
Web Service Antipatterns Detection Using Genetic
Programming

Ali Ouni1, Raula Gaikovina Kula1, Marouane Kessentini2, Katsuro Inoue1

1Graduate School of Information Science
and Technology, Osaka University, Japan

{ali, raula-k, inoue}@ist.osaka-u.ac.jp

2Department of Computer and Information
Science, University of Michigan, USA

marouane@umich.edu

ABSTRACT

Service-Oriented Architecture (SOA) is an emerging paradigm that

has radically changed the way software applications are

architected, designed and implemented. SOA allows developers to

structure their systems as a set of ready-made, reusable and

compostable services. The leading technology used today for

implementing SOA is Web Services. Indeed, like all software, Web

services are prone to change constantly to add new user

requirements or to adapt to environment changes. Poorly planned

changes may risk introducing antipatterns into the system.

Consequently, this may ultimately leads to a degradation of

software quality, evident by poor quality of service (QoS). In this

paper, we introduce an automated approach to detect Web service

antipatterns using genetic programming. Our approach consists of

using knowledge from real-world examples of Web service

antipatterns to generate detection rules based on combinations of

metrics and threshold values. We evaluate our approach on a

benchmark of 310 Web services and a variety of five types of Web

service antipatterns. The statistical analysis of the obtained results

provides evidence that our approach is efficient to detect most of

the existing antipatterns with a score of 85% of precision and 87%

of recall.

Categories and Subject Descriptors

D.2.7 [Distribution, Maintenance, and Enhancement]: Restruct-

uring, reverse engineering, and reengineering

Keywords

Web services, antipatterns, search-based software engineering.

1. INTRODUCTION
Service Oriented Architecture (SOA) has emerged as the next

generation of software systems. As part of the service-oriented

computing paradigm, SOA revolutionizes the process of

developing and deploying distributed software applications as a set

of reusable composable services [1]. SOA provides many

architectural benefits including reusability, flexibility, adaptability,

and maintainability [1]. This architectural style can be implemented

utilizing a variety of SOA technologies, such as Web Services,

OSGi, SCA, and REST. Today, Service-Based Systems (SBS) have

become prevalent and omnipresent in our everyday life such as

Facebook, Dropbox, Google Maps, PayPal, FedEx, and so on.

Web services must be carefully designed and implemented to

adequately fit in the required system’s design with high QoS [2].

Indeed, there is no generalized recipe for proper service design. A

set of guiding quality principles for service-oriented design exist

such as service flexibility, operability, composability, and loose

coupling principles [1]. However, the design of services is

influenced mostly on context and usage [3]. Even though the

programmers are familiar with these principles, business factors

such as deadline pressures may lead to violations of quality

principles. The presence of programming patterns associated with

bad design and bad programming practices, known as

“antipatterns”, are an indication of such violations [4] [5].

Common Web service antipatterns include the nanoservice, and

multiservice. Nanoservice is an antipattern where a service is too

fine-grained characterized with few low cohesive operations, and

whose overhead (communications, maintenance, and so on)

outweighs its utility [3]. In contrast, the multiservice antipattern

describes about the other extreme, i.e., the largest service.

Multiservice corresponds to a god service that contains a large

number of very low cohesive operations related to different

business logics. Nanoservice and multiservice antipatterns can

cause many maintenance and evolution problems such as poor

performance, fragmented logic, overhead, client breakages and

unavailability.

Consequently, there is a high need for efficient techniques that

both Web service users and providers can use to detect and prevent

antipatterns in their SBSs. Although there are several tools and

techniques to detect antipatterns and code-smells in object-oriented

(OO) systems [6] [7] [8], Web service antipatterns detection is not

mature enough to provide efficient detection techniques [9] [10].

Indeed, despite the importance and extensive usage of Web services

in last years, no automated approach for the detection of such

antipatterns in Web services has been proposed.

In this paper, we introduce a novel automated approach for

detecting Web service antipatterns. We propose a search-based

approach to automatically infer antipattern detection rules from a

base of real-world examples of Web service antipatterns. The

problem is to find, from a large list of Web service metrics, the best

combination of metrics and their appropriate threshold values, for

each antipattern type. We thus express antipatterns detection as an

optimization problem, using genetic programming (GP) to generate

detection rules. A candidate detection rule is expressed as a

combination of metrics and their appropriate threshold values; and

should detect as much as possible the number of antipatterns from

the base of examples. We present an empirical study to evaluate our

approach on a benchmark composed of 310 Web services from six

different application domains including 136 antipattern instances.

We compare our approach to two other popular algorithms and

random search. The statistical results reveal that our approach was

significantly better than particle swarm optimization, simulated

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

GECCO ’15 July 11 - 16, 2015, Madrid, Spain.

Copyright © 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00.

annealing as well as random search with more than 85% of

precision and 87% of recall.

The remainder of this paper is organized as follows. Section 2

describes the background and motivation challenges. Section 3

introduces our search-based approach. In section 4, we present and

discuss the validation results. Section 5 discusses the different

threats to validity. Section 6 surveys the existing work. Finally, we

conclude and outline our future research directions in section 7.

2. BACKGROUND
In this section, we provide a brief overview of SOA, Web services

and Web service antipatterns. Then, we outline the different

problems and challenges that motivate our approach.

2.1 Definitions
SOA is a logical way for designing complex distributed software

systems using functionality implemented by third-party providers.

In a SOA, the service requester satisfies its specific needs by using

services offered by service providers, through published and

discoverable interfaces.

