File: TermPaper_14August_2003.doc

Author: Hamid Abdul Basit

Contains: updated document based on Term Paper merged with proposed future work
Date updated: Thursday, August 14, 2003
Prerequisites: nil

Read next: nil
Clone Detection and Transformation into X-Frames
Hamid Abdul Basit
School of Computing, National University of Singapore,

3 Science Drive 2, Singapore 117543

Email: hamidabd@comp.nus.edu.sg
Abstract
Redundant code, or in the context of this paper - clones, is a known problem in software maintenance. Several researchers have tried various techniques to detect and remove cloned code. This paper provides a comprehensive overview of the clone detection tools and techniques found in contemporary literature. A difference is drawn between avoidable, un-avoidable and desired clones, and future research is proposed to automate the transformations between source code and a meta-representation that facilitates the elimination of clones by finding the corresponding patterns in the two representations.
1 Introduction
Reuse in object-oriented systems is made possible through different mechanisms such as inheritance, shared libraries, object composition, and so on. Still, programmers often need to reuse components which haven’t been designed for reuse. This may happen when software systems go through the expansion phase and new requirements have to be satisfied. In this situation, the programmers usually follow the low cost copy-paste technique instead of costly redesigning the system approach, hence causing the clones. This type of code cloning is the most basic and widely used approach towards software reuse. Unofficial surveys suggest that as much as 20-30% of large software systems consist of cloned code [Baker95] [Mayrand96]. The study conducted to re-structure the java buffer library reports almost 68% of cloned code [XVCL].
There can be several reasons for cloning:

Sometimes programmers find other sections of code that perform a computation nearly identical to the one being coded, copy that section wholesale and then modify. In large systems, this method may even become a rather standard way to produce variant modules because copy paste is quick and solves the problem rapidly. Also all standard editors have “copy” and “paste” function keys. This enhances the likelihood of clone creation.

Copy and paste is also an attractive technique when programmers are evaluated by lines of code written by them.

Sometimes a “style” for coding a regularly needed code fragment will arise, such as error reporting or user interface displays. The portion of code that implements this functionality will be cloned several times to maintain the style.

Many repeated computations (payroll tax, queue insertions) are so simple that even when copying is not used, a programmer can use a mental macro to write essentially the same code each time an operation needs to be carried out.
Some other clones are produced for separate data structures of the same type.
Programming languages sometimes do not providing proper reuse mechanism, resulting in ad hoc reuse by the programmers.
Sometimes the lack of a good modular design hampers better reuse techniques and encourages code cloning.
Performance requirements also discourage function calls. Systems with tight time constraints are often hand-optimized by replicating frequent computations, especially when a compiler does not offer in-lining of arbitrary expressions or computations.
Software reliability is also a factor for clones’ creation. Two components A and B do the same task, if one breaks, the other one takes over so that the program continues running. Similarly there can be two algorithms computing the same function in different ways, and at the end both results are compared in order to evaluate by the difference in results whether the results are correct or otherwise take some preventive action to avoid disaster.

Another reason for cloning can be undisciplined maintenance.

And finally, some of the clones may just be accidental coincidences.

The problems resulting by unchecked cloning are also manifold:

Cloned code makes the program larger than necessary, increasing the complexity and increasing the size of the executable program.
Errors also get duplicated when the code is re-used in an ad hoc manner by copy-paste.
Modifying code that contains clones, for bug fixes, enhancements, or changes in business rules, is difficult because the change must be propagated to all instances of the clone. Moreover, some mechanism is required to guarantee that all instances of the cloned code have been found and changed.
Cloning also sometimes create unknown dependencies that are difficult to figure out manually.
We define a code clone as a code portion of considerable length in source files that is identical or similar to another. The simplest type of clone is the Exact Clone when the two code portions match exactly. Parameterized Clones are defined as “code sections that match except for a one-to-one correspondence between candidates for parameters such as variables, constants, macro names, and structure member names.”(B.S. Baker 1992).In a Re-ordered Clone the exact or parameterized matching lines of the code are re-ordered, whereas in an Overlapping Clone these lines are intertwined with each other. A non-exact clone where the differences cannot be parameterized is a Gapped Clone. These definitions can best be understood by the following examples.

