
VerXCombo: An interactive data visualization of
popular library version combinations

Yuki Yano, Raula Gaikovina Kula, Takashi Ishio, Katsuro Inoue
Osaka University, Japan

{y-yano, raula-k, ishio, inoue}@ist.osaka-u.ac.jp

Abstract—In large software systems, it is common practice to
adopt third-party libraries. Decisions by system maintainers to
either update or introduce new third-party libraries can range
from trivial to complex. For instance, incompatibility between
internal library dependencies may complicate adoption. There-
fore, system maintainers especially need adequate assurance of
any candidate library release. Using the ‘wisdom of the crowd’,
VerXCombo aims to assist system maintainers by mining popular
library dependency patterns of similar systems. Through data
interactions, VerXCombo leverages parallel sets to break-down
large and complex dataset into distinguishable patterns of 1.)
popular and 2.) latest library dependency release combinations.
Populating our tool with a maven library dependency dataset
from over 4,000 Java Open Source projects, we demonstrate
through a case scenario navigation and best fit combinations
of the VerXCombo tool. A video highlighting the main features
of the tool can be found at: http://goo.gl/wWPylL

Index Terms—Software reuse, Mining software repository,
Software Visualization

I. INTRODUCTION

In software development, the adoption of third-party soft-

ware libraries is becoming common-place. Benefits include

reducing time and effort costs of ‘reinventing the wheel’, with

the added assurance of quality. With the expansion of library

hosting sites such as the Maven 2 Central Repository1 for Java

and RubyGems2, system maintainers now have open access to

a vast range of Open Source System (OSS) libraries. OSS

third-party library adoption have become widespread. Usage

in both open and industrial settings has validated OSS library

usage[1].
As a library evolves, maintenance issues arise as whether

to incorporate new bug fixes and recent improvements and

features. As part of software maintenance, system maintainers

need to consider ‘if’ and ‘when’ existing libraries should be

updated to ‘which’ library version. Moreover, system main-

tainers are usually faced with introducing a new library. In

this case, they need to consider how this new library will

best ‘fit-in’ with the existing dependency environment. Studies

have expressed concerns of incompatibility when updating

[2], [3], while examples such as the heartbleed bug3 illustrate

the widespread effect of when updates are disregarded. These

tasks can be become extremely challenging when documenta-

tion of the system is poor or knowledge of the system is lost

due to project personnel changes.

1http://search.maven.org/
2https://rubygems.org
3http://heartbleed.com/

Subset Dataset

Library Dependency Dataset

D3.js JavaScript Library

Web-Browser

Parallel Sets Visualization

Library Selection Page

Fig. 1. An architectural overview of VerXCombo

With the rise of OSS and its open access repositories, min-

ing techniques have been employed to gather useful significant

amounts data on patterns of library usage. However, the data

relationships are often complex and too large to properly

visualize and navigate.

To this end, we propose VerXCombo (Version X Combina-

tion) as a prototype to present various combinations of library

versions. Using the ‘wisdom of the crowd’ popularity metrics,

VerXCombo is able to depict different combination patterns

that allow the users to determine the best-fit combination.

II. VERXCOMBO OVERVIEW

A. Architectural Design

VerXCombo is built as a platform independent web appli-

cation, with an easy–to–use interface. It is implemented with

HTML5 and JavaScript for the front-end and Apache Tomcat4

and a Neo4j5 graph database for the server backend.

Figure 1 shows an architectural overview of VerXCombo.

The library dependency datasets are stored in the Neo4j

VerxCombo database. Through the web-interface, the user

initially selects a set of libraries that exist in the database. To

enable the data interaction, a subset dataset containing only

information specific to the query is returned.

From the returned subset dataset, VerXCombo employs the

d3.js6 JavaScript engine to interact with the manageable subset

dataset. Displayed as parallel sets, users are then able to sort

4http://tomcat.apache.org/
5http://neo4j.com
6http://d3js.org/

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPC.2015.43

291

Horizontal rearrangement

Ve
rt

ic
al

 re
ar

ra
ng

em
en

t

Library
Bar Library Version

divisions

Version and popularity
sorting

Combination Links between
library bars. Thickness

indicates popularity

Fig. 2. VerXCombo - Parallel Sets Visualization

and order different library combinations according to the 1.)

popularity and 2.) latest release sets.

