
A Method to Detect License Inconsistencies in
Large-Scale Open Source Projects

Yuhao Wu∗, Yuki Manabe†, Tetsuya Kanda∗, Daniel M. German‡∗, Katsuro Inoue∗
∗ Graduate School of Information Science and Technology, Osaka University, Japan

Email: {wuyuhao, t-kanda, inoue}@ist.osaka-u.ac.jp
† Graduate school of Science and Technology, Kumamoto University, Japan

Email: y-manabe@cs.kumamoto-u.ac.jp
‡ Department of Computer Science, University of Victoria, Canada

Email: dmg@uvic.ca

Abstract—The reuse of free and open source software (FOSS)
components is becoming more and more popular. They usually
contain one or more software licenses describing the requirements
and conditions which should be followed when been reused.
Licenses are usually written in the header of source code files as
program comments. Removing or modifying the license header
by re-distributors will result in the inconsistency of license with
its ancestor, and may potentially cause license infringement. But
to the best of our knowledge, no research has been devoted
to investigate such kind of license infringements nor license
inconsistencies. In this paper, we describe and categorize different
types of license inconsistencies and propose a feasible method to
detect them. Then we apply this method to Debian 7.5 and present
the license inconsistencies found in it. With a manual analysis, we
summarized various reasons behind these license inconsistencies,
some of which imply license infringement and require the atten-
tion from the developers. This analysis also exposes the difficulty
to discover license infringements, highlighting the usefulness of
finding and maintaining source code provenance.

I. INTRODUCTION

As software reuse has long been advocated as a good prac-

tice to reduce development time and increase product quality

[1], [2], [3], the activity of software reuse has become more

prevalent. Free and open source software (FOSS) is software

that can be freely used, changed, and shared (in modified or

unmodified form) by anyone, as defined by the Open Source

Initiative (OSI). FOSS is always distributed under certain open

source software licenses. In a nutshell, an open source license,

which usually resides in the header comment of a source code

file, grants the rights to redistribution of the software, and

allows modifications and further distributions of the modified

software.

Developers who reuse open source software should pay

attention to the license header and are required to follow the

conditions and limitations of the license. They shall never

change the license without the permission of the copyright

owner, otherwise there would be potential of license infringe-

ment. We use the term license violation to describe such

scenarios that the license of the reused source file is changed

illegally.

Previous study by Li et al. shows that 36% of the developers

who reused the OSS components changed the source code [4],

but they did not point out whether these changes involve the

license header. In our study, we focus on the license header

change during the evolution of open source software, which

we refer to as license inconsistency.

In our research, license inconsistency refers to the situation

that two source files that evolved from the same provenance

but contain different licenses. It is caused by either the

copyright owner of the source file or the developer who reused

the source file (hereafter we refer to as reuser) modified the

license header. The copyright owner has exclusive rights of

their original work, thus their changes made to the license

header of their original work shall be legal. But if those

changes are made by reusers, we should pay more attention to

them, since reusers can only change the license of the source

file under the conditions of the license itself. Otherwise license

violation may occur and involve the reusers into legal disputes.

To the best of our knowledge, no research has been done

to discover the characteristics of license inconsistencies in

the process of software reuse: How many types of license

inconsistency are there. Do they exist in large open source

projects. If so, what is the proportion of each type. What

caused these license inconsistencies?

Based on these questions, we set our research question as

follows:

• RQ1 How can we categorize license inconsistencies?
• RQ2 Does license inconsistency exist in large open

source projects?
• RQ3 What is the proportion of each type of license

inconsistency?
• RQ4 What caused these license inconsistencies? Are they

legally safe?

The contributions of this paper are:

1) We describe and categorize different types of license

inconsistency.

2) We propose a method to detect license inconsistencies in

large-scale projects, which can show the existence and

number of each type of license inconsistency inside the

project.

3) We perform an empirical evaluation on our method to an

FOSS project, which reveals the license inconsistencies

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE

DOI 10.1109/MSR.2015.37

324

in the project and meanwhile proves feasibility of our

method.

4) We perform a manual analysis on some license incon-

sistency cases by checking the history of the involved

projects. We summarized the reasons that caused license

inconsistencies, among which one is legally unsafe and

needs for the developers’ attention.

This paper is organized as follows. Section II describes the

background knowledge of license and license inconsistency.

Section III introduces our research method. An empirical study

with this method is described in Section IV, followed by

Section V discussing about the results. Section VI describes

the threats to validity. After an introduction to the related work

in Section VII, Section VIII concludes this paper and points

out the future direction.

II. LICENSE INCONSISTENCY

Software license is a permission and restriction to repro-

duce, modify and redistribute a software. An open source

license is a software license that follows Open Source Def-

inition1and is approved by Open Source Initiative. Now, 70

licenses are approved as Open Source License and BlackDuck

claims that the Black Duck Knowledge Base includes data

related to over 2200 licenses2. Some software licenses have

different versions. For example, General Public License (GPL)

has versions 1, 2 and 3. In addition, they allow to use “or

later” which allow us to regard the version as specified version

or a newer version. Some project hosting services such as

SourceForge.net show license on each project.

To reuse OSS source code files, developers must understand

those licenses and check whether those licenses have a con-

flict with the license under which the developed software is

distributed. This is not a trivial task because one Open Source

License is not always compatible with another. For example,

GPLv3 is compatible with any version of GPL, Apachev2.0,

modified BSD license (BSD3)3. On the other hand, GPLv3

is not compatible with Affelo GPLv3, Apachev1.0, v1.1 and

original BSD license (BSD4). Therefore, license violation may

occur when developers misunderstand the license of source

files.