Web services is nowadays the fittest and popular technology to

implement SOA [11]. According to the W3C (World Wide Web

Consortium), a Web Service is defined as “a software application

identified by a URI, whose interfaces and bindings are capable of

being defined, described, and discovered as XML artefacts” [12].

Its interface is described as a WSDL (Web service Description

Language) document that contains structured information about the

Web service’s location, its offered operations and the input/output

parameters, and so on. The aim of the Web services platform is to

provide the required level of interoperability among different

applications using predefined web standards.

Antipatterns are symptoms of poor design and implementation

practices that describe a bad solution to a recurring design problem.

They often lead to negative effects on software quality for which

maintenance and evolution become harder [13]. Software engineers

often introduce antipatterns unintentionally during the initial design

or during software development due to bad design decisions,

ignorance or time pressure. Therefore, antipatterns should be

detected and removed from the software design as early as possible.

Table 1 summaries the common Web service antipatterns including

multiservice, nanoservice, chatty service, data service, and

ambiguous service. In this paper, We focus mainly on these five

antipattern types in our experiments as they are the most frequently

occurring ones in SBSs based on recent studies [10] [14] [15].

2.2 Web service antipatterns detection

challenges
The most challenging issues when detecting Web service

antipatterns is how to find the best metrics that characterize such

antipattern, how to find the appropriate threshold values for these

metrics; and most importantly how to find the best combination of

these metrics. Indeed, most of the existing works are limited to

provide definitions to Web service antipatterns and/or characterize

their common symptoms towards an antipattern catalog. However,

automating the detection of such antipatterns is still a very

challenging task.

In recent approaches [10] [18] [19], Web service antipatterns

detection relies on declarative rule specification using domain-

specific language (DSL). In these settings, rules are manually

defined to identify the key symptoms that characterize a Web

service antipattern using combinations of mainly quantitative

(metrics), structural, and/or lexical information. However, in an

exhaustive scenario, the number of possible antipatterns to

manually characterize and formulate with rules can be very large.

Unfortunately, it is very difficult to find a consensus to characterize

and formulate such symptoms. Moreover, even when consensus is

met, the same symptom could be associated to many antipattern

types, which may compromise the precise identification of

antipattern instances. Indeed, translating antipattern definitions

from the natural language to metrics is still mainly a subjective task.

That is, different antipatterns are characterized by the same metrics.

Another very important issue is related to the definition of

threshold values when dealing with quantitative information.

Indeed, there is no general agreement on extreme manifestations of

Web service antipatterns [16]. That is, for each antipattern, rules

that are expressed in terms of metrics need substantial calibration

efforts to find the right threshold value for each metric, above

which an antipattern is said to be detected. Since there is no

consensus in defining SOA antipatterns, different threshold values

should be tested to find the best one. For instance, the multiservice

detection involves information such as service size, number of

operations, number of port types, and cohesion. Although we can

measure the number of operations of a service, an appropriate

threshold value is not trivial to define. A service considered large

in a given context could be considered as normal in another.

Furthermore, detecting Web service antipatterns is more

complicated than OO ones. That is, Web service source code is

located in the provider side, and clients could only access and

invoke services through their interfaces described in WSDL

documents. This makes the situation more difficult to assess, detect,

and prevent badly designed Web service, i. e., antipatterns.

2.3 Motivating examples
The WSDL fragment below illustrates the salient aspects of a

multiservice antipattern, in the form of a service interface. The core

identifying aspect of a multiservice antipattern is that it implements

multiple core business and/or technical abstractions with low

operations cohesion. This is manifested at the service interface as

Table 1. Web service antipattern definitions.

Antipattern Definition

Multiservice Also called god object Web service, represents a service implementing a multitude of methods related to different business and technical

abstractions. This service aggregates too many methods into a single service, and it is not easily reusable because of the low cohesion of its

methods and is often unavailable to end-users because it is overloaded [16].

Nanoservice is a too fine-grained service whose overhead (communications, maintenance, and so on) outweighs its utility. This antipattern refers to a small

Web service with few operations implementing only a part of an abstraction. It often requires several coupled Web services to complete an

abstraction, resulting in higher development complexity, reduced usability [16]

Chatty Service represents an antipattern where a high number of operations, typically attribute-level setters or getters, are required to complete one abstraction.
This antipattern may have many fine-grained operations, which degrades the overall performance with higher response time [9].

Data service an antipattern that contains typically accessor operations, i.e., getters and setters. In a distributed environment, some Web services may only

perform some simple information retrieval or data access operations. A Data Web Service usually deals with very small messages of primitive

types and may have high data cohesion [10].

Ambiguous

Service

is an antipattern where developers use ambiguous or meaningless names for denoting the main elements of interface elements (e.g., port-types,

operations, and messages). Ambiguous names are not semantically and syntactically sound and affect the discoverability and the reusability of

a Web service [17].

different public methods that involve different entities or

abstractions. In this example, it can be seen that there are methods

that operate on different core functionalities. For instance, the

bookFlight() method used to book a flight trip, while the

reserveHotel() method attempts to reserve the specified hotel room.

Overall, this multiservice supports the functionalities flight, car and

hotel booking, payment, invoice services, and so on. Each of these

is a significant core business abstraction, and typically will have

many associated methods. Therefore, while this example is

simplified and is merely illustrative, in reality, a typical

multiservice will include many methods related to each abstraction,

resulting in a service with huge number of methods.

