
Trusting a Library: A Study of the Latency to
Adopt the Latest Maven Release

Raula Gaikovina Kula∗, Daniel M. German∗‡ Takashi Ishio∗, Katsuro Inoue∗
∗ Osaka University, Japan ‡ University of Victoria, Canada

{raula, ishio, inoue}@ist.osaka-u.ac.jp
dmg@turingmachine.org

Abstract—With the popularity of open source library (re)use
in both industrial and open source settings, ‘trust’ plays vital role
in third-party library adoption. Trust involves the assumption of
both functional and non-functional correctness. Even with the
aid of dependency management build tools such as Maven and
Gradle, research have still found a latency to trust the latest
release of a library. In this paper, we investigate the trust of OSS
libraries. Our study of 6,374 systems in Maven Super Repository
suggests that 82% of systems are more trusting of adopting the
latest library release to existing systems. We uncover the impact
of maven on latent and trusted library adoptions.

I. INTRODUCTION

As software systems grow, so does its size and complexity.
Known software engineering best practices suggest that we
re-compose code into easy–to–understand and maintainable
functional modules or libraries. With the emergence of large
collections of software repositories over the Internet, now sys-
tems integrate popular Open Source Software (OSS) libraries
like JUNIT1 and SPRING2. The effect of heartbleed bug3

and more recently the shellshock vunerability4 demostrates
OSS library widespread effect on everyday systems. Online
collections of libraries together form super repositories like
GitHub5 and the Maven Central Repository6.

Well-known benefits of adopting libraries includes efficient
development with credible assurance of quality. ‘Trust’ of a
library plays an important role. Trust involves the assumption
of a module’s functional and non-functional correctness. For
instance, system maintainers need to trust the reliability of
non-functional attributes such as security and stability of an
adopted library.

Libraries, much like any software, are never perfect. Over
time, release updates are sometimes necessary to address bugs
or perform other maintenance activities such as refactoring.
New features are added to expand functionality. Some updates
become mandatory and is crucial patch vulnerabilities. How-
ever, sometimes updates break systems, causing incompatibil-
ity issues with shared system-wide resources. According to
maven, ‘dependency management becomes crucial, especially
with large-scale multi-modules software systems with tens

1junit.org
2spring.io
3http://heartbleed.com/
4https://shellshocker.net/
5https://github.com/
6http://search.maven.org/

of hundreds of modules’.7 The tracking and maintenance of
libraries has come to be known as dependency management
issues (colloquially termed as ‘dependency hell’[1]). To handle
dependency management issues, many system maintainers
utilize build tools such as Maven8 and Gradle9. These tools
promote updates and the trust of latest available library re-
leases in the super repository.

However, studies by Raemaekers et. al.[2], [3] and our
previous work [4], [5] all report evidence of latency when
updating to the latest release of a library. Incompatibilities,
such as API breakages and technical rework needed to facili-
tate the new library may cause such delays. Other speculations
involve the lack of awareness of a newer library release. Since
trust has a human aspect, other various reasons may exist.

In this study, we investigate the impact of dependency
management tools such as maven have on trusting a library.
We coin the term ‘trusted adoption’ to when the latest release
of new library is adopted. Conversely, ‘latent adoption’ refers
to when a maintainer does not adopt the latest library release.

The motivation is to investigate the latency of trust phe-
nomena. We carried out an empirical study to evaluate trusted
adoption of OSS libraries within the maven super repository.
The following research questions guided our study:

1) How much ‘latent adoption’ exists? In RQ1, we empir-
ically detect when a system does not adopt the latest
release of a new library.

2) What is the current trend of maintainers trust? In RQ2,
we investigate the trend over recent times to understand
the current state of trust of OSS libraries.

We present a set of algorithms to classify initial and
introduced library dependency types. Our results suggest that
with the current tools and technology, latent adoption is
still common. Maintainers, however, are more trusting when
introducing new libraries into existing systems.

II. BACKGROUND AND MOTIVATION

A. Trust of a Library

We consider trust to play an important role when choosing
and maintaining a third-party library. Trust intrinsically is a
human trait, thus making it very difficult to ‘pin down’ to a

7http://goo.gl/TO2P1u
8http://maven.apache.org/index.html
9http://www.gradle.org/

978-1-4799-8468-8/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada520

𝑆4𝑆3

𝐵2

time

𝑆2

𝐵3 𝐵4

𝑆1

𝐴1

Initial system
release

Initial dependency

𝐴2

𝐵1

entrusted dependency

Latest release

Point in Time
(S3 release date)

Fig. 1: Example of systems and library dependencies over time. The Figure depicts the evolution of system S with libraries A and B.

generalized reason. Trust is at varying degrees and for many
reasons. In this paper we consider four broad types of trust
that would cause a latent adoption.