[image: image2.bmp][image: image3.png]abcdefabedef abcdefabxyet abcdeabxycde axbexdexfgxh

Exact Copies Gopies vith Inserts/Deletes Repettive
Variations Code Elements

Figure 1 : A parameterized clone adapted from X Window source code.

(Note the correspondence between the variable names pfi/pfh and the pairs of structure member names lbearing/left and rbearing/right)

[image: image4.bmp][image: image5.bmp]
Figure 2 : A gapped clone from the Unix utility bison

Figure 3 : An Unordered clone segment from Unix utility bison

Figure 4 : An Overlapping clone from Unix utility sort.
(Note that the bold lines are a clone of the normal lines)
Clone analysis is the research area that investigates methods and techniques for automatically detecting duplicated portions of code, or portions of similar code (clones), in software artifacts. The earliest research on clone detection in software dates back to 1980’s and was mostly focused on detecting plagiarism in students programs [Jankowitz88].
In section 2, the different techniques for detecting redundant code are discussed. Section 3 focuses on the techniques for eliminating these redundancies. Section 4 introduces XVCL, a technique to handle redundant code without eliminating it from the executable code altogether. Section 5 focuses on the transformation of code into the XVCL constructs and the extent of automating this task. Section 6 proposes a tool for detecting and X-framing the redundant code in legacy software to facilitate and reduce the cost of software maintenance.
2 Detecting Redundant Code – tools and techniques
Several tools and techniques have been proposed and applied in practical situations to detect the redundant code in real software systems. The characteristic features of a technique include the program representation, the matching algorithm, the generality of the technique, the granularity of the detected clones, the space/time complexity and the scalability of the algorithm. In this section, first the different possible categorizations for these techniques have been put forth, followed by a comprehensive description of all the techniques found by the author so far.
a. Categorization based on Level of pre-processing/Program Representation

The first step towards analyzing a software system is to represent the code in a higher level of abstraction. On the basis of this representation, following categories have been found in literature:
Raw Text
The simplest approach will be to use the raw text of the source code. The comparison of strings is used in several fields, such as molecular biology, speech recognition, and code theory for similar reasons. An advantage of the raw text representation is high adaptability to various programming languages since no lexical analysis or parsing is needed. However, the character based representation is generally expensive in computation.

Some simple transformations can be applied to the raw text; like removal of comments and blank lines. To reduce the large computations involved in matching each line of code with another, hashing techniques are used.
Tokens
A lexer is run on the source code that tokenizes all the strings in it. Then these tokens are compared for similarity. Since every line of code is composed of many tokens; the token-based computation is more expensive than line-by-line comparison. But, token based representation can easily employ various transformations to eliminate differences of coding styles in order to detect clones. Parameterized string matching is done by the token based techniques.
Parse Tree
One step ahead of the tokenization, a parse tree is constructed from the tokens to represent the source code in a tree form, but parsing the program requires a parser for the exact language dialect of interest.
Program Dependence Graphs

In the Program Dependence Graphs (PDG) representation, nodes represent program statements and predicates and edges represent data and control dependences.
b. Categorization Based on Generality

The more the level of preprocessing, the more the clone detection techniques becomes language dependent. Hence, the techniques based on raw text are most general compared to those based on constructing a parse tree or calculating metrics, which are heavily tied to the source language.
c. Categorization based on granularity of clones
Another categorization can be done on the basis of the granularity of the clones found by the clone detection techniques.
Arbitrary Granularity
Many clone detection techniques considers lines as the basic unit of clone, but nevertheless, single line clones are never interesting. Instead, a threshold limit is set on the number of lines of the code that will be considered as a clone.
However, in many languages like C, C++, and java, line breaks in source code have no semantic meaning; their placement is usually dependent on the programmer’s preference. This hampers the detection of code clones when line breaks are relocated in exactly the same code and in some cases, only shorter clones will be detected.
Block Granularity
Techniques that consider functions, methods or other blocks of code as the unit of duplication are restricted to the procedural languages. Usually the metrics and parse tree based techniques falls into this category.
Nodes in AST