However, not all of the source code files in an application

are not under the same license [5], [6]. In addition, files

with the same name or the same content may have different

licenses. When a developer reuses a source file, if the names

and the contents of source files are similar to each other,

developer may think that they are distributed under the same

license. However, if these licenses are different, the developer

may suffer from license violation by reusing one of them.

Usually, the license of open source software is indicated in

the first comments of each source file. Here is an example

of GPLv34 license header taken from getopt.c file in GNU

library:

1http://opensource.org/definition
2http://www.blackducksoftware.com/products/knowledgebase
3https://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses
4http://www.gnu.org/licenses/gpl-3.0.html

/* Getopt for GNU.

* NOTE: getopt is part of the C library, so if you don’t

* know what "Keep this file name-space clean" means, talk

* to drepper@gnu.org before changing it!

* Copyright (C) 1987-1996, 1998-2004, 2006, 2008-2012 Free

* Software Foundation, Inc.

* This file is part of the GNU C Library.

*
* This program is free software: you can redistribute it

* and/or modify it under the terms of the GNU General Public

* License as published by the Free Software Foundation;

* either version 3 of the License, or (at your option) any

* later version.

*
* This program is distributed in the hope that it will be

* useful, but WITHOUT ANY WARRANTY; without even the implied

* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

* PURPOSE. See the GNU General Public License for more

* details.

*
* You should have received a copy of the GNU General Public

* License along with this program.

* If not, see <http://www.gnu.org/licenses/>.

*/

Generally, the license header of a source file can only be

modified by its copyright owner. Reusers shall never modify

the license header unless it is under the permission of the

copyright owner or allowed by the terms of the license.

Otherwise, they reusers may suffer from license violations.

To discover the potential license violations, we first find

out the license inconsistencies in our research. In the fol-

lowing subsections, we introduce our definition of license

inconsistency and give an example of license inconsistency

we found in Debian 7.5. Finally we categorize them based on

our analysis of the Debian project.

A. Definition

In this research, license inconsistency refers to the situation

that two source files that evolved from the same provenance

but contain different licenses.

B. Example

In the Debian 7.5 project, package dpkg and anubis both

contain a file named obstack.c. Except for the license header,

these two files are identical, from which we can assume that

these two files share the same provenance.

From package dpkg, the license of this file is:
[...]
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.
[...]

While from package anubis the license is:
[...]
This program is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any
later version.
[...]

As we can see, the licenses of the two files are different: the

first one with GPLv2+, while the second one with GPLv3+.

Based on our definition, this is a case of license inconsistency.

Without tracing the history of each of these files, it is hard to

determine which one is the origin and which one is (or both

of them are) copied and modified. In this particular case, these

325

two licenses differ only by the version number of the license.

This can be explained in many different ways, some of them

are:

• The first file is the original one and was copied to the

second project with the license version downgraded from

2 to 3.

• The second file is the original one and was copied to the

first project with the license version upgraded from 3 to

2.

• Both of the files are copied from another projects, and

the license was changed to GPLv2+ and GPLv3+ respec-

tively.

To determine which one is the real case, we need to examine

the repository history of these two projects and find out the

point that the change of license header happens, which will

be discussed in Section IV-B.

C. Categorization

Based on the analysis to Debian 7.5, we observed 5 types

of license evolution. They are either executed by the original

author or reuser:

1) License Addition: The source file was without a license,

and a license is added in a later release.

2) License Removal: The source file was under a certain

license, and the license is removed in a later release.

3) License Upgrade: The source file was under a certain

version of GPL license, and it is upgraded to a higher

version of GPL license.

4) License Downgrade: The source file was under a certain

version of GPL license, and it is downgraded to a lower

version of GPL license.

5) License Change: The source file was under a certain

license, and it is changed to another license.

Note that, in the case of license upgrade and downgrade,

we only consider the GPL license. This is because currently

only GPL license has an “or later” option which allows the

reuser to choose a later version of GPL as the license for

redistribution (i.e. to upgrade to a higher version). Although

some other licenses, such as Apache license, may have dif-

ferent versions, reusers are not allowed to choose an arbitrary

version of the license. Thus it is reasonable to treat various

versions of these licenses as completely different licenses. For

such reason we treat the license evolution between different

versions of licenses other than GPL as license change in our

research.

License inconsistencies are naturally caused by license

evolutions. We use the following types to denote different

types of license inconsistencies between two files:

LAR One of the two files contains a license while the

other file contains no license. This type of license

inconsistency is usually caused by License Addition

or Removal in the process of license evolution.

LUD One of the two files contains a certain version

of GPL license while the other file contains

another version of GPL license. This type of

license inconsistency is typically caused by License

Upgrade or Downgrade in GPL license in the

process of license evolution.

LC Two files contain different licenses. This type of

license inconsistency is usually caused by License

Change in the process of license evolution.

III. METHOD

In our approach, we focus on detecting the license inconsis-

tencies among file clones. In the scenario of source code reuse

where source files are imported from an upstream project,

reused source files are kept with the same base name and

their contents are almost the same, sometimes with small

changes (renaming variable names etc.) [7]. But there are files

that happen to have the same name but with totally different

contents. For example, two individual developers may put their

utility functions in a single file and both name it as util.c
independently. This leads to incorrect results.