The first type of trust is of a library’s both functional
and non-functional related specifications. Examples of non-
functional correctness are missing or inconsistency of func-
tions corresponding to the API documentation. Similarly,
trusting the correct use of Semantic Versioning (SemVer -
MAJOR.MINOR.PATCH)10 matching the changes in the re-
lease (i.e, major changes are only introduced in major version
releases). A study by Raemaekers [6] uncovered that many
libraries do not follow the SemVer schema, causing many
breaking changes which could lead to latent adoptions.

The second type of trust is that the introduced library is
not volatile towards the current system environment. This
involves compatibility with other libraries or the shared-system
resources. Take for example the java ASM11 library. ASM is
a tiny and flexible java byte-code manipulation library used
in many popular frameworks like HIBERNATE12, SPRING,
GLASSFISH13 and DERBY SERVER14. It is known for its fast
execution speed due to its small size. The cost of keeping
such a small size was that incompatibilities would occur
whenever a new JDK compiler was released. The main issue
occurred when systems adopted libraries that internally had
different versions of ASM as they would break. For instance,
systems that had adopted the DERBY server and SPRING
framework encountered incompatibility issues when Spring
updated from ASM3.x to ASM4.x. Eventually latter releases
of ASM allowed for backward compatibility. This example
illustrates the importance of the ASM library development team
influence on trust adoptions15.

We refer to the third type of trust as loyalty for a certain
version of a library based on experienced usage. For instance,

10http://semver.org/
11http://asm.ow2.org/index.html
12http://hibernate.org/
13https://glassfish.java.net/
14http://db.apache.org/derby/
15This is the report of the asm compatibility issues http://goo.gl/x9EeKx

known as the asm NoSuchMethodError incompatibility issue

in an informal interview, a developer replied that: ‘although it
is an way older version, I use Junit3.8 as I am familiar with it.
It is not a critical compile component of my system and suits
my needs.’ This trust of a particular release promotes latent
adoption.

Finally, a system maintainer may not trust the test maturity
of latest version release. In informal interviews, we found that
many maintainers are hesitant of the rigor of internal testing.
They believe that undetected bugs that can only be uncover
during in practical use may exist. In this case, maintainers
search for most stable version (in many cases deemed as the
popular) release.

III. SOFTWARE SYSTEMS AND LIBRARIES

We investigate the evolving relationship between systems
and their dependent libraries. In this research we are only
concerned with the adoption of new libraries. Updates to
existing library dependencies are ignored. We used the model
in Figure 1 to describe the necessary terminology.

A. Terminology and Definitions

• System and Library Releases. We conjecture that sys-
tems form a dependency relationship with a set of li-
braries. A release refers to an instance of a system or
library. Let Sver be the notation for a unique release
of a software system and Lver as libraries. In Figure 1,
S1, S2, S3, S4 are different system releases of system S.
A1, A2, are releases of library A and B1, B2, B3, B4 as
library B releases. As depicted in Figure 1, all related
releases are connected.

• Releases Ordering. Since releases have a temporal prop-
erty, we can order releases by their release date. Thus,
pre(Sver) refers to a previous release while suc(Sver)
refers to successive releases of a system. Likewise for
pre(Lver) and suc(Lver).
We use the notation > and < to represent the temporal
ordering between all system and library releases. For
instance, in Figure 1, B4 > S3 > B3 describes the
ordering between B4, S3 and B3. We use the ordering

521

to identify particular releases. The initial release is used
to describe an instance where no predecessor exists.
(ı.e @pre(Sver) or @pre(Lver)). For example, in Figure
1, releases A1, S1 and B1 are initial releases. The
latest release is such that no successive release exists
(ı.e @suc(Sver) or @suc(Lver)). In Figure 1, the latest
releases are A2, S4 and B4 respectively.