On the other extreme, i. e., nanoservice, we consider the

example of a Calculator service taken from real-world Web service

provided by Apache Geronimo1. A basic calculator service would

not be complicated; it supports several simple operations such as

add, subtract, multiply, divide and other operations. The example

of Apache Geronimo shows the WSDL file from the Apache

Calculator service, which performs addition of two integers. This

is a very fine-grained service as all it can do is accept two numbers

and return the sum. However, there is a lot of code (and overhead)

for this simple operation. As services are consumed over network

(Internet, LAN), they might be bound by the limitations and costs

incurred by communications over those networks (e.g., the time

needed to send/receive messages) [3]. The problem becomes more

disturbing when considering this level of granularity in other more

complicated real-life services.

For non-expert clients the line between nanoservices,

multiservices and appropriately sized services is not obvious. In

addition, even for service providers, service logics may look

1https://cwiki.apache.org/confluence/display/GMOxDOC21/jaxws-

calculator+-+Simple+Web+Service+with+JAX-WS

promising at design level, but can prove to be antipatterns when

they are implemented. To make the situation worst, a

comprehensive service contract does not guarantee that a service is

not an antipattern. Thus, it is very important to provide efficient

techniques to support both Web service clients and providers.

To address or circumvent the above mentioned issues and

challenges, we introduce a search-based approach to automatically

derive Web service antipattern detection rules.

3. APPROACH
In this section, we describe our approach for Web service antipatt-

erns detection. The key idea is to see the detection problem as a

search based combinatorial optimization problem to find the sought

detection rules from a large list of possible metrics and thresholds.

3.1 Approach overview
Figure 1 provides a high-level overview of the approach proposed

in this paper. Our approach uses knowledge from a base of

examples that contains real instances of Web service antipatterns.

These examples will serve to generate new Web service antipattern

detection rules based on combinations of Web service metrics and

threshold values. The detection rules are automatically derived by

an optimization process that learns from the available examples.

As shows in Figure 1, our approach takes as inputs a base (i.e.,

a set) of Web service antipattern examples and a set of Web service

metrics. As output, our approach derives a set of detection rules.

Using GP [20], our rules’ derivation process generates randomly,

from a given list of metrics, a combination of metric/threshold for

each antipattern type. Thus, the generation process can be viewed

as a search-based combinatorial optimization to find the suitable

combination of metrics/thresholds that best detect the antipattern

instances in the base of examples. In other words, the best set of

rules is the one that detects the maximum number of antipatterns in

terms of precision and recall.

The base of examples contains different Web service

antipatterns from different application domains (e.g., weather,

finance, shipping, etc.) that can be collected from different Web

service search engines, such as eil.cs.txstate.edu/ServiceXplorer,

and programmableweb.com, etc. These antipatterns were manually

Table 2. List of used metrics.

 Metric Description

NPT Number of port-types

NOD Number of operations declared

NOPT Average number of operations in port-types

NPO Average number of parameters in operations

NCT Number of complex types

NAOD Number of accessor operations declared

NCTP Number of complex type parameters

COUP Coupling

COH Cohesion

NOM Number of messages

NST Number of primitive types

ALOS Average length of operations signature

ALPS Average length of port-types signature

ALMS Average length of message signature

RPT Ratio of primitive types over all defined types

RAOD Ratio of accessor operations declared

ANIPO Average number of input parameters in operations

ANOPO Average number of output parameters in operations

NPM Average number of parts per message

AMTO Average number of meaningful terms in operation names

AMTM Average number of meaningful terms in message names

AMTP Average number of meaningful terms in port-type names

<wsdl:definitions>

 <wsdl:types>

 ...
 </wsdl:types>

 ...

 <wsdl:portType name="FlightPortType">
 <wsdl:operation name="bookFlight">

 ...

 </wsdl:operation>
 <wsdl:operation name="reserveFlight">

 ...

 </wsdl:operation>

 <wsdl:operation name="cancelFlight">

 ...

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="OtherServicePortType">
 <wsdl:operation name="reserveCar">

 ...

 </wsdl:operation>

 <wsdl:operation name="cancelCar">

 ...

 </wsdl:operation>
 <wsdl:operation name="reserveHotel">

 ...

 </wsdl:operation>
 <wsdl:operation name="checkDates">

 ...

 </wsdl:operation>

 <wsdl:operation name="modifyBooking">

 ...
 </wsdl:operation>

 <wsdl:operation name="acceptPayment">

 ...
 </wsdl:operation>

 <wsdl:operation name="validateCredit">

 ...
 </wsdl:operation>

 <wsdl:operation name="generateInvoice">

 ...
 </wsdl:operation>

 ...

 </wsdl:portType>

 ...

</wsdl:definitions>

inspected and validated based on existing guidelines from the

literature [3] [16]. During a training stage, these antipatterns are

iteratively evaluated using rules generated by GP [20]. The process

is driven by a fitness function that calculates the quality of each

candidate solution (detection rule) by comparing the list of detected

antipatterns with the expected ones from the base of examples.

Our metric suite is based on a set of Web service metrics. Table

1 summarizes the used metrics. The first fourteen metrics (NPT-

ALMS) are defined in the literature [5] [10] [21] [19]. We also

adapted and defined eight other metrics (RPT-AMTP). The last

three metrics, AMTO, AMTM, and AMTP, are implemented based

on WordNet2, a widely used lexical database. Each operation, port-

type and message identifier is tokenized based on camel case

splitter. Then, we assume that the more the extracted tokens exist

in WordNet database, the more the identifier is meaningful, i.e.,

semantically and syntactically sound.

As many metrics combinations are possible, the detection rules

generation process is, by nature, a combinatorial optimization

problem. The number of possible solutions quickly becomes huge

as the number of metrics and possible threshold values increases. A

deterministic search is not practical in such cases, and the use of

heuristic search is warranted. The dimensions of the solution space

are set by the metrics, their threshold values, and logical operations

between them: union (metric1 OR metric2) and intersection

(metric1 AND metric2). A solution is determined by assigning a

threshold value to each metric. The search is guided by the quality

of the solution according to the number of detected antipatterns in

comparison to the expected ones form the base of examples.