To address this problem, we decide whether they are ac-

tually from the same provenance or not by their program

semantics. The rule is, if they are semantically identical,

then it is likely that they are copies of each other. We

use CCFinder [8], a code clone detection tool, to analyze

and determine whether these files are semantically identical.

CCFinder will generate a pre-process file which contains the

token symbols of the source file ignoring the comments, white

spaces and newlines. For those source files with the same

token representation, we assume that they come from the same

origin, and then gather them into the same file group. Files in

the same file group have the same base name (but may come

from different packages) and the same program statements,

possibly with different comments including license header.

Now that we have gathered all these similar files, we can

identify the license of each group of files and make a list of

the base name and detected license for each file group. In our

approach we adopted Ninka to detect the license of source

files, since Ninka is reported to have the highest precision

of all the license detection tools including FOSSology,

ohcount and OSLC in this research [9]. Ninka is a sentence-

based license detection tool which can identify 110 different

licenses with 93% accuracy, and it can handle more than

600 files per minute. The names of the common open source

licenses and their abbreviation used in this article is shown

in Table I. Many of these licenses have several versions. In

that case we use the suffix v<number> to identify it. If it is

followed by +, that means the user can choose this version

or any newer. “or later”: For example, GPLv2+ means “GPL
version 2 or later”.

We then compare the licenses of each file in the license list

of each group. If all the files have no license, or all of them

have the same license, then there is no license inconsistency.

Otherwise, the group is likely to contain license inconsisten-

cies. And then, based on the relation between licenses, our

approach identifies the type of license inconsistency. Note

326

TABLE I: Names of common open source licenses and their abbre-
viations used in this article.

Abbrev. Name
Apache Apache Public License
BSD4 Original BSD, also known as BSD with 4

clauses
BSD3 BSD4 minus advertisement clause
BSD2 BSD3 minus endorsement clause
CPL Common Public License
CDDL Common Development and Distribution Li-

cense
EPL Eclipse Public License
GPL General Public License
IBM IBM Public License
LesserGPL Lesser General Public License (successor of

the Library GPL, also known as LGPL)
LibraryGPL Library General Public License (also known as

LGPL)
MIT/X11 Original license of X11 released by the MIT
MPL Mozilla Public License

that a group may have multiple license inconsistencies. For

example, if a group include a file under GPLv2, another file

under GPLv3 and the other file under Apachev2, the group

have two license inconsistencies: LUD between GPLv2 and

GPLv3, LC between GPLv2/GPLv3 and Apachev2. For such

reason, we calculate License Inconsistency Metrics for each

of these groups, from which we can measure what type of

license inconsistencies and how many of each type exist in

the groups.

A. License Inconsistency Metrics

The following 5 metrics are introduced to help measure the

license inconsistencies for a file group:

#File: Number of files in this group.

#License: Number of different licenses in this group. If

there are two or more licenses found, then it is likely that

there is a license inconsistency. If no license, or only one

license is found, then all the files are either without license,

or they have the same license.

#Unknown: Number of files with an unknown license in

this group. For our purposes we consider all the files with

unknown licenses as if they have the same license (this

might under-estimate the number of inconsistencies).

#None: Number of files without any license in this

group. If #License > 0 and #None > 0 then it is possible

that at least one file in the group had its license added or

removed.

#GPL: Number of licenses in GPL family. This metric

allows us to identify LUD in the GPL family.

These metrics are calculated for each file group based on

their license lists. The strategies shown in Table II enable us

to decide whether a certain type of license inconsistency exists

in this group.

Specifically, if we query the metrics result for those groups

with #None > 0 and #License > 0, which means there are

one or more files with no license, and also one or more files

TABLE II: Strategies to decide whether a certain type of license
inconsistency exists in a group.

Inconsistency Type Strategy
LAR #None > 0 and #License > 0
LUD #GPL ≥ 2
LC #GPL ≤ 1 and #License ≥ 2

contain a license. According to our definition, this is LAR;

If we query for those whose #GPL ≥ 2, which tells us that

there are two or more different licenses in GPL family (such

as GPLv2+ and GPLv3+), and should be LUD; If we query for

those items with #GPL ≤ 1 and #License ≥ 2, which means

there are more than two licenses appear in this group and no

more than one GPL license exists (to exclude LUD case), it

seems to be the case that one license is changed to another

one, which should be a LC.

B. Method of Detecting License Inconsistencies

As a summary, our method is divided into 4 steps:

1) Create sets of files with same base name: We make a

list for all the .h, .c and .java files in the target project

and count the occurrences of each base name. Then we

create a set for each base name that has an occurrence

larger than one. The result is sets of files with the same

base name, and each set contains at least two files. Base

names that contain only one file are not considered, since

license inconsistency only exists between two files.

2) Create groups of semantically identical files: For each

set of same-base-name files, we apply CCFinder to

calculate the semantical tokens of each file. Then we

create a group for files that have the same semantical

tokens in each set. The result is groups of files that

are semantically identical. This means the comments,

redundant white spaces and line breaks are ignored.

3) Identify licenses for files in each group: For each group

of semantically identical files, Ninka is employed to

identify the license(s) of each file. The result is license

lists for each file group.

4) Report groups that contain license inconsistencies and
calculate inconsistency metrics: We compare the license

list of each file group. File groups are reported to have

license inconsistencies unless all the licenses on the list

are exactly the same. The result is a list of file groups

that contain one or more types of license inconsistencies.

TABLE III: List of base name occurrences in the imaginary project.