In Abstract Syntax Tree based techniques, the subtrees of AST are considered for probable clones. This comparison is dependent on the type information since only variables of same type will be represented identically in AST.
d. Categorization based on matching algorithm

Several different matching algorithms have also been applied in different techniques. The choice of these algorithms mostly depends upon the nature of code representation scheme.
Suffix-Tree algorithm

This algorithm is usually employed in text and token based techniques but it can be used for other representations also like hash values of lines etc. It computes all same subsequences in a sequence composed of a fixed alphabet. The computation complexity is O(n), where n is the length of the input sequence.

Dynamic Pattern matching

Dynamic Pattern Matching or DPM finds a largest common subsequence between two sequences. The original complexity is O(mn), where, m and n are the length of the sequences.

Metrics Hash-value comparison

This matching algorithm works with the metric values from code portions. The metric values are ordered to identify code portions with similar metric values. The computational complexity is O(n) where n is the input size.

Metric-value similarity analysis is based on the assumption that two code fragments C1 and C2 having metric values M(C1) and M(C2) for some source code metric M, if the two fragments are similar under the set of features measured by M, then the values of M(C1) and M(C2) should be proximate.

Calculating metrics for methods and/or other code blocks in source code is a step ahead of the parse tree construction but apart from the initial processing, the matching of these metric-values provides a fast approximation of the code cloning recognition problem. Metrics calculation depends heavily on the source language. The metrics based clone recognition can be used for the initial selection of potential clones, at a pre-processing stage in order to limit the search space when using the more accurate but more computationally expensive methods.
Neural networks

This is not a common approach for clone detection and only one reference has been found for the application of unsupervised neural networks to solve this problem [Davey95].
e. Visual Representation

The code is represented visually with different views and colors to detect duplicated code by looking at the graphs and plots. Visualization provides insight into the duplication situation and is helpful for initial analysis. Scatterplots is a technique widely used in DNA analysis and is quite easy to draw. Code is put on both x and y axes; a match between two elements is a dot in the matrix.

[image: image1]
Figure 5 : scatterplot patterns

f. List of Tools and Techniques
Present below is the description of several tools and techniques found in a wide range of literature.
Duploc:

Rieger et al. developed a text-based language independent clone detection tool called Duploc that reads source files, makes a sequence of lines, removes white-spaces and comments in lines, and detect matches by a simple string based pattern matching algorithm [Rieger98]. Duploc also detects clones with modified lines in them. This is done by a pattern matcher that captures diagonal lines in a matrix that contains 1’s for matching lines and 0’s for non-matching lines, and allows holes, within a threshold length, in them.

This is a line based technique and outputs the line numbers of clone pairs. The computation complexity is O(n2) for the input size n. The tool is optimized by hashing the strings that reduces the complexity by the factor B, where B is a constant dependent on the number of characters in a line [Ducasse99] [Rieger98].
Johnson’s fingerprinting:
Johnson has developed a method for the identification of exact duplications of sub strings in source code using code fingerprints [Johnson93] [Johnson94]. A fingerprint is a short bit string representation of a code section that is identical for identical clones and same fingerprints represents identical code section with high probability. Fingerprints can be calculated with only one pass over the data set and are easier to process. In this method, a fingerprint file is created containing the location of each substring in the source along with its fingerprint calculated by the Karp-Rabin algorithm [Karp87]. This file is sorted and non-repeating fingerprint values are removed so that only the clones are left to analyze. For the matching fingerprint segments, the original code sections are also matched to remove false positives.