3.2 SBSE formulation
Complex decision problems with multiple variables and large

search spaces such as this are well-matched to search

based software engineering (SBSE), which has proven good

performance in providing decision support in several software

engineering problems [22]. Our approach uses SBSE [22] [23], as

it provides best practice to define a heuristic search algorithm,

solution representation, fitness function, change operators, and so

on [23]. In this section we describe our SBSE approach.

3.2.1 Search algorithm
As a search method, we employed a widely used computational

search technique, GP [20], which have shown good performance in

solving many software engineering problems [22]. GP takes as

input a set of SOAP metrics and a set of Web service antipattern

examples, and finds as output the optimal solution that corresponds

2 wordnet.princeton.edu

to a set of rules that should detect the antipattern instances in the

base of examples. For more details about GP, interested readers can

refer to [20]. In the following, we need to define problem-specific

solution encoding, genetic operators and fitness function to ensure

best performance.

3.2.2 Solution representation
Candidate solutions to the problem are antipattern detection rules.

A solution is represented as a set of IF – THEN rules. A detection

rule has the following structure:

IF “Combination of metrics with their threshold values” THEN “antipattern type”

The IF clause describes the conditions or situations under

which an antipattern type is detected. These conditions correspond

to logical expressions that combine some metrics and their

threshold values using logic operators (AND, OR). If some of these

conditions are satisfied by a Web service, then it is detected as the

antipattern type figuring in the THEN clause of the rule. We will

have as many rules as types of antipatterns to be detected. In our

case, mainly for illustrative reasons, and without loss of generality,

we focus on the detection of five common types, namely

multiservice, nanoservice, dataservice, chatty service, and

ambiguous service (cf. Table 1). For instance, let us consider the

following detection rules, in the iteration i, and its interpretation:

R1: IF (NOD(s)≥17 AND COH(s)≤0.43 AND NOPT(s)≥7.8) OR (NOD(s)≥24

AND COH(s)≤0.39 AND NPT(s)≥2 AND NST(s)≥41 OR NCT(s)≥32)

THEN MultiService(s)

R2: IF (NCT(s)≤5 OR NST(s)≤8 AND NPT(s)≤2 AND NOD(s)≤5 AND

COH(s)≥0.42) OR (NOPT(s)≤4.2 AND COUP(s)≥0.36 AND COH(s)≥0.39

AND NOD(s)≤6 OR NPT(s)≤2) THEN NanoService(s)

R3: IF ((ANIPO(s)≥4 OR ANOPO(s)≥4) AND (NCT(s)≥31 OR NOM(s)>=79)

AND COH(s)≥0.31 AND NAOD(s)>=13) THEN DataService(s)

R4: IF (NPT(s)≤3 AND NOD(s)≥10 AND RAOD(s)≥0.38 AND (NCT(s)≥15 OR

ANOPO(s)≥8.1) AND (NOM(s)>=38 OR NPM(s)>=2.2) AND

COH(s)≤0.42) THEN ChattyService(s)

R5: IF (ALOS(s)≤1.6 OR ALOS(s)≥4.9 AND AMTO(s)≤0.6 AND NIOP(s)≥4

OR AMTM(s)≤0.52) THEN AmbiguousService(s)

We encoded a solution as tree where each subtree represents a

detection rules for a particular antipattern type. Figure 2 represents

the correspondent tree for the multiservice antipattern, i.e., R1.

Figure 2. Solution encoding for the multiservice antipattern.

The initial population, composed by n solutions, was randomly

obtained by assigning to each subtree m metrics ranging from 1 to

nbMetrics (the number of considered metrics). For each metric we

randomly assign a threshold value as defined in Section 3.1.

3.2.3 Fitness function
To evaluate the fitness of each solution we employed a fitness

function that maximizes the number of detected antipatterns in

comparison to the expected ones in the base of examples. In this

Figure 1. Approach overview

Generation of
Web service antipattern

detection rules
(Genetic Programming)

Metric
suite

Web service
antipattern

detection rules

Base of examples
(Web service antipattern instances)

category 2

 category 1

category 3

Antipattern
instance

AND

NOD≥17 COH≤0.43

NOD≥24

NST≥41 NCT≥32

OR

AND

OR

NOPT≥7.8

AND

COH≤0.39

AND

AND

NPT≥2

context, we define the fitness function of a candidate solution, as

the average of both precision and recall as follows:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =

∑ 𝑎𝑖
𝑝
𝑖=1

𝑡
 +

∑ 𝑎𝑖
𝑝
𝑖=1

𝑝

2
∈ [0,1]

where t is the number of antipatterns in the base of examples, p is

the number of detected antipatterns, and ai has value 1 if the ith

detected service exists in the base of examples with the same

antipattern type, i.e., true positive, and value 0 otherwise.

3.2.4 Genetic operators
Crossover: We use a random, single point crossover operator. Two

parent solutions are selected, and a sub tree is picked on each one.

Then, the crossover operator swaps the nodes and their relative sub

trees from one parent to the other. The crossover operator can be

applied only on parents having the same type of antipattern. Each

child thus combines information from both parents.

Mutation: The mutation operator can be applied either to a

function node or a terminal node. This operator can modify one or

many nodes. For a selected individual, the mutation operator first

randomly selects a node in the tree. Then, if the selected node is a

terminal (quality metric), it is replaced by another terminal (metric

or another threshold value); if the selected node is a function (AND-

OR operators), it is replaced by a new function (e.g., AND becomes

OR). If a tree mutation is to be carried out, the node and its subtree

are replaced by a new randomly generated subtree.