Base name Occurrence
C (.c)

foo.c 4
C++ (.cpp)

bar.cpp 1
Java (.java)

bar.java 1

327

TABLE IV: List of the license inconsistency metrics for each file group in the imaginary project.

Base name Group #File #License #None #Unknown #GPL
foo.c 1 2 2 0 0 2
foo.c 2 2 1 1 0 0

Project Root

Packages

Files

License

Proj

Pkg4

foo.c

NONE

Pkg3

foo.c

BSD3

Pkg2

bar.java

Apache

foo.c

GPLv3+

Pkg1

bar.cpp

LGPL

foo.c

GPLv2+

Fig. 1: Hierarchy of an imaginary project and the license of each
source file. Note that the foo.c file in Pkg1 was imported to Pkg2
with the license changed to GPLv3+; The foo.c in Pkg3 contains
totally different source code than the one in Pkg1, and was imported
to Pkg4 with the license removed.

Directory

Directory

Directory

Files

Root

foo.c

Group2

foo Pkg4.cfoo Pkg3.c

Group1

foo Pkg2.cfoo Pkg1.c

Fig. 2: Hierarchy of the grouped files.

C. Example

To make it clear, we illustrate our method with a simple

imaginary project shown in Figure 1. This project consists of

4 packages. The source code of foo.c file in Pkg2 is exactly the

same with the one in Pkg1, but the license header is changed

from GPLv2+ to GPLv3+; The source code of foo.c in Pkg3

is different from the one in Pkg1, i.e. they happen to have the

same base name. It is reused in Pkg4 with the license header

removed.

1) Create sets of files with same base name: The cal-

culated list of base name occurrences of the imaginary

project is shown in Table III. Among them we create a

set for files named foo.c, and ignore bar.cpp and bar.java
since each of them only contain one file.

2) Create groups of semantically identical files: In this

step, we use CCFinder to generate token files. Since the

foo.c file from Pkg1 and Pkg2 have the same source code

(except for their code comments which include license

TABLE V: License list of the selected files from the imaginary
project.

Base name Group Package name License
foo.c 1 Pkg1 GPLv2+
foo.c 1 Pkg2 GPLv3+
foo.c 2 Pkg3 BSD3
foo.c 2 Pkg4 NONE

header), CCFinder treats them the same, and generate

the same token file. This also applies to foo.c file from

Pkg3 and Pkg4. Thus we can compare the hash value of

the token files and group them into two groups, as shown

in Figure 2.

3) Identify licenses for files in each group: For each file in

the group, we use Ninka to detect their licenses and make

a list of the base name, group index and the licenses, as

shown in Table V.

4) Report groups that contain license inconsistencies
and calculate inconsistency metrics: We examine the

licenses of each group and found that both of these groups

contain license inconsistencies. Thus we report both of

these groups and compute the inconsistency metrics for

each of them, as shown in Table IV. Base name is the

name of the source file. Group indicates the index we use

to identify file groups.

According to our rule, #GPL > 1 in Group 1 indicates a case

of LUD in this group, while #None > 0 in Group 2 indicates a

case of LAR in this group. This conclusion is consistent to the

scenario in our imaginary project, since the two foo.c files in

Pkg1 and Pkg2 contain GPLv2+ and GPLv3+ respectively

which is LUD, and the two foo.c files in Pkg3 and Pkg4

contain BSD3 and no license respectively which is LAR.

IV. EMPIRICAL STUDY

We conducted our study using a large open source Linux

distribution, Debian 7.5. Since it is hardly feasible to determine

how many and what types of license inconsistencies are there

in the target project before our analysis, it is difficult to

quantitatively evaluate our method. A qualitative evaluation

of this method is discussed in Section VI and quantitative

evaluation will be our future issue.

A. Setting

First, we downloaded the source code of Debian 7.5 from

its official site5. The main characteristics of our target project

Debian7.5 is shown in Table VI.

5https://www.debian.org/

328

TABLE VI: Main characteristics of Debian 7.5.

Characteristics Number
Packages 17,160
Total files 6,136,637
.c files 472,861
.cpp files 224,267
.java files 365,213

TABLE VII: License list of group 10 of getopt.c where LAR exists.

Package name License
icedove NONE
iceweasel UNKNOWN (MPLv2)

B. Results

In the first step of our method, we got 658,088 sets of base

names in total. Among them, 137,618 (20.91%) sets contain

more than one file, which were selected into the next step. The

breakdown of the base name sets for each file type is shown

in Table XI.

In step 2, we calculated the semantically identical file

groups for each base name set and resulted in 74,848 such

groups in total. Number of file groups per base name ranges

from 1 to 160, but 91% of these sets contain only one file

group, thus the average number of file groups per base name

is merely 1.21.

Completing the following two steps of our method, we got

the list of the final inconsistency result. From the total of

74,848 file groups, 5,359 (7.2%) of them were reported to have

one or more license inconsistencies. For the sake of space, we

show only part of them in Table X. Based on the strategy

introduced in Table II, we calculated the number of each type

of license inconsistency and their portion, as shown in Table

XII.

From this table, we can see that from the total of 5,359

groups that contain one or more license inconsistencies, 98.4%

of them contain LC, followed by LUD and then LAR. With the

high distribution of LC in all the cases of license inconsisten-

cies, we can see that developers are more likely to change the

license of the source file to another one, which is more likely

to cause license violations. For such reason, further study is

urged to investigate the legality of these modifications.

TABLE VIII: License list of group 0 of obstack.c where LUD exists.