Since source code is usually organized in lines, only substrings starting at line boundaries are considered. These lines are grouped as code snips whose maximum and minimum size threshold is tunable by the user. Only those snips are retained in the fingerprint file that represents one or more substrings of the source of a user-defined length. This culling procedure can be done alongside the production of the fingerprint file. Finally a snip combining algorithm is applied to join large number of short clones into few long clones.
Di Lucca et al.:
Di Lucca et al. apply two approaches for detecting cloned web pages [DiLucca02]. In their research, only static web pages i.e., HTML pages saved in a file and always offering the same information and layout to a client system, are considered since the dynamic web pages’ content and layout is not permanently saved in a file, but is dynamically generated. Moreover the control component of the web pages is considered, that includes the set of items determining the page layout, business rule processing, and event management, while the data component that includes information to be read/displayed from/to a user is ignored.

The first approach is based on the Levenstein distance between the two web pages. The Levenstein distance is based on the concept of edit distance. It is the minimum number of inserts or deletes that transform a string into another. Levenstein distance expresses the degree of similarity of two text strings, here considering web pages. If the distance value is 0, the pages will be complete clones, while if the distance is greater than 0, but less than a fixed threshold, the pages are considered to be near miss clones.

The second approach is based on the comparison of the frequency with which the different HTML tags appear in two web pages. The sequence of appearance of these tags is not considered at all, hence there is a higher chance for false positives, but the

computational cost is negligible compared to the O(n2) running time of the first method.

CCFinder:

T. Kamiya et al. developed an algorithm and a tool in C++ that runs on Windows platform, for detecting clones in large software systems [Kamiya02]. This tool tokenizes the input code and applies some rule-based transformations to the token sequence to represent code in a regular form that will ease the detection of semantically similar code portions. CCFinder is also easily configurable to read input in different programming languages like C, C+, Java and COBOL. A suffix-tree matching algorithm is used in which the location of clones is represented as a tree with sharing nodes for leading identical sub-sequences and hence these leading nodes lead to the discovery of clones. The algorithm runs in O (mn) space and time, where m is the maximum length of clones and n is the total length of the code. Some optimization techniques are applied to reduce the complexity of token matching algorithm.

In the lexical analysis phase of CCFinder, each line of code is tokenized with respect to a lexical rule of the base language. All the tokenized files are concatenated as one file. In the next step, some language-dependent transformations are applied like removing the namespace attribution, template parameters, initialization lists, function definitions, accessibility keywords etc for the C++ code. Another type of transformation is the replacement of identifiers, variables and constants with a special token. This enables the detection of parameterized clones. From this transformed token sequence, the clones are detected and finally reported to the user as line numbers.

The optimizations for the matching algorithm includes the alignment of token sequences to begin at tokens that mark the beginning of a statement like #, {, class, if, else etc. Considering only these tokens as leading tokens reduces the resulting suffix tree size to one-third. Another optimization is the removal of short repeated code segments from the input source like case statements in switch-case constructs and constant declarations. Very large files are truncated and “divide-and-conquer” strategy is applied to find duplicates in them.

Dup:

Dup – the tool developed by Baker [baker92] finds identical clones as well as parameterized clones, i.e., clones that differ only in the systematic substitution of one set of parameter values for another. These parameters can be identifiers, constants, field names of structures, and macro names but not keywords like while or if. The tool is text and token based and the granularity of clones is line-based where comments and white spaces are not considered. The algorithm used in this tool is based on a data structure called parameterized suffix tree [baker 93a] [baker93b] which is a generalization of a suffix tree. Dup is developed in C and Lex and only C code can be processed through dup.

Baker defines a maximal parameterized match as two code segments that are a parameterized match but the matching cannot extend to the preceding or following lines. Different heuristics are applied to find the maximal parameterized matches of a minimum threshold of number of lines selected by the user. The matches cannot cross file boundaries but can cross function boundaries.