• Dependency Relations. This refers to the dependency
relationship that forms when a library is being adopted
by a system. Suppose a system Sx and library Ly ,
depends(Sver, Lver) describes to the adoption of li-
brary Ly into a system Sx. In Figure 1, for system
S, depends(S1, A1), depends(S2, A2) depends(S3, A2)
and depends(S3, B2) depicts how libraries A and B are
adopted. As shown in Figure 1, dependency relations are
the edges that exist between a system and library (i.e,
edge between A1 and S1).

• Initial Dependency. An initial dependency is all de-
pendencies that exist at the initial system release.
(ı.e depends(Sver, Lver) where @pre(Sver) conditions
must be met). As depicted in Figure 1, depends(S1, A1)
is an initial dependency for system S.

• Introduced Dependency. An introduced dependency
refers to new dependencies introduce to an already exist-
ing system. (ı.e depends(Sver, Lver) where ∃pre(Sver)
and @depends(pre(Sver), Lver) conditions must be met).
In Figure 1, depends(S3, B2) is an example of an intro-
duced dependency.

• Trusted Dependency. Trusted dependency is the adop-
tion of the closest library release at a particular point
in time. (ı.e depends(Sver, Lver)). One of the two
conditions must be met 1.) Lver is the latest version such
that @suc(Lver) and 2.) If condition 1 is not true, (i.e,
∃suc(Lver)), then suc(Lver) must be released after the
system release Sver (i.e, suc(Lver) > Sver).

In Figure 1, taking S3 as a reference point, the dependency
depends(S3, B2) is not an trusted dependency adoption. This
is because B2 is not the latest release. and the successor B3

was released before S3 (B3 < S3). The entrusted depen-
dency would be depends(S3, B3) as the successive release
B4 was released after S3 (i.e, B4 > S3). Also, in Figure 1,
depends(S3, A2) is an trusted dependency as A2 is the latest
release of library A (condition 1 is satisfied).

B. Dependency Algorithms

To determine a trusted dependency, we follow three steps as
depicted in Figure 2. Suppose for a system S and n represents
all of the system releases of S, we perform the following steps:

1) Extract related dependency relations. For all releases
of S (i.e, S1, ..., Sn), we extract all related dependency
relations.

2) Determine dependency relation. In this step we distin-
guish if the dependency is either an initial or introduced
dependency.

3) Determine trusted dependency. To determine a trusted
introduced dependency, we check the conditions to satisfy

Step1. Extract related
dependency relations

Step2. Determine
Dependency Relation

Step3. Determine
Trusted Dependency

Initial Introduced

Trusted Latent LatentTrusted

Maven Dependencies

(iniTA) (iniLA) (introLA)(introTA)

Fig. 2: The Figure depicts the algorithms used to classify our
proposed types of dependency adoptions.

a trusted dependency.
As shown in Figure 2 using the algorithm we classify

into the interested dependencies. Formally each dependency
is defined as follows:

a) Initial Trusted Adoption (iniTA): Trusted adoption of
latest library release at initial conception of a system.

iniTA(S) = {
⋃
i∈n

∃x.depends(Si, Lx)|@pre(Sx)

∧ (@suc(Lx) ∨ if(∃suc(Lx))then(suc(Lx) > Si))} (1)
b) Initial Latent Adoption (iniLA): Latent adoption at

initial conception of a system.

iniLA(S) = {
⋃
i∈n

∃x.depends(Si, Lx)|

@pre(Sx) ∧ (∃suc(Lx) ∧ (suc(Lx) > Si))} (2)
c) Introduced Trusted Adoption (introTA): Trusted adop-

tion of latest library release introduced to an existing system.

introTA(S) = {
⋃
i∈n

∃x.depends(Si, Lx)|@pre(Lx)

∧ (@suc(Lx) ∨ if(∃suc(Lx))then(suc(Lx) > Si))} (3)
d) Introduced Latent Adoption (introLA): Latent adop-

tion of library introduced to an existing system.

introLA(S) = {
⋃
i∈n

∃x.depends(Si, Lx)|@pre(Lx)

∧ (∃suc(Lx) ∧ (suc(Lx) > Si))} (4)

IV. EMPIRICAL STUDY

We implemented our trust dependency algorithms to study
the ‘latent adoption’ phenomena between maven 2 repository
libraries. The Maven Super Repository is the home to a
large collection of software libraries that originate from the
Java Virtual Machine (JVM) based languages such as Java,
Scala and Clojure. Systems in the maven repository includes
a Project Object Model file POM.xml that describes the
project’s configuration meta-data —including its compile-time
and run-time dependencies. We developed a tool to extract this
dependency information from all versions of the POM-files in