4. VALIDATION
This section explains the design of our empirical study; the research

questions we set out to answer, the methods and statistical tests we

used to answer these questions. The experimental material is

available for replication purposes3.

4.1 Research questions
We designed our experiments to answer the following research

questions:

RQ1 (SBSE Validation): How does the proposed GP-based

approach performs compared to random search and other existing

search-based algorithms?

3http://www-etud.iro.umontreal.ca/~ouniali/WebServiceAntipatterns/

RQ2 (Efficiency): To which extent can the proposed approach

detect Web service antipatterns?

RQ3 (Sensitivity): What types of Web service antipatterns does it

detect correctly?

4.2 Experimental setting

4.2.1 Analysis method
To answer RQ1, we compared our GP formulation with random

search (RS) [24] to make sure that there is a need for an intelligent

method to explore the search space. In addition, to justify the

adoption of GP, we compared our approach to two other popular

search algorithms namely particle swarm optimization (PSO) [25]

and simulated annealing (SA) [26]. RQ1 is a standard ‘baseline’

question asked in any attempt at an SBSE formulation [23]. To

evaluate the efficiency of each algorithm in detecting Web service

antipatterns in comparison to RS, PSO and SA, we use precision

and recall metrics, which are defined as follows:

𝑅𝑒𝑐𝑎𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑖𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑡𝑖𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

To answer RQ2, we also use both recall and precision criteria to

evaluate the efficiency of our approach in identifying antipatterns.

We considered five common Web service antipattern types, namely

multiservice, nanoservice, chatty service, data service, and

ambiguous service (see Section 2.1).

To answer RQ3, we investigated the antipattern types that were

detected to find out whether there is a bias towards the detection of

specific antipattern types.

4.2.2 Web services used in the empirical study
Unlike OO open-source systems, Web service providers do not

make their source code publicly available; instead, they only

provide Web service interface described as a WSDL document. We

collected different Web services using different search engines

including eil.cs.txstate.edu/ServiceXplorer, biocatalogue.org,

webservices.seekda.com, taverna.org.uk, programmableweb.com,

and myexperiment.org. Furthermore, to not bias our empirical

study, we used different Web services from different application

domains. Table 3 and Figure 4 summarize the collected services

ranging from a variety of six categories, i.e., application domains,

including financial, science, search, shipping, travel and weather.

All services were manually inspected and validated to identify

antipatterns based on guidelines from the literature [3] [16].

In our study, we used a 6-fold cross validation procedure. We

split our data into training data and evaluation data. For each fold,

one category of services is evaluated by using the remaining five

categories as a base of examples. For instance, weather services are

analyzed using antipattern instances from travel, shipping, search,

science and financial services. Hence, precision and recall scores

are calculated automatically by comparing the detected antipatterns

with the expected ones.

4.2.3 Inferential statistical test methods used
Due to the stochastic nature of the used algorithms, they may

produce slightly different results when applied to the same problem

instance over different runs. To cope with this stochastic nature, the

use of a rigorous statistical testing is essential to provide support to

the conclusions derived from analyzing such data. Thus, we used

Table 3. Web services used in the empirical study.

Category

services

antipatterns

Average # of

operations

Average # of

messages

Average # of

complex types

Financial 94 67 29.52 57.31 19.01

Science 34 3 8.47 17.14 96.73

Search 37 13 8.35 18.94 26.13

Shipping 38 10 13.36 27.76 20.21

Travel 65 28 16.09 33.13 121.13

Weather 42 15 8.54 17.16 9.14

All 310 136 17.08 34.2 48.6

Table 4. Algorithms parameters.

Algorithm Parameters Values

GP

Population size

Crossover probability

Mutation probability

Number of crossing points

Selection

100

0.9

0.1

1

Roulette-wheel selection

SA

Initial temperature

Final temperature

Cooling coefficient

Number of iterations

100

0.0232

0.99

30

PSO

Number of particles in a swarm

Acceleration coefficient c1

Acceleration coefficient c2

200

2

2

the Wilcoxon rank sum test in a pairwise fashion [27] in order to

detect significant performance differences between the algorithms

under comparison. We set the confidence limit, α, at 0.05. In these

settings, each experiment is repeated 31 times, for each algorithm

and for each category. The obtained results are subsequently

statistically analyzed with the aim to compare our GP approach to

PSO, SA, as well as RS. The results reported in this paper are the

median values of the 31 runs.

The Wilcoxon rank sum test allows verifying whether the

results are statistically different or not. However, it does not give

any idea about the difference magnitude. To assess the effect size,

we use the Cohen’s d statistic [27]. The effect size is considered:

(1) small if 0.2 ≤ d < 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3) high if

d ≥ 0.8.

4.2.4 Parameter Tuning and Setting
An important aspect for metaheuristic search algorithms lies in the

parameters tuning and selection, which is necessary to ensure not

only fair comparison, but also for potential replication. To this end,

we report in Table 4 our algorithmic parameter tuning and selection

used to facilitate the replication of our findings. The initial

population/solution of GP, PSO, SA, and RS are completely

random. The stopping criterion is when the maximum number of

fitness evaluations, set to 25000, is reached. The max depth of the

tree is fixed to 10. After several trial runs of the simulation, the

parameter values of the four algorithms are fixed. There are no

general rules to determine these parameters, and thus, we set the

combination of parameter values by trial-and-error method, which

is commonly used in the SBSE community [28].

4.3 Results and discussions
This section presents the experimental results obtained for our three

research questions.