Package name License
dpkg GPLv2+
anubis GPLv3+

TABLE IX: License list of group 15 of getopt.c where LC and LAR
exist.

Package name License
p0f NONE
snort GPLv2
sofia-sip UNKNOWN (IBM)

In the following three subsections, we show examples for

each type of license inconsistency.

1) LAR: Examining the getopt.c of group 10 in second line

from the inconsistency result list in Table X, we get the license

list of that group in Table VII. The rest files that contain the

same licenses are omitted from this list.

We can see that the license of the getopt.c file from the

iceweasel package has an UNKNOWN license while the

one from package icedove has no license (marked as NONE).

The contents of each file is as follows.

getopt.c from icedove package:

#include <stdio.h>
#include <string.h>
[...]
int main(int argc, char **argv)
{

PLOptState *opt;
PLOptStatus ostat;
[...]
return 0;

}

getopt.c from iceweasel package:

/* This Source Code Form is subject to the terms of the
* Mozilla Public License, v. 2.0. If a copy of the MPL
* was not distributed with this file, You can obtain one
* at http://mozilla.org/MPL/2.0/.
*/
#include <stdio.h>
#include <string.h>
[...]
int main(int argc, char **argv)
{

PLOptState *opt;
PLOptStatus ostat;
[...]
return 0;

}

As we can see in the file from icedove package, there is no

license header at all, while the file getopt.c from iceweasel

package contains a license description of MPLv2 (though

Ninka failed to recognize it and reported as UNKNOWN).

Meanwhile, the other parts of these two files are exactly the

same, so we can assume that this duplicate should be caused

by source file reuse. There are several possible explanations

to this case of license inconsistency:

• The file from icedove package is the original one, and

the developers of iceweasel project reused the file and

added a license to it.

• The file from iceweasel package is the origin, and de-

velopers of icedove project reused this file and removed

the license header.

• Both of the files in these two projects reused different

versions of this file from another project, which caused

license inconsistency.

By tracing the revision history, we found that the last

one is the real case: the files in these two projects are

actually imported from a third project named nspr, where

the getopt.c file was created without a license in version 4.7.1,

and was added a MPLv2 license in version 4.9.1. It seems that

icedove project reused this file before the license header was

added, while iceweasel project imported the version after the

license was added, thus caused the inconsistency of license.

329

TABLE X: Partial list of the license inconsistency metrics for each file group in detecting Debian 7.5.

Base name Group #File #License #None #Unknown #GPL
obstack.c 0 17 2 0 0 2
getopt.c 10 5 1 2 3 0
getopt.c 15 4 2 1 2 1
...

TABLE XI: Breakdown of number of base name sets for different
file types.

File Type Total Selected Perc.
.c 247,520 65,572 26.49%
.cpp 154,990 24,998 16.13%
.java 255,578 47,048 18.41%
All types 658,088 13,7618 20.91%

TABLE XII: Number of different license inconsistency types and
their portion in 5,359 file groups. Note that one group may contain
more than one inconsistency types, so that the total percentage can
exceed 100%.

Inconsistency type Number Perc.
LC 5,272 98.4%
LUD 2,350 43.9%
LAR 1,500 28.0%

2) LUD: Take obstack.c file of the first line from the

inconsistency result in Table X as an example. The license

detection result is partially shown in Table VIII. As we can

see from this table, the first file is licensed under GPLv2+

while the second one is under GPLv3+.

The contents of the files from dpkg and anubis package

are compared in Section II-B. Both of these files contain more

than 400 lines of code, and they are exactly the same except for

their license description part. Similar assumptions are possible

to be made to explain this case of license inconsistency.

Tracing the file history we found that this file was originally

created in gnulib. The license of this file was upgraded from

GPLv2+ to GPLv3+. By examine the commit log of dpkg,

we found that the developers of dpkg intentionally reused the

older version of the file from gnulib project, which caused

the license inconsistency.

3) LC: Here we select the getopt.c files in the third line

from the inconsistency result in Table X.

As shown in Table IX, getopt.c from snort package

contains GPLv2 while the license of the one from sofia-sip

could not be recognized.

The contents of these files are as follows.

getopt.c file from snort package:
[...]

** it under the terms of the GNU General Public License
** Version 2 as published by the Free Software Foundation.

** You may not use, modify or
[...]

getopt.c file from sofia-sip package:
[...]

* COPYRIGHTS:

*This module contains code made available by IBM

*Corporation on an AS IS basis. Any one receiving the

*module is considered to be licensed under IBM copyrights

TABLE XIII: The count and percentage of each category for the 25
investigated license inconsistency cases.

Category Count Perc.
Safe changes 14 56%
Unsafe changes 5 20%
Uncertain cases 6 24%

Total 25 100%

*to use the IBM-provided source code in any way he or she

*deems fit, including copying it, compiling it, modifying
[...]

From the header we know that the second file is licensed

under IBM copyrights (Ninka reported as UNKNOWN).

Since both these files contain the same program code, we may

assume that someone changed the license from one to the other

but we do not know the direction yet. If these changes are not

made by the original author, this may be a potential license

violation.

C. Manual Analysis

To decide whether these license inconsistencies may in-

dicate legal problems or not, we have conducted a manual

analysis on the history of the files.

We randomly chose the samples using trial-and-error

methodology, that is, first we randomly select a case of license

inconsistency and investigate whether it is legally safe or not,

then we randomly select the next case and repeat the process.

We have investigated 25 cases in total.

