0.60 0.55 0.31 0.40

REVIEWBOT 0.25 0.30 0.22 0.07

(RQ3) Does REVFINDER provide better ranking of recom-
mended code-reviewers?

Approach. To address RQ3, we present the distribution of
the ranking of correct code-reviewers. We also use the Mean
Reciprocal Rank (MRR) to represent the overall ranking per-
formance of REVFINDER. The results are then compared with
REVIEWBOT.

Result. REVFINDER recommended the correct code-
reviewers with a median rank of 4. Figure 4 shows that
the correct ranks of code-reviewers of REVFINDER is lower
than that of REVIEWBOT for all studied systems. The median
correct ranks of REVFINDER are 2, 3, 8, and 4 for Android,
OpenStack, Qt, and LibreOffice, respectively. In contrast, the
median correct ranks of REVIEWBOT are 94, 82, 202, 63
for Android, OpenStack, Qt, and LibreOffice, respectively.
This indicates that REVFINDER provides a higher chance of
inviting a correct code-reviewer and a less chance of interfering
unrelated code-reviewers.

The overall ranking of REVFINDER is 3 times better
than that of REVIEWBOT. Table V shows the MRR values
of REVFINDER and REVIEWBOT for each studied system. For
Android, OpenStack, Qt, and LibreOffice, the MRR values of
REVFINDER are 2.4, 1.8, 1.4, and 5.7 times better than that
of REVIEWBOT, respectively. This indicates that REVFINDER

can correctly recommend the first correct code-reviewers at
lower rank than REVIEWBOT does.
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REVFINDER recommended the correct code-reviewers
with a median rank of 4. The code-reviewers ranking of
REVFINDER is 3 times better than that of REVIEWBOT,
indicating that REVFINDER provides a better ranking of

correct code-reviewers.

VII. DISCUSSION

We discuss the performance and applicability of
REVFINDER. We also discuss the threats to validity of
our study.

Performance: Why does REVFINDER outperform REVIEW-
BOT?

The results of our empirical evaluation show that the
proposed approach, REVFINDER outperforms the baseline
approach, REVIEWBOT. The difference between REVFINDER

and REVIEWBOT is the difference in the granularity of code
review history. REVFINDER uses the code review history at file
path-level, while REVIEWBOT uses the code review history
at the line-level of source code. Intuitively, finding code-
reviewers who have examined the exact same lines seems to be
the best choice for those projects with high frequent changes
of source code. However, it is not often that files are frequently
change at the same lines [41]. Besides, MCR is relatively
new, the performance of REVIEWBOT would be limited due
to a small amount of review history. To better understand why
does REVFINDER outperform REVIEWBOT, we investigate the
frequency of review history at the line level and file level of
granularity. We observed that 70% - 90% of lines of code are
changed only once, indicating that in a code review system
has a lack of the line-level history. Therefore, the performance
of REVIEWBOT is limited.

Applicability: Can REVFINDER effectively help developers
find code-reviewers?

In RQ1, the results of our exploratory study show that
reviews with code-reviewer assignment problem required more
times to integrate a code change. To confirm how effectively
REVFINDER help developers, we execute REVFINDER for the
reviews with code-reviewer assignment problem of the repre-
sentative samples. We found that, on average, REVFINDER

can correctly recommend code-reviewers for 80% of these
reviews with a top 10 recommendation. This result indicates
that if a developer cannot find an appropriate code-reviewer
for a new change, REVFINDER could accurately recommend
appropriate code-reviewers at hand. Therefore, we believe
that REVFINDER can help developers find appropriate code-
reviewers and speed up the overall code review process.

Threats to Validity: We discuss potential threats to validity of
our work as follows:

Internal Validity: The reviews classification process in
RQ1 involves manual examination. The classification process
was conducted by the authors who are not involved in the code
review process of the studied systems. The results of manual
classification by a domain expert might be different.

External Validity: Our empirical results are limited to
four datasets i.e., Android, OpenStack, Qt, and LibreOffice.

However, we cannot claim that the same results would be
achieved with other systems. Our future work will focus on
an evaluation in other studied systems with larger number of
code-reviewers to better generalize the results of our approach.

Construct Validity: The first threat involves a lack of
code-reviewer retirement information. It is possible that code-
reviewers are retired or no longer involve the code review
system. Therefore, the performance of our approach might
be affected by retired code-reviewers activities. Another threat
involves the workload of code-reviewers. It is possible that
code-reviewers would be burdened with a huge number of
assigned reviews. Therefore, considering workload balancing
would reduce tasks of these potential code-reviewers and the
number of awaiting reviews.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we empirically investigate the impact of
reviews with code-reviewer assignment problem has on review-
ing time as compared to the reviews without code-reviewer as-
signment problem. From our manual examination, we find that
4%-30% of reviews have code-reviewer assignment problem.
These reviews significantly take 12 days longer to approve a
code change. A code-reviewer recommendation tool is neces-
sary in distributed software development to speed up a code
review process.

To help developers find appropriate code-reviewers, we
propose REVFINDER, a file location-based code-reviewer rec-
ommendation approach. In order to evaluate REVFINDER,
we perform a case study on 42,045 reviews of four open-
source software systems i.e., Android Open Source Project
(AOSP), OpenStack, Qt and LibreOffice. The results show that
REVFINDER correctly recommended 79% of reviews with a
top 10 recommendation. REVFINDER is 4 times more accurate
than REVIEWBOT. This indicates that leveraging a similarity
of previously reviewed file path can accurately recommend
code-reviewers. REVFINDER recommended the correct code-
reviewers with a median rank of 4. The overall ranking of
REVFINDER is 3 times better than that of a baseline approach,
indicating that REVFINDER provides a better ranking of cor-
rectly recommended code-reviewers. Therefore, we believe
that REVFINDER can help developers find appropriate code-
reviewers and speed up the overall code review process.

In our future work, we will deploy REVFINDER in a devel-
opment environment and perform experiments with developers
to analyze how effectively and practically REVFINDER can
help developers in recommending code-reviewers.
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