B. Library Combinations as Parallel Sets
Parallel sets serve as an interaction framework and visual

metaphor to naturally map categorical variables to visual

entities [4]. As an extension of the bipartite graph, parallel sets

are an interactive exploration of categorical data that shows

data frequencies instead of the individual data points.
Figure 2 depicts a simplified example of the parallel set

interactions. Each of the three parallel bars represent a library,

with the target library located on the bottom bar. The bar then

is divided into each respective library versions.
A combination link between the library bars depicts the

frequency count of systems that uses both library versions. The

thickness of the link is the propositional frequency of systems

that use the corresponding libraries.The color corresponds to

a version of the target library.
As seen in Figure 2 LIBRARYC1.0 has a light blue col-

ored combination link to LIBRARYB1.0 and LIBRARYB2.0.

Fundamental interaction is performed by either the vertical

rearrangement of the library bars or horizontal rearrangement

of the versions on the bar of the library. The mouseover event

highlights a particular combination set, also providing statistics

on this combination set.
The vertical rearrangement enables users to focus on direct

links in relation to the target library. The horizontal rearrange-

ment of the library versions can be manipulated to show the

order of popularity (most popular to least popular usage) or

the sequence of release times (oldest to newest).

C. Best-Fit: Popularity and Latest Version Release
We recognize the following assumptions as objectives to

determine the ‘best-fit’ combination of library versions:

• Popularity use. We assume that popular use by similar

system indicates a favorable library version to adopt.

• Latest Version. We assume that system maintainers would

like to keep ‘up-to-date’ with the current bug fixes and

enjoy latest features of a library.

We leverage the interactive and frequency features of VerX-

Combo to determine popularity the latest version release ‘best-

fit’ combinations. Visually, the thickness of a combination sets

indicates its popularity. Figure 2 shows that VerXCombo has

both popularity and version horizontal sorting settings. Users

can interact with the visualization to determine best-fit.

III. ILLUSTRATIVE USAGE SCENARIO

We demonstrate the usefulness of VerXCombo in a realistic

environment setting. Using our research prototype, we perform

a use case scenario in respect to library update decisions.

A. Library Dependency Dataset

For this scenario, we populated the VerXCombo database

with systems that depend on java libraries that are managed

and hosted on the Maven 2 Super Repository. For a representa-

tive sample, we analyzed library dependency information from

4,367 projects hosted on GitHub7. We used an extension of our

Pomwalker tool8 to extract to system and library dependencies

from their respective pom.xml files. Table I provides details

of the dataset we used to populate the VerXCombo database.

B. Real-world Scenario: Introducing a new library

System Sx is part of a web-based application, that

has existing dependencies with the Apache COMMONS-

COLLECTIONSverX and COMMONS-HTTPCLIENTverX .

7https://github.com
8https://github.com/raux/PomWalker

292

TABLE II
CASE STUDY SCENARIO - ALL LIBRARIES ARE EXTENSIONS OF THE STANDARD JAVA SDK LIBRARY.

Library Description System Environment Version Latest Version
COMMONS-COLLECTIONS Java Utilities Library (java.util extension) 3.2 3.2.1
HTTPCLIENT Client-side HTTP protocol library (java.net extension) 3.1 3.1

JODA-TIME Date, Time and Calender library (java.time extension) - 2.3

Joda-time versions {1.4, 1.6, 2.0, 2.2}

Fig. 3. Joda-time - Possible Combinations

݆ܽ݀ →ଷ.ଵݐ݈݊݁݅ܿݐݐଷ.ଶ.ଵ→ ℎݏ݊݅ݐ݈݈ܿ݁ܿ − ଵ.݁݉݅ݐ
Fig. 4. Joda-time - Popular Combination

݆ܽ݀ →ଷ.ଵݐ݈݊݁݅ܿݐݐଷ.ଶ.ଵ→ ℎݏ݊݅ݐ݈݈ܿ݁ܿ − ଶ.ଶ݁݉݅ݐ
Fig. 5. Joda-time - Latest Version Combinations

TABLE I
LIBRARY DEPENDENCY DATASET

of Projects 4,210
of Systems 36,910
of Libraries 29,535
of Libraries Versions 151,647

COMMONS-COLLECTIONS is an expansion of the JDK

utility, with newer interfaces, implementations and utilities9.