Then we tried to categorize them according to the reason

that caused such inconsistencies. They are divided into three

categories, the percentage of each category is shown in Table

XIII, and the explanation to each category is as follows:

1) Safe Changes: In this category, either the original author

or the developers who reused the file changed the license

header, but the change they made is based on the terms

described in the license thus we say it is a safe change. They

are further divided into 3 groups:

Original author modified/upgraded the license: In this

case, the author of that file modified the license header (either

by upgrading or totally changing it to another license),

while the reusers still use the old version of the file (either

intentionally or unintentionally).

For example, we examined a file named obstack.c in our

inconsistency result. This file originates from gnulib project,

and its license is upgraded from GPLv2+ to GPLv3+ in

a commit on 10/7/2007. This file was reused in the dpkg

project but with a GPLv2+ license, and in the last commit

on 9/25/2011 the log is as follows:

330

libcompat: Update obstack module from gnulib.
The version taken is the one before the switch to GPLv3+.
With a slight code revert to not have to include
exitfail.c and exitfail.h.
[...]

We can see that in this case, the reuser intentionally takes

an older version from the original project, which caused the

inconsistency of license.

In another example, there is a file named paintwidget.cpp,

which originates from Qt project with BSD3 license. In

another project called PySide, this same file is licensed under

LPGLv2.1/GPLv3 dual license. Since these two projects both

belong to Digia plc, which were acquired from Nokia, this

shall be a legal license modification.

The file was originally multi-licensed and reusers chose
either one: The author of the file licensed the file under two

or more licenses, and the reusers can choose either one of

them.

There is a file named SimpleXMLParser.java which orig-

inates from iText project and was under MPL/LGPL dual

license. Developers in pdftk project reused this file removing

the MPL license and chose LGPL as its license.

Reuser added one or more licenses: The original file is

under some licenses, and the reuser added one or more licenses

to it while retaining the original license.

From our inconsistency result we examined a file named

DOMException.java. This author of this file is World Wide

Web Consortium (W3C), and was licensed under W3C license.

When reused in ikvm project, a GPLv2 License was added to

it resulting a composition of these two licenses.

2) Unsafe Changes: Under this category, developers who

reused the source file seemed to have modified the license

header which is not allowed by the original license terms.

This change may lead them to legal disputes, thus we say it

is an unsafe change.

Reuser replaced the original license, and changed the
copyright owner: The file is under a certain license in the

original project and developers who reused the file changed

the license header and the copyright owner.

From our inconsistency list, we examined a file named

SpringUtilities.java. According to the copyright year, Oracle is

the copyright owner, and licensed the file under BSD3. When

reused in freemind project, developers changed the license

to GPLv2+ and the copyright header, which is not allowed

in BSD3. This kind of changes to the license header by the

reuser may lead to license infringement, and may involve the

reuser into legal disputes.

3) Uncertain Cases: This category contains the license

inconsistency cases which are difficult to determine whether

they are legally safe or not due to several reasons:

Source files are too small: Some files contain the same

source code, but due to their small size it is difficult to decide

whether one is reused by the other or they just happen to be

the same. This problem is discussed in Section VI.

Files can not be found in the repository: Although some

license inconsistency cases are reported to be existing in

Debian 7.5, when we investigated the project repository, the

file no longer existed. One explanation is that the file was

removed in the project, but was not yet updated in Debian

7.5.

Project repository not available: Some project repositories

could not be found due to the lack of documentation, while

some can not be accessed due to server error.

V. DISCUSSION

From these results we can see that the license inconsis-

tencies are not uncommon: out of 74,848 file groups, 5,359

(7.2%) of them contain one or more license inconsistencies.

Among them, LC has the highest proportion with 98.4%,

followed by LUD (43.9%), LAR comes next with 28.0%.

With a manual analysis to several cases of license inconsis-

tencies, we discovered that some of them are possibly causing

license violations, which needs further investigation. During

this process of analysis, we also found several challenges that

prevent us from automatically analyzing the history of files.

Packages in a large open source project are usually imported

from upstream projects. It is not a trivial task to find the

repositories of these upstream projects. Take Debian project

as an example, some of the packages contain a file indicating

the repository URL of that package, but some do not. For

such packages, we need have to go to the official site of the

upstream project and try to get the repository URL. There are

packages not even using version control systems, they simply

provide source code tarballs for each version on their server.

In this case, we have to download each tarball and track the

license change manually.

In some cases the change of the license header is not

recorded in the revision history because the license header

is changed right before the file is added to the project. In this

case, we have to check other information (e.g. on the official

site of the project or in the commit comment where the file

was added) to find out the reason why developers changed the

license.

Besides, after we find out that the files with similar code

contents in different packages contain different licenses, we

have to determine where the file comes from, i.e. the original

project of that file, in order to decide the direction of the

license change. But to the best of our knowledge, there is

no good way to find the origin of a certain file. What we

do in our research is to take the date of the first commit of

that file as a reference. If the commit date is not available,

in the situation of not using version control system, we have

to manually check the comments of the source file to see if

it contains information of the author. If not, then we are not

able to decide which file comes first.

Revisiting the research questions:

• RQ1: How can we categorize license inconsistencies?
We categorize license inconsistencies into these 3 types:

i) LAR, which is typically caused by license addition or

removal; ii) LUD, which is related to license upgrade

or downgrade in GPL family; iii) LC, which is usually

caused by license change in the process of license evo-

lution.

331

• RQ2: Does license inconsistency exist in large open
source projects? Yes, license inconsistencies exist in large

open source projects. As we studied on the FOSS project

Debian 7.5, various types of license inconsistencies are

detected.