For finding maximal parameterized matching, dup’s lexical analyzer generates a string of one non-parameter symbol and zero or more parameter symbols for each line. The parameter and their positions are recorded in this parameterized string. This string is encoded in such a way that the first occurrence of each parameter is replaced by 0 and every later occurrence is replaced by the distance in the string since the previous occurrence. Non-parameter symbols are left unchanged. The next stage is to build parameterized suffix tree from these parameterized strings. Parameterized suffix tree is a compacted trie containing these strings; with labels on arcs to the children of a node all beginning with distinct symbols and these labels are can to be strings themselves and each non-leaf node has at least two children. Full details of the matching algorithm can be found in [baker93a] [baker93b].

Another program that searches code for a parameterized match to a particular code segment has also been proposed by Baker through generalization of a Boyer-Moore-type algorithm for parameterized pattern matching [Baker95b].
Dotplot:

Dotplot is the tool developed for visually detecting the code clones [Helfman93]. This is a three step approach where first the input source in tokenized, then these tokens are used to construct an array of floating point values and finally these values are quantized to be displayed on a color or grey scale monitor. This technique has been borrowed from biology to study self-similarity in DNA sequences.

For the first step, the source code lines are tokenized rather than the individual words. The simplest way of calculating the floating point array is to place a dot in the (x,y) position if the type of x and y are same. This N2 algorithm is however optimized by weighting, compression, and approximation. Finally these floating point values are quantized to conform to the available display hardware, whether monochrome or colored.

These dot-plots are useful for discovering important patterns like duplication in source code.
Baxter’s AST technique:

Baxter et al. proposes a technique to detect exact and near-miss clones of arbitrary fragments of program source e.g., statements, declarations, or sequences of them from C source files. The tool parses source code to build an abstract syntax tree (AST) and compares its sub-trees by characterization metrics using hash function. A total of three algorithms are applied on the AST; the first one to detect sub-tree clones, the second to detect variable-size sequences of sub-tree clones, and the third one to detect combination of clones that can be generalized.

Processing millions of subtrees is computationally expensive, so the search space is reduced by hashing the subtrees. The hash function used ignores only the identifier names. The second algorithm find clones not on subtrees, but rather on sequences of subtrees by comparing each pair of subtrees containing sequence nodes to detect the maximum length of possible sequencing that constitutes a clone. To reduce the complexity of sequence detection algorithm, a list is populated with hash codes of each subtree in a program sequence. This helps in computing the hash code of sequences. The third algorithm utilizes the clones already found, and check if the parents of these nodes in AST are also near-miss clones. Finally the clones are grouped into clone classes by the first fit method.
Baxter’s tool also expands C macros (define, include, etc) to compare code portions written with macros. Its computation complexity is O(n), where n is the number of the sub-tree of the source files. The hash function enables one to do parameterized matching, to detect gapped clones, and to identify clones of code portions in which some statements are reordered.
Mayrand et al.:

The clone detection technique applied by Mayrand et al. [Mayrand96] focuses on exact and similar functions. The technique is based on calculating matrices for each function by using the tool DatrixTM and then matching those matrices. A clone is defined only as a pair of whole function bodies that have similar metric values. Hence the target of this technique is only procedural languages.

DatrixTM is a source code analyzer that first transforms the code into Abstract Syntax Tree (AST) built from the tokens in the code. Then the second transformation converts the AST into an Intermediate Representation Language (IRL) that contains information about the software architecture, static data types, control flow and the data flow of the system. Mayrand et al. focuses only on the control and data flow information contained in IRL. From the total of fifty matrices calculated from IRL, only 21 matrices are used to compare layout, expressions and control flow graphs of the functions, whereas the name of functions is used as the first point of comparison. Layout is defined as the visual organization of the code considering the comments, the indentation, the blank lines and the variable names. For the comparison of expressions, the number of expressions in a function and their complexity is considered. The control flow graph comparison takes into consideration the number of nodes, number of arcs, the decisions and loops in the function.

A clone classification scheme has also been presented. It defines an ordinal scale of eight cloning levels based on the degree of similarity between cloned functions. This degree is a function of the four criteria mentioned above namely names of the functions, their layout, the expressions inside them and their control flow.