HTTPCLIENT extends on the java.net library by providing an

efficient, up-to-date, and feature-rich package implementing

the client side of the most recent HTTP standards and recom-

mendations10.

In the next system release (i.e. Sx+1), the system maintainer

would like to implement a new functionality that requires

replacing the standard Java date and time classes. The system

maintainer would like to adopt the more powerful JODA-

TIME11 library as a target candidate. Using VerXCombo, the

system maintainer can now explore the most suitable library

combinations between these three libraries.

Table II depicts the version information for the respective

libraries. The latest library version is also included. Based

on the scenario and the library dependency dataset provided,

VerXCombo can be used to evaluate the following questions:

Q1: What set of the target library version combinations

‘fit-in’ the current system dependency environment?

Q2a: What is the most popular combination set of li-

braries?

Q2b: What combination satisfies the closest to the latest

version combination?

Q3: Which combination is recommended to enable use

of the latest target library version?

C. Findings

Table III provides a brief summary of the visual findings

from the case scenario. In response to Q1, as shown in Figure

3, we find that JODA-TIME versions {[[1.4], 1.6], [2.0], [2.2]}
have been used by similar systems that match the current envi-

ronment settings of COMMONS-COLLECTIONS3.2,COMMONS-

HTTPCLIENT3.1. Using the mouseover event, we are able to

highlight these versions. Figure 4 depicts the most popular

combination set. Therefore to answer Q2a, the combination

{COMMONS-COLLECTIONS3.2.1, COMMONS-HTTPCLIENT3.1,

9http://commons.apache.org/proper/commons-collections/
10http://hc.apache.org/httpcomponents-client-ga/index.html
11http://www.joda.org/joda-time/

293

TABLE III
SCENARIO FINDINGS FROM VERXCOMBO

VerXCombo Recommendation
Q1 Popular Target Versions [JODA-TIME[1.4,1.6,2.0,2.2]]

Q2a Popular Fit [COMMONS-COLLECTIONS3.2.1, COMMONS-HTTPCLIENT3.1, JODA-TIME1.6]
Q2b Latest Fit [COMMONS-COLLECTIONS3.2.1, COMMONS-HTTPCLIENT3.1, JODA-TIME2.2]
Q3 Latest Target [COMMONS-COLLECTIONS3.2.1, COMMONS-HTTPCLIENT3.0.1, JODA-TIME2.3]

JODA-TIME1.6]} is the popular fit. Do note however, that

JODA-TIME1.6 is a much older version so may not be the

best option.

Finding the fit with respect to the latest versions

(Q2b) includes the combination of the most recent re-

leases of all libraries. In this case, the combination

{COMMONS-COLLECTIONS3.2.1, COMMONS-HTTPCLIENT3.1,

JODA-TIME2.2} is recommended as the best-fit. JODA-

TIME2.2 although not the latest closest to the latest ver-

sion. This combination also recommends the update to

COMMONS-COLLECTIONS3.2.1. It is interesting to note that

the latest version JODA-TIME2.3 is used as a combina-

tion with an older version of COMMONS-HTTPCLIENT3.0.1,

suggesting a downgrade one of the current libraries. Fi-

nally for Q3, COMMONS-COLLECTIONS3.2.1, COMMONS-

HTTPCLIENT3.0.1, JODA-TIME2.3 combination is recom-

mended for the latest version JODA-TIME2.3.