• RQ3: What is the proportion of each type of license
inconsistency? In the case study of Debian 7.5, out of

74,848 file groups we selected, 7.2% of them contain one

or more license inconsistencies. The proportion of each

type is: LAR (28.0%), LUD (43.9%) and LC 98.4%.

• RQ4: What caused these license inconsistencies? Are
they legally safe? The reasons that caused license incon-

sistencies can be summarized into these groups according

to our observation: i) Original author modified/upgraded

the license; ii) The file was originally multi-licensed and

reusers chose either one; iii) Reuser added one or more

licenses; iv) Reuser replaced the original license, and

changed the copyright owner. Among them, the last type

of change is unsafe.

VI. THREATS TO VALIDITY

In our approach, we only consider the license inconsisten-

cies among source files that have the same base name, but

there might be scenarios that both the license header and

the base name of the reused source file are changed. In this

case, our method can not detect the license inconsistencies

between the modified file and its ancestor. Since this paper is

an exploratory study on license inconsistency, for simplicity

and efficiency, we only focus on those cases with the same

base name, which may increase the false negative. To reduce

these false negatives, we can simply skip the first step of our

method, which means we treat the whole project as one set,

and detect file clones within all these files. This progress will

surely take much more time, which we make it as our future

work.

Another factor that increases false negative rate is that we

use CCFinder to detect file clones which are exactly identical

to each other regarding their semantics. However, source code

files are evolving: those that come from the same provenance

may differ from each other semantically after being modified

by developers. But since we can still get large numbers of file

groups that contain license inconsistencies using the proposed

method, we believe that it is enough for this exploratory study.

To mitigate this problem, we can use similarity metrics instead.

On the other hand, during our manual analysis we found

files clones that are semantically identical, but due to their

small size and simplicity, it is difficult to decide whether they

are copies of each other or they were written from scratch by

individual developers. If the later one is the real case, then it

would be a false positive of our result. But we believe it is a

good practice to report these cases, have a manual investigation

on them and ask the developers directly.

In the process of license identification, as we employed

Ninka as the identification tool, the accuracy of the result from

Ninka should also be considered. German et al. reported that

the accuracy of Ninka is 93% [9]. We believe this is suffi-

ciently high, so that the license detection result is good enough

to support our analysis. In addition, we regard UNKNOWN

licenses as the same license within each group, different

from any other licenses. If these UNKNOWN licenses in

a same group are actually different from each other, we

may underestimate license inconsistencies. But this concern is

mitigated according to our observation to these UNKNOWN

licenses: most of those in the same group actually contain the

same license header, either a license that is not approved by

OSI or a user modified version of an OSI-approved license. On

the other hand, if these UNKNOWN licenses are actually the

same as those recognized ones (e.g. GPLv2, BSD3 etc.) in the

same group, this could be considered as a false positive. In this

case, these UNKNOWN licenses are not exactly the same as

the original one, meaning that someone must have modified

the license header. We believe that it is necessary to check

whether these changes are legal or not. Thus it is reasonable

to treat them as license modifications, which is consistent with

our assumption. To obtain more precise results, we need to

improve Ninka.

VII. RELATED WORK

Many studies address inconsistencies among code clones.

Krinke [10] studied on changes applied to code clone in

open source software systems and showed that half of the

changes to code clone groups are inconsistent changes and

these changes are not solved if they occurred in a near version.

Göde et al. [11] studied patterns of consecutive changes to

code clone in real software systems. Some approach to find

inconsistent changes are proposed [12], [13]. On the other

hand, Bettenburg et al. [14] showed that only 1% ∼ 4% of

inconsistent changes to code clone introduce software defects.

In addition, Göde et al. [15] showed that most code clones do

not evolve and the number of inconsistent changes is small.

Our work does not address inconsistency in changes to code

clones but inconsistency among licenses under which source

files including code clones are distributed.

In addition, many studies in software engineering investi-

gated software license. Some approaches for software license

identification are proposed [9], [16], [17]. Using these ap-

proaches, some researches analyzed software licenses in open

source projects and revealed some license issues. Di Penta

et al. [18] provided an automatic method to track changes

occurring in the licensing terms of a system and did an

exploratory study on license evolution in six open source

systems and explained the impact of such evolution on the

projects. German et al. [19] proposed a method to understand

licensing compatibility issues in software packages. They

mainly focused on the compatibility between license declared

in packages and those in source files. In another research of

Di Penta et al. [20], they analyzed license inconsistencies

of code siblings (a code clone that evolves in a different

system than the code from which it originates) between Linux,

FreeBSD and OpenBSD, but they did not explain the reasons

underlying these inconsistencies. Alspaugh et al. [21] proposed

332

an approach for calculating conflicts between licenses in terms

of their conditions. However, our work proposed an approach

to find license inconsistencies in similar files. By investigating

the revision history of these files, we summarized the factors

that caused these license inconsistencies and tried to decide

whether they are legally safe or not. Recently Vendome et al.

[22] performed a large empirical study of Java applications

and found that changing license is a common event and a lack

of traceability between when and why the license of a system

changes.

VIII. CONCLUSION AND FUTURE WORK

This paper describes and categorizes different types of

license inconsistency. With the proposed method, we managed

to detect all these types of license inconsistency from the large

open source project Debian 7.5, which shows the existence of

license inconsistency in open source projects and proves the

feasibility of our method.