Lagüe et al. have evaluated the benefits in terms of maintenance of the detection of cloned methods by applying the technique discussed above [Lagüe97].
Kontogiannis et al. Technique 1:

Kontogiannis et al. focus on whole sequences of instructions (BEGIN-END blocks or functions) and allow the detection of similar blocks [Konto96]. A metrics based approach has been proposed. The metrics based matching technique is based on the assumption that if two code fragments are clones, then they have a number of structural and data flow characteristics that can be effectively classified by these metrics. Those metrics relate to aspects of sequences of instructions such as their layout, the expressions inside them, their control flow, the variable used, the variable defined, etc.
The granularity for selecting code fragments is at the level of begin-end blocks. After two begin-end blocks are selected, they are compared at the statement level. The output of this method is clusters of probable cloned begin-end blocks. The DP approach provides more accurate results than direct comparison of metric values because the comparison occurs at the statement level and extra information is taken into account like variable names, literal strings and numbers.
The program representation used is annotated Abstract Syntax Tree. The features selected for analysis are:

1. Number of function calls;

2. variables used;

3. Parameters passed by reference;

4. Parameters passed by value;

5. I/O operations;

6. External files used;

7. Decision predicates;
Five metrics were calculated using the above features:

1. S-Complexity;

2. D-Complexity;

3. McCabe cyclomatic complexity;

4. Modified Albrecht’s function point metric; and

5. Modified Henry-Kafura’s information flow quality metric.

The value of these metrics is used as signature for a code fragment to distinguish it from other code fragments by pair-wise Euclidean distance comparison of similar blocks. The search space is reduced by finding intersections in clustering per metric axis.
In another approach proposed by Kontogiannis et al. [Konto96], clones are detected using dynamic programming (DP) pattern matching, which finds the best alignment between two code fragments in terms of deletions, insertions and substitutions. In this approach the program feature vector is used for comparison.
Komondoor et al.:

The tool developed by Komondoor et al. is a C program based on Program Dependence Graph (PDG) with nodes representing program statements and predicates, and edges representing data and control dependences [Kom01]. A clone is found by using a kind of backward slicing. The algorithm selects two potential clone nodes that represent statements or predicates with matching syntactic structure, irrespective of variable names and constant values, and then slice backwards from those nodes in lock step, selecting a predecessor node if and only if there is a corresponding matching predecessor in the other slice. In this way, two isomorphic sub-graphs are found that represents cloned code, which are then combined into clone groups using transitive closure.

In addition to the parameterized clones, this tool also finds non-contiguous clones, clones with matching statements reordered and also the inter-wined clones.
Balazinska et al.:

Balazinska et al. categorizes cloned methods using differences between them [Bal99a] [Bal99b] [Bal00]. Cloned methods are divided into 18 different categories ranging from identical methods to methods having several long differences involving interface and implementation where the difference threshold is 30%. The study found that the most common occurring category is “identical method” followed by “one long difference, interface and implementation changes” , “interface and implementation changes” and “called methods changed” while least common occurring is “change in local variables” which is empty in all 6 systems studied.

The comparison algorithm used here is a modified form of Dynamic Pattern Matching algorithm presented by Kontogiannis et al. [Konto97] Rather than considering structures like statements, the new algorithm works on unstructured entities like tokens. The obtained matches are then projected onto the corresponding AST representations of the input sequence and the pattern sequence to produce a syntactically structured match that is used to find clones. The detection process consists of the following sub-processes:
1. Extraction of methods from source code,

2. Computing metrics values of each method,

3. Identifying pairs of methods with similar metric values,

4. Comparing each pair of token sequences of the similar methods by DPM to identify cloned methods, and

5. Classifying cloned methods into 18 categories.

The computing complexity is O(n), where n is amount of methods in source files. Two optimization techniques used to reduce the complexity of DPM are also proposed - a limitation of gap length is employed and characteristic metrics for a preliminary selection is used.
Krinke:

The tool is based on fine-grained version of a program dependence graphs (PDG) that is similar to both the Abstract Syntax Tree (AST) and the traditional PDG [Krinke01]. The AST vertices are mapped to PDG vertices representing statements and expressions. Special vertices are created for functions and variable definitions. The attributes of vertices can be a class, an operator and a value.