Results for RQ1. Table 5 and Figure 3 report the statistical results

for RQ1. As presented in Table 5 and Figure 3, over 31 runs, the

RS did not perform well in terms of precision and recall (only 30%

and 42% respectively) due to the huge search-space of possible

combinations of metrics and threshold values to explore. Indeed, in

any attempt at an SBSE formulation of a problem, if the proposed

formulation does not allow an intelligent computational search

technique to outperform random search convincingly, then there is

clearly something wrong with the formulation [23].

On the other hand, for the different categories, the statistical

analysis provide evidence that our GP-based approach performs

better (with a 95% confidence level) than two other metaheuristic

search algorithms (PSO and SA). GP provides better performance

than SA in all the six categories with high Cohen effect size. The

median recall and precision scores of GP for all studied services

(union of the six categories) are 87% and 85% respectively,

whereas SA provide only 70% of both recall and precision.

Similarly, according to Figure 3 and Table 5, GP provides better

performance than PSO in four out of six cases with high effect size.

Only in science and travel Web services, GP and PSO provide

similar results with small effect size in terms of recall, but still with

better performance for GP in terms of precision manifested by high

Cohen effect size. Overall, the median recall and precision scores

of GP for all studied services were better than PSO that provides

only 82% of recall and 76% of precision.

Based on these results, we can conjecture that GP performs

much better in comparison with PSO and SA. Moreover, we notice

that SA turns out to be the worst algorithm in comparison with GP

and PSO. Thus, it seems that population-based metaheuristic

algorithms tend to be more efficient than local search

metaheuristics for this problem especially that we use tree

representation.

Results for RQ2. To answer RQ2, we focus only on the results of

our GP presented in Table 5 and Figure 3. Overall, as shown in

Table 5, we were able to detect antipatterns on the different service

categories with a precision score of 85 percent. For science and

weather services, the precision is lower than the other categories

with respectively 75 and 76 percent. This can be explained by the

fact that these services are medium-sized and often contain too

much data and accessor operations to these data which might be

relatively confusing between multiservice, data service and chatty

service. For financial and shipping services, the precision score is

higher (88 and 100 percent), i.e., most of the detected antipatterns

are true positives. In terms of recall, the obtained results are higher

than precision. According to Table 5, the median GP recall score

on all services is 87 percent. We found that, science and shipping

services have the highest recall scores with 100% and 90%

respectively. We also had a good trade-off between both recall and

precision. Therefore, we can conclude that our approach provides

good performance to detect most of the existing antipatterns, which

could be very helpful to provide advice to both service clients and

providers on the quality of their Web services.

Results for RQ3. Based on the results of Figure 5, we noticed that

our technique does not have a bias towards the detection of specific

antipattern types. Figure 5 shows that we had, in all categories, a

relatively equitable detection results in terms of both precision and

recall for each antipattern type. For some categories such as

weather and search, the distribution of antipatterns detection is not

as balanced (cf. Figure 4). This is principally due to the number of

actual antipattern types in these categories (none dataservice

instance exists in weather and search category). Consequently, any

single false positive will lead to 0% of precision score.

Overall, all the five antipattern types are detected with good

precision and recall scores (85% and 87% respectively). Most of

detected antipatterns are true positives and we do not miss any

existing antipattern type. This ability to identify different types of

antipatterns underlines a key strength to our approach. Most other

existing approaches [10] rely heavily on the notion of size to

specify antipatterns. This is reasonable considering that some

antipatterns like the multiservice are associated with a notion of

size. For antipatterns like data service and ambiguous service,

however, the notion of size is less important and this makes this

type of antipatterns hard to detect using structural information. The

Table 5. Precision and recall median values of GP, PSO, SA,

and RS over 31 independent simulation runs.
 GP PSO SA RS

Category Precision

(%)

Recall

(%)

Precision

(%)

Recall

(%)

Precision

(%)

Recall

(%)

Precision

(%)

Recall

(%)

Financial
88

(o-++)

85

(o+++)

79

(-o++)

78

(+o++)

75

(++o+)

75

(++o+)

42

(+++o)

45

(+++o)

Science
75

(o+++)

100

(o+++)

50

(+o-+)

100

(+o-+)

43

(+-o+)

100

(-+o+)

17

(+++o)

67

(+++o)

Search
85

(o+++)

85

(o+++)

79

(+o++)

85

(+o++)

63

(++o+)

77

(++o+)

26

(+++o)

46

(+++o)

Shipping
90

(o+++)

90

(o+++)

53

(+o-+)

80

(+o-+)

57

(+-o+)

80

(+-o+)

19

(+++o)

40

(+++o)

Travel
80

(o+++)

86

(o-++)

89

(+o++)

86

(-o++)

81

(++o+)

79

(++o+)

27

(+++o)

36

(+++o)

Weather
76

(o+++)

87

(o-++)

72

(+o++)

87

(-o++)

61

(++o+)

73

(++o+)

20

(+++o)

33

(+++o)

All
85

(o+++)

87

(o+++)

76

(+o++)

82

(+o++)

70

(++o+)

76

(++o+)

30

(+++o)

42

(+++o)

A “+” symbol at the ith position means that the algorithm precision median value is

statistically different from the ith algorithm one; while a “-” symbol at the ith position

means the opposite. A “o” symbol refer to the current position of the algorithm. For

instance, for financial services, GP precision is not statistically different from PSO

one, however, it is statistically different from SA and RS ones).

obtained results provides evidence that such difficulty does not

limits the performance of our approach in well detecting these types

of antipatterns. Thus, we can conclude that our GP-based approach

detects well all types of the considered antipatterns (RQ3).