With a manual analysis on some license inconsistency

cases, we discovered that there are several reasons behind

license inconsistencies: Author changed the license header;

Reuser chose either one from multi-licenses; Reuser added

a compatible license; Reuser modified the license. Among

them, the last one is potentially unsafe and needs further

investigation.

In the process of our manual analysis, we came across a

great difficulty to find out the reason behind each license

inconsistency case. On one hand, it is difficult to find out

from where a certain file in a project is imported when lacking

enough information. On the other hand, it is also not a trivial

task to decide which file is the original work when they are

found in multiple projects. These problems highlight the need

for a method to find and maintain the provenance between

applications.

For future work, we will apply our tool to large numbers of

open source projects and examine the portion of each type of

license inconsistency. With the increased number of projects,

we believe that much more license inconsistency cases will

be found. And we will try to make a quantitative evaluation

of this tool. Furthermore, we will try to develop a method to

help us analyze the history of each file, so that we can decide

the safety of these inconsistencies efficiently.

ACKNOWLEDGMENT

This work is supported by Japan Society for the Promotion

of Science, Grant-in-Aid for Scientific Research (S) “Col-

lecting, Analyzing, and Evaluating Software Assets for Ef-

fective Reuse”(No.25220003) and Osaka University Program

for Promoting International Joint Research, “Software License

Evolution Analysis”.

REFERENCES

[1] M. D. McIlroy, J. Buxton, P. Naur, and B. Randell, “Mass-produced soft-
ware components,” in Proceedings of the 1st International Conference
on Software Engineering (ICSE1968), 1968, pp. 88–98.

[2] T. A. Standish, “An essay on software reuse,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 5, pp. 494–497, Sept 1984.

[3] B. W. Boehm, “Improving software productivity,” Computer, vol. 20,
no. 9, pp. 43–57, Sep. 1987.

[4] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. Slyngstad, and M. Morisio,
“Development with off-the-shelf components: 10 facts,” IEEE Software,
vol. 26, no. 2, pp. 80–87, March 2009.

[5] Y. Manabe, Y. Hayase, and K. Inoue, “Evolutional analysis of licenses in
FOSS,” in Proceedings of the Joint ERCIM Workshop on Software Evo-
lution and International Workshop on Principles of Software Evolution
(IWPSE-EVOL2010), 2010, pp. 83–87.

[6] Y. Manabe, D. German, and K. Inoue, “Analyzing the relationship
between the license of packages and their files in free and open source
software,” in Proceedings of the 10th International Conference on Open
Source Systems (OSS2014), 2014, pp. 51–60.

[7] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file
clones in FreeBSD ports collection,” in Proceedings of the 7th Working
Conference on Mining Software Repositories (MSR2010). IEEE, 2010,
pp. 102–105.

[8] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[9] D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in Proceedings
of the 25th International Conference on Automated Software Engineer-
ing (ASE2010), 2010, pp. 437–446.

[10] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in Proceedings of the 14th Working Conference on Reverse
Engineering (WCRE2007), 2007, pp. 170–178.

[11] N. Göde and J. Harder, “Oops! . . . I changed it again,” in Proceedings of
the 5th International Workshop on Software Clones (IWSC2011), 2011,
pp. 14–20.

[12] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, “Scalable
and systematic detection of buggy inconsistencies in source code,” in
Proceedings of the 25th International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA2010),
2010, pp. 175–190.

[13] Y. Higo and S. Kusumoto, “MPAnalyzer: A tool for finding unintended
inconsistencies in program source code,” in Proceedings of the 29th In-
ternational Conference on Automated Software Engineering (ASE2014),
2014, pp. 843–846.

[14] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan,
“An empirical study on inconsistent changes to code clones at release
level,” in Proceedings of the 16th Working Conference on Reverse
Engineering (WCRE2009), 2009, pp. 85–94.

[15] N. Göde and R. Koschke, “Frequency and risks of changes to clones,”
in Proceedings of the 33rd International Conference on Software Engi-
neering (ICSE2011), 2011, pp. 311–320.

[16] R. Gobeille, “The FOSSology project,” in Proceedings of the 5th
Working Conference on Mining Software Repositories (MSR2008), 2008,
pp. 47–50.

[17] T. Tuunanen, J. Koskinen, and T. Krkkinen, “Automated software license
analysis,” Automated Software Engineering, vol. 16, no. 3-4, pp. 455–
490, 2009.

[18] M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and G. Antoniol, “An ex-
ploratory study of the evolution of software licensing,” in Proceedings of
the 32nd International Conference on Software Engineering (ICSE2010),
2010, pp. 145–154.

[19] D. German, M. Di Penta, and J. Davies, “Understanding and auditing the
licensing of open source software distributions,” in Proceedings of the
18th International Conference on Program Comprehension (ICPC2010),
2010, pp. 84–93.

[20] D. German, M. Di Penta, Y.-G. Gueheneuc, and G. Antoniol, “Code
siblings: Technical and legal implications of copying code between
applications,” in Proceedings of the 6th Working Conference on Mining
Software Repositories (MSR2009), 2009, pp. 81–90.

[21] T. Alspaugh, H. Asuncion, and W. Scacchi, “Intellectual property rights
requirements for heterogeneously-licensed systems,” in Proceedings of
the 17th International Requirements Engineering Conference (RE2009),
2009, pp. 24–33.

[22] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. M.
Germán, and D. Poshyvanyk, “License usage and changes: A large-
scale study of java projects on github,” in The 23rd IEEE International
Conference on Program Comprehension, ICPC 2015, To appear.

333