522

TABLE I: Maven Super Repository

Maven Dataset
Time Period 2005-11-03 to 2013-11-24
Dependency Relations 188,951
Implicit Relations 11, 195
of Systems 6,374
of Libraries 5,146

TABLE II: Dependency Classification Results

Libraries # Dependencies (%)
iniTA 4,192 20,372 (59.63%)
iniLA 848 13,791 (40.37%)
introTA 3,064 29,303 (81.16%)
introLA 823 6,543 (18.24%)

the repository (PomWalker16). Our implementation relies on
version 3.1.1 of maven’s own maven-model project
to parse each POM file and extract syntactic references to its
dependencies.

POM files can either reference be explicit to a specific
release version or be implicit. For instance, the syntax
(<version>$library.version</version>) is used
to import managed dependencies. For simplicity, we only
used explicit release versions in our study. We implemented
R scripts of the dependency algorithms. Using the extracted
dependency information, we were then able to determine
trusted dependencies. All scripts and tools are available as
a replication package17.

V. RESULTS

Table I is a summary of the data collected by PomWalker.
We extracted 188,951 dependency relations from the maven
super repository. This consists of 6,374 systems using 5,146
libraries over 7 years. Table II refers to the extracted intro-
duced and initial entrusted dependencies. In the case of initial
dependencies, 59.63% of the detected dependencies trusted the
latest release, while 40.37% did not adopt the latest release
version. The results show a relatively smaller set of latent

16https://github.com/raux/PomWalker
17http://sel.ist.osaka-u.ac.jp/∼raula-k/LatentAdoption/

TABLE III: Top 5 Initial Trusted Libraries

Library # Dependencies
scala-library 710
junit 595
log4j 191
slf4j-api 178
commons-logging 169

TABLE IV: Top 5 Initial Latent Libraries

Library # Dependencies
scala-library 1,468
junit 1,411
servlet-api 496
commons-logging 481
log4j 394

TABLE V: Top 5 Introduced Trusted Libraries

Library # Dependencies
junit 243
hibernate-core 238
spring-integration-core 235
scala-library 227
hibernate-testing 217

TABLE VI: Top 5 Introduced Latent Libraries

Library # Dependencies
junit 392
glassfish-corba-orbgeneric 126
glassfish-corba-omgapi 122
httpclient 120
commons-logging 119

5000

10000

15000

20000

2006 2008 2010 2012 2014
Time

 C
um

ul
at

iv
e

su
m

 o
f i

ni
tia

l l
ib

ra
rie

s

trusted adoption

latent adoption

Initial Library Adoption Over Time

Fig. 3: A comparision of trust of initial dependencies over time in
the Maven Super Repository.

0

10000

20000

30000

2006 2008 2010 2012 2014
Time

 C
um

ul
at

iv
e

su
m

 o
f i

nt
ro

du
ce

d
lib

ra
rie

s

trusted adoption

latent adoption

Introduced Library Adoption Over Time

Fig. 4: A comparision of trust of introduced dependencies over time
in the Maven Super Repository.

523

adopted libraries (848) compared to their trusted counterparts
(4,192). In the case of introduced libraries, 81.16% of the
adopted libraries were latest releases. The results reveals a
relatively smaller set of latent adopted libraries (823) that
maintainers introduced into their systems.

The Top 5 libraries adopted at the conception of a system are
shown in Table III (intital trust adoption) and Table IV (initial
latent adoption). For introduced libraries, Table V (introduced
trusted adoption) and Table VI (introduced latent adoption).
Notice that popular libraries like SCALA-LIBRARY and JUNIT
are apparent in all the dependency types. Both Figure 3 and
Figure 4 depicts a cumulative number of initial and introduced
library adoptions in the maven super repository from 2006 to
2014. Figure 3 shows a more steady trend between trusted and
latent adoptions. On the other hand, in Figure 4 it is observed
that when introducing new libraries, systems are more trusting
of the latest releases.

VI. IMPLICATIONS OF RESULTS

Issues of updating libraries stems from the trust of releases.
We did not study if these libraries eventually update these
libraries, but a latent adoption may set a precedence of
not updating libraries. The study shows a smaller subset of
libraries may be responsible for latency in adoptions. Future
work is towards identification and exploration of approaches
to reduce latent adoptions. The study finds that trust adoptions
are more apparent with introduced libraries. We speculate that
introducing new libraries could indicate of adding new features
to a system.