Furthermore, it is important to evaluate the scalability of the

performance of our approach, as scalability is widely considered as

one of the key issues for software engineering research and

development. To evaluate scalability of our approach for services

of increasing size, we executed our approach on the six categories

of services. Figure 6 illustrates the evolution of precision, recall and

CPU time with respect to the increase of service size (in terms of

number of operations). We see from this figure that the precision

and recall values are relatively stable (between [75, 90]) even if the

services size increases. The same observation could be seen for

CPU time which is between [224, 241] seconds. We can say that

our approach is scalable with respect to service size since it gives

high precision and recall values, and acceptable execution time.

5. THREATS TO VALIDITY
In our study, external threat to validity may arise because,

although we considered five types of Web service antipatterns, we

did not evaluate the detection of other antipattern types. In addition,

we validated our approach on SOAP Web services; and we cannot

generalize our results to other technologies such as REST. In future

work, we plan to evaluate the performance of our approach to detect

other types of antipatterns, and other SOA technologies.

Construct threats to validity can be related to the set of used

metrics, and the corpus of antipattern examples as developers may

not all agree if a candidate Web services is an antipattern or not

according to their level of expertise on antipatterns. Since we are

the first to address this problem for automating the detection of web

service antipatterns, there is no currently established state of the art

in terms of automated detection. We also found few literature to

guide us on what we should consider to inspect Web service

antipatterns [9] [16] [10]. In future work, we will consider more

static and dynamic Web service metrics, and ask some new experts

to extend the existing corpus and provide additional feedback.

6. RELATED WORK
Detecting and specifying antipatterns in SOA and Web service

is relatively a new field. Only few works have addressed the

problem of SOA antipatterns. The first book in the literature was

written by Dudney et al. [16] where a set of Web service

antipatterns have been informally defined. Recently, a new book

[3] have been written to describe the symptoms of some other SOA

antipatterns. Furthermore, Král et al. [14] listed seven “popular”

SOA antipatterns that violate SOA principles. In addition, some

few research works have addressed the detection of such

antipatterns. Recently, Palma et al. [10] have proposed an approach

to detect Web service antipatterns. The proposed approach relies on

declarative rule specification using domain-specific language

(DSL) to specify/identify the key symptoms that characterize an

antipattern. Similarly, Moha et al. [19] have proposed a rule-based

approach called SODA for SCA systems (Service Component

Architecture). However, unlike our approach, in an exhaustive

scenario, the number of possible antipatterns to manually

characterize with rules can be very large; and rules that are

expressed in terms of metric combinations need substantial

calibration efforts to find the right threshold value for each metric.

In another study, Rodriguez et al. [2] [9] [17] provided a set of

guidelines for service providers to avoid bad practices while

writing WSDLs. Based on some heuristics, the authors detected

eight bad practices in the writing of WSDL for Web services.

Unlike service-oriented systems, there is an extensive research

effort on detecting object oriented antipatterns and code-smells [6]

[29] [7] [8]. For instance, Marinescu el al. [29] have proposed a

mechanism called "detection strategy" OO code-smells by

Figure 3. Boxplots for the obtained detection results in terms of recall and precision, for each Web service category, and for each

search algorithm GP, PSO, SA and RA.

Figure 4. Antipatterns distribution for each category.

Figure 5. Detection results for each antipattern type.

all financial science search shipping travel weather

25

50

75

100

25

50

75

100

re
c
a
ll

p
re

c
is

io
n

GP PSO RS SA GP PSO RS SA GP PSO RS SA GP PSO RS SA GP PSO RS SA GP PSO RS SA GP PSO RS SA

Financial Science Search Shipping Travel Weather

0

5

10

15

20

N
u

m
b

e
r

o
f
a

n
ti
p

a
tt
e

rn
s

Ambigousservice Chattyservice Dataservice Multiservice Nanoservice

Ambiguousservice Chattyservice Dataservice Multiservice Nanoservice

All

Financial

Science

Search

Shipping

Travel

Weather

0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100

type

precision

recall

formulating metric-based rules that capture deviations from good

design principles and heuristics. Ouni et al. [7] proposed a search-

based approach to detect code-smells in OO software systems.

However, OO antipatterns detection techniques are not applicable

in the context of Web services as we deal with different level of

granularity (service vs class levels), and different metrics.

Furthermore, unlike OO systems, Web service source code is not

publicly available; that is only WSDL interfaces are available for

clients. This makes the detection of such antipatterns harder.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a new search-based approach for Web

service antipatterns detection. In our GP adaptation, detection rules

are represented as a combination of metrics and threshold values

that should detect as much as possible the number of antipatterns

from a base of examples. The statistical analysis of the obtained

results provides compelling evidence that GP outperforms particle

swarm optimization, simulated annealing as well as random search

based on a benchmark of 310 Web services including 136 real-

world antipattern instances. As future work, we plan to validate our

approach with additional antipattern types, and SOAP static and

dynamic metrics in order to conclude about the general

applicability of our methodology. Another research direction worth

to explore is to consider both bad and good Web service instances

to deduce antipattern detection rules, i.e., good detection rules

should maximize the distance with well-designed Web services

while minimizing the distance with badly-designed ones.

Furthermore, in this paper, as we mainly focus on the detection of

Web service antipatterns, we are planning to extend the approach

by automating their correction using SBSE.

Acknowledgments
This work is supported by Japan Society for the Promotion of

Science, Grant-in-Aid for Scientific Research (S) (No.25220003),

and also by Osaka University Program for Promoting International

Joint Research.