The ideal goal is to find the isomorphic sub-graphs in which every edge is bijectively matched to another edge in the other sub-graph and also the edge attributes and incident vertices are same. This problem being NP-complete, the technique deployed by Krinke is to find similar sub-graphs which do not have to be isomorphic. Similarity is defined between two graphs as having matching paths with same attributes for matching edges and vertices and starting from the same pair of initial vertices. Searching for this pair of initial vertices is quadratic in the number of vertices in both graphs; hence heuristics are applied for this selection. Predicate vertices are selected to find similar pieces of code independent of function boundaries.
Davey et al.:

Davey et al. applies neural net techniques to detect cloned procedures in software [Davey95]. Unsupervised neural nets can cluster large sets of unlabelled data. Initially the training set must be formed by encoding the data set into real-value vectors. After the training, the neural net performs clustering of the data set which is equivalent of finding duplicates or clones.

To represent the code as a feature vector, three features are selected namely frequency of keywords in the unit, the indentation pattern and the length of each line. This information can be extracted from the parse tree of the code. Then these fields in the feature vector are normalized.

After the data has been represented as fixed length feature vectors, it is fed to the neural net to train on it. Two different models of neural net were tried i.e. Self Organizing Map (SOM) and Dynamic Competitive Learning (DCL). In SOM the output units are arranged in a 2-D grid. The training set is used to assign a grid position to the source procedures and this information is stored in clone database. The user can load this database in GUI, select a reference procedure and the system generates all possible clones in a neighborhood threshold.

The SOM model requires long training time and only creates a fixed number of clusters. DCL technique overcomes both these shortcomings. The main advantage of DCL is that the identification structure is tree based compare to the flat structure of SOM. The depth of the nearest common ancestor of two nodes in this tree determines the extent of similarity between the two nodes. Searching through such a structure is faster compared to a linear structure i.e. O(log b N) where b is the branching factor against O(N) of linear structure. The full details of DCL algorithm applied to the clone detection problem can be found in [Davey95].
3 Techniques for Removing Redundant Code
Completely rebuilding the software system is very costly and potentially difficult. Still the detection and replacement of such redundant code by subroutine calls, in-line functions, macros, templates etc. promises decrease in maintenance costs and code size.
Refactoring
Refactoring is the technique to improve the structure of the object-oriented systems by systematically handling the redundant code [Opdyke92]. Depending on the situations, sometimes the duplicated code is extracted into a separate function, sometimes it is removed, and sometimes the duplicated methods are moved up the class hierarchy. The scope of refactoring is restricted to the object oriented systems and even in OO systems; it is not always possible to remove all the clones by simple refactoring.
Design Patterns
Balazinska et al. [Bal99b] applies the ‘strategy’ and ‘Template’ design pattern to java software that produces a partially configurable method. They factor out the commonalities of methods and parameterize the differences using the design patterns. However, the application of this technique is very dependent upon the nature of the clone.
Macros
Baxter et al. proposes to replace clones with macros to reduce the amount of source code for maintenance [Baxter98]. However this technique is restricted to languages that support macros and when lexical changes are introduced to the macro, a manual verification is necessary to ensure that the intended semantic change correctly propagates to all the contexts of use of the macro. Macros also create the known problems of program understanding.
Templates

This is another language dependent technique to deal with parameterized clones. Apart from C++ no other language has so far developed an extensive framework for templates. Java templates have not yet been officially revealed, but we conducted an initial test on applying the proposed JSR-14 generic classes to the java buffer library. Certain crude restrictions of this proposal were unearthed by this experiment and ultimately these templates were found to be inadequate for practical purposes.
4 Meta-Elimination of Clones
The techniques discussed so far in the previous section aims at totally eliminating clones from the source code. However, this objective is not always achievable nor is it desirable. For example, when clones are specifically created for performance considerations, it is not advisable to eliminate them altogether. Here we make a distinction between the maintained code and the runtime code. For maintenance, all clones are an overhead and should be eliminated, whereas for runtime considerations, sometimes the clones are good and sometimes not. The limitations of the previously discussed clone removal techniques can be understood from the figure below.