Ultimately, the system maintainer can use the VerXCombo

tool to make an informed decisions by exploring the different

library version combinations. Our final recommendation is

either JODA-TIME2.2 or JODA-TIME2.3 with the option to

update COMMONS-COLLECTIONS3.2.1 without compromising

any library version downgrades. Using the recommendation as

a guide, system maintainers can proceed to look at documen-

tation of the specifications to validate adoption.

D. Threats and Considerations

An ambitious system maintainer may decide to pioneer a

new combination set of libraries. However, most developers

may care about untested and early bugs or new releases. There

are many other factors such as the compiler, development

environment and programming language that may influence a

system maintainers decision to update a library. In this work,

we specifically target existing system dependency libraries to

reduce the change of library incompatibility issues.

We demonstrate with a case scenario of maven libraries,

however, we believe that the visualization can be extended to

other programming languages and their library dependencies.

Due to the large size of the dataset, we consider the data as a

fair representation of typical OSS projects. The case scenario

demonstrates that the tool is scalable to handle large datasets.

IV. RELATED WORK

There exists a large body of research that have studied

library migrations and updates such as [5], [6]. All these

studies highlight the challenges associated with library up-

grades. Our tool provide developers with more information on

specific libraries. Popularity measures have been used for API

Usage [7], [8]. Work by Mileva and colleagues [9] visualized

popularity trends of a single OSS library. A similar application

of bi-partite sets has been proposed for Code Flows [10].

In our previous work [3], our results suggest that main-

tainers are more inclined to adopt the latest version releases.

Complementary, our other visualizations [11] includes systems

and their dependent libraries. In this work, we compare and

explore different combinations of libraries.

V. SUMMARY & FUTURE WORK

We present VerXCombo as a tool to assist system main-

tainers make library maintenance decisions. We show through

a real-world scenario some ‘best-fit’ result combination sets

of libraries. Future work includes feedback and prototype use

with real-world system maintainers.

ACKNOWLEDGMENT

This work is supported by ‘SARF’ Project, Japan Society for

the Promotion of Science, Grant-in-Aid for Scientific Research

(No.25220003) and ‘Software License Evolution Analysis’,

Osaka University Program for Promoting International Joint

Research.

REFERENCES

[1] C. Ebert, “Open source software in industry,” vol. 25, no. 3, May 2008,
pp. 52–53.

[2] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” in Proc. of
SCAM, Sept 2014, pp. 215–224.

[3] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a library: A
study of the latency to adopt the latest maven release,” in 22nd IEEE Int.
Conf. on Soft. Ana., Evo., and Reeng., SANER 2015, Montreal, Canada,
March 2-6, 2015, 2015.

[4] F. Bendix, R. Kosara, and H. Hauser, “Parallel sets: Visual analysis of
categorical data,” in Information Visualization, 2005. INFOVIS 2005.
IEEE Symposium on. IEEE, 2005, pp. 133–140.

[5] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in java,” Journl of Soft.: Evo. and Pro., vol. 26, no. 11, 2014.

[6] V. Bauer, L. Heinemann, and F. Deissenboeck, “A structured approach
to assess third-party library usage,” in Software Maintenance (ICSM),
2012 28th IEEE Int. Conf. on, Sept 2012, pp. 483–492.

[7] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proc. of Int. Conf. on Prog. Comp.(ICPC), 2013.

[8] R. Holmes and R. J. Walker, “Informing Eclipse API production and
consumption,” in OOPSLA2007, 2007, pp. 70–74.

[9] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,” in
TAIC PART, 2010, pp. 173–180.

[10] A. Telea and D. Auber, “Code flows: Visualizing structural evolution of
source code,” Computer Graphics Forum, vol. 27, no. 3, pp. 831–838,
2008.

[11] R. G. Kula, C. De Roover, D. M. Germán, T. Ishio, and K. Inoue,
“Visualizing the evolution of systems and their library dependencies,”
in Second IEEE Work. Conf. on Soft. Vis., 2014, Victoria, BC, Canada,

Sept. 29-30, 2014, 2014, pp. 127–136.

294