8. REFERENCES
[1] M. P. Singh and M. N. Huhns, Service-oriented computing - semantics,

processes, agents: Wiley, 2005.

[2] J. Rodriguez, M. Crasso, C. Mateos, A. Zunino, "Best practices for des-

cribing, consuming, and discovering web services: a comprehensive to-
olset," Software: Practice and Experience, vol. 43, pp. 613-639, 2013.

[3] A. Rotem-Gal-Oz, SOA Patterns: Manning Publications, 2012.

[4] J. Král M. Žemlička, "Crucial Service-Oriented Antipatterns," Int.
Journal On Advances in Software, vol. 2, pp. 160-171, 2009.

[5] J. L. O. Coscia, M. Crasso, C. Mateos, and A. Zunino, "Estimating Web

Service interface quality through conventional object-oriented
metrics," CLEI Electron. J., vol. 16, 2013.

[6] N. Moha, G. Yann-Gaël, L. Duchien, A. Le Meur, "DECOR: A Method

for the Specification and Detection of Code and Design Smells,"

Software Engineering, IEEE Transactions on, vol. 36, pp. 20-36, 2010.

[7] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum,

"Maintainability defects detection and correction: a multi-objective
approach," Automated Software Engineering, vol. 20, pp. 47-79, 2013.

[8] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,

"A Cooperative Parallel Search-Based Software Engineering Approach
for Code-Smells Detection," Software Engineering, IEEE Transactions

on, vol. 40, pp. 841-861, 2014.

[9] C. Mateos, M. Crasso, A. Zunino, J. L. O. Coscia, "Avoiding WSDL
Bad Practices in Code-First Web Services," SADIO Electronic Journal

of Informatics and Operational Research, vol. 11, pp. 31-48, 2012.

[10] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, "Specification
and Detection of SOA Antipatterns in Web Services," in Software

Architecture. vol. 8627, P. Avgeriou and U. Zdun, Eds., ed: Springer

International Publishing, pp. 58-73, 2014.
[11] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, "Developing

web services choreography standards - the case of REST vs. SOAP,"

Decision Support Systems, vol. 40, pp. 9-29, 2005.
[12] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, "Web

services description language (wsdl) version 2.0 part 1: Core

language," W3C recommendation, vol. 26, p. 19, 2007.
[13] M. Mäntylä and C. Lassenius, "Subjective evaluation of software

evolvability using code smells: An empirical study," Empirical

Software Engineering, vol. 11, pp. 395-431, 2006.
[14] J. Král M. Zemlicka, "Popular SOA Antipatterns," in Future Computi-

ng, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009.
COMPUTATIONWORLD'09. Computation World:, 2009, pp. 271-276.

[15] J. Krai and M. Zemlicka, "The Most Important Service-Oriented

Antipatterns," in Software Engineering Advances, 2007. ICSEA 2007.
International Conference on, 2007.

[16] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE

Antipatterns: John Wiley; Sons, Inc., 2003.
[17] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, "Automatically

detecting opportunities for web service descriptions improvement," in

Software Services for e-World, ed: Springer, pp. 139-150, 2010.
[18] M. Nayrolles, F. Palma, N. Moha, and Y.-G. Guéhéneuc, "Soda: A Tool

Support for the Detection of SOA Antipatterns," in Service-Oriented

Computing - ICSOC 2012 Workshops. vol. 7759, A. Ghose, H. Zhu, Q.
Yu, A. Delis, Q. Sheng, O. Perrin, et al., Eds., ed: Springer Berlin

Heidelberg, pp. 451-455, 2013.

[19] N. Moha, F. Palma, M. Nayrolles, B. Conseil, Y.-G. Guéhéneuc, B.
Baudry, "Specification and Detection of SOA Antipatterns," in Service-

Oriented Computing. vol. 7636, C. Liu, H. Ludwig, F. Toumani, and

Q. Yu, Eds., ed: Springer Berlin Heidelberg, pp. 1-16, 2012.
[20] J. R. Koza, Genetic programming: on the programming of computers

by means of natural selection: MIT Press, 1992.

[21] P. Mikhail, R. Caspar, and T. Zahir, "The Impact of Service Cohesion
on the Analyzability of Service-Oriented Software," IEEE

Transactions on Services Computing, vol. 3, pp. 89-103, 2010.

[22] M. Harman, P. McMinn, J. de Souza, and S. Yoo, "Search Based
Software Engineering: Techniques, Taxonomy, Tutorial," in Empirical

Software Engineering and Verification. vol. 7007, B. Meyer and M.

Nordio, Eds., ed: Springer Berlin Heidelberg, , pp. 1-59, 2012.
[23] M. Harman and B. F. Jones, "Search-based software engineering,"

Information and Software Technology, vol. 43, pp. 833-839, 2001.

[24] D. C. Karnopp, "Random search techniques for optimization
problems," Automatica, vol. 1, pp. 111-121, 1963.

[25] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural

Networks, 1995. Proceedings., IEEE International Conference on, , pp.
1942-1948, vol.4, 1995.

[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by

Simulated Annealing," Science, vol. 220, pp. 671-680, 1983.
[27] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd

ed.: Lawrence Erlbaum Associates, Inc, 1988.

[28] A. E. Eiben and S. K. Smit, "Parameter tuning for configuring and
analyzing evolutionary algorithms," Swarm and Evolutionary

Computation, vol. 1, pp. 19-31, 2011.

[29] R. Marinescu, "Detection strategies: metrics-based rules for detecting
design flaws," in Software Maintenance, 2004. Proceedings. 20th IEEE

International Conference on, , pp. 350-359, 2004.

Figure 6. Scalability with respect to Web service size.