We are only beginning to understand the trust involved with
OSS libraries. More study into trust of libraries will lead
to better strategies to support component-based software. For
example, how to ‘certify’ trust of a newly released release.
Now we answer our research questions:

RQ1. How much ‘latent adoption’ exists?: The results
show that the latent adoption exists, particularly at the initial
conception of a system. Maintainers are less likely to adopt
the latest releases at the beginning of project.

RQ2. What is the current trend of maintainers trust?:
Figure 3 and Figure 4 suggests that maven libraries are
becoming more inclined to adopt the latest releases when
introducing new libraries (updating there existing systems).

VII. RELATED WORK

The trust of components is well-known in fields of Depend-
able and Secure Computing [7], [8], [9]. In this paper, we
explore how trust of components can be realized with OSS
libraries. Related work in Software Engineering are concerned
with library API usage and popularity. Holmes et al. appeal
to popularity as the main indicator to identify libraries of
interest [10]. De Roover et al. explored library popularity
in terms of source-level usage patterns [11]. Mileva et al.
study popularity over time to identify the most commonly
used library versions [12]. These studies to an extent, are
evidence to update to the most popular as opposed to the
latest release of a library. More recently, work by Teyton et al.

[13] and Cossette et al. [14] have explored library migrations,
particularly on candidate library replacements. Both studies
provide additional insights behind latent library adoptions.

VIII. CONCLUSION AND FUTURE WORK

In this paper we explore the notion of trust when re(using)
OSS libraries. Our results suggest that maintainers are becom-
ing more trusting. Existing systems more inclined to adopt
the latest releases to existing systems. The reasons for latent
adoption are difficult to generalize. Related work reports lapses
in updates and SemVer guidelines not being strictly enforced.
Therefore, we believe that further investigation behind the
reasons trust issues should be performed, such as maintain-
ers satisfaction surveys on our current tools. We envision
that future dependency management tools like maven should
ensure OSS libraries are trustworthy, possibly resolving our
dependency updating issues.

ACKNOWLEDGMENT

This work is supported by projects ‘Collecting, Analyz-
ing, and Evaluating Software Assets for Effective Reuse’,
Japan Society for the Promotion of Science, Grant-in-Aid
for Scientific Research (No.25220003) and ‘Software License
Evolution Analysis’, Osaka University Program for Promoting
International Joint Research.

REFERENCES

[1] M. Jang, “Linux annoyances for geeks,” 2009.
[2] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software

library stability through historical version analysis,” in Proc. of Intl.
Comf. Soft. Main. (ICSM), Sept 2012, pp. 378–387.

[3] S. Raemaekers, G. Nane, A. van Deursen, and J. Visser, “Testing
principles, current practices, and effects of change localization,” in
Mining Soft. Repo. (MSR), May 2013, pp. 257–266.

[4] R. G. Kula, C. D. Roover, D. M. German, T. Ishio, and K. Inoue,
“Visualizing the evolution of systems and their library dependencies,”
Proc. of IEEE Work. Conf. on Soft. Viz. (VISSOFT), 2014.

[5] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. D. Roover, and
K. Inoue, “Identifying source code reuse across repositories using lcs-
based source code similarity,” in Proc. of SCAM, 2014.

[6] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” in Proc. of
SCAM, Sept 2014, pp. 215–224.

[7] Z. Yan and C. Prehofer, “Autonomic trust management for a component-
based software system,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 6, pp. 810–823, 2011.

[8] W. Hasselbring and R. Reussner, “Toward trustworthy software sys-
tems,” Computer, vol. 39, no. 4, pp. 91–92, April 2006.

[9] R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of
trust and distrust,” in WWW’04, pp. 403–412.

[10] R. Holmes and R. J. Walker, “Informing Eclipse API production and
consumption,” in OOPSLA2007, 2007, pp. 70–74.

[11] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proc. of Int. Conf. on Prog. Comp.(ICPC), 2013.

[12] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in ERCIM Workshops, 2009, pp. 57–62.

[13] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in java,” Journal of Software: Evolution and Process, vol. 26,
no. 11, 2014.

[14] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries,” in Proceed-
ings of ACM SIGSOFT Int. Symp. on the Found. of Soft. Eng. (FSE),
2012.

524