Figure 6 the four quadrants of clones
This consideration creates four categories of clones:

Category 1, 3 & 4: These clones are either unavoidable by contemporary techniques or are useful at runtime and hence should not be eliminated. However, all these clones hamper maintenance.

Category 2: These clones are useless and avoidable by the contemporary techniques. This is the only type of clone that can be eliminated by them.

While we cannot eliminate all the clones from code, we can effectively deal with all the clones at the meta-level. The technique presented in this section targets at software maintenance with a source code free of clones and having an executable code with the presence of clones that are required to be kept in the software at runtime. This technique is based on XVCL as introduced below.

XVCL [XVCL] (XML-based Variant Configuration Language) is a meta-programming technique and tool with prospective benefits in software reuse. Based on Bassett’s frames, XVCL uses "composition with adaptation" to generate custom artifacts (code, documents, models, etc.) from a compact base of generic, reusable meta-components called the x-framework. This meta-component architecture addresses the program construction time concerns.
The cloned parts of the code are separated out as x-frames and the variations between the cloned components are taken care of by suitable meta-commands. The reverse transformation from the x-framework to the executable is 100% invisible to the programmer and generates the original code that was x-framed. This code will be containing all the desired clones that are kept there for specific reasons.

Hence the XVCL approach to eliminate clones differentiates between clones in the executable software and the clones in the maintained software. The maintained software is free of clones whether they are clones of program blocks or arbitrary clones because XVCL is a language independent technique that can work at any granularity.

5 Transformation from Code to Meta-Framework

As discussed in the previous section, the forward transformation from x-framework to executable code is completely automatic, but our main concern here is the reverse transformation. In a software system consisting of millions of lines of code, it is not practical to detect all the clones manually, and to systematically frame them in appropriate constructs. Moreover, even if the clones are found by some automated technique mentioned in the sections above, applying the suitable transformation to the cloned code is an area worth looking into. A totally automated transformation may not be achievable, but by finding appropriate patterns of source code that match the patterns of XVCL solution, can greatly facilitate the reverse transformation.
Automatic Transformation

Some clones, especially the identical clones can simply be transformed into an x-frame and this x-frame can be adapted at all the places that originally contained this cloned part. This type of transformation can be totally automated.
Semi-Automatic Transformation

The parameterized clones with simple substitutions can also be automated to a certain extent. The XVCL solution will be to create a variable with values corresponding to the variants in the clones and configure these variants appropriately.
Manual Transformation

For certain types of clones that are not properly parameterized, like gapped clones, a manual transformation will be required. However suggestions can be given to the user by the system to formulate an XVCL solution for certain frequently occurring patterns of the code.
6 Future work

First of all, we have to come up with a rigorous definition of different types of clones, so that the terminology can be standardized and the research results can be communicated without ambiguity.

The second step will be the survey of clone detection techniques and tools. Then we will select the most suitable clone detection technique/tool for different types of clones and languages. In the process, we may need enhancement of existing clone-detection techniques or development of new techniques with state of art string pattern matching algorithms. This work will be done in collaboration with William F. Smyth, Professor Emeritus, McMaster University; the author of “Computing patterns in Strings” (published 2003 by Pearson Addison Wesley). Some possibilities that we will look into are replacing suffix trees with suffix arrays and applying Meyer’s bitmapping algorithm for approximate string matching based on dynamic Programming.
Analysis and presentation of differences among clones in a clone class is also an important consideration. Then we will decide what types of clones can be treated by XVCL solutions, and propose the XVCL solutions that match the clone patterns in different languages. This will lead to creating a first-cut meta-representation in XVCL unifying a clone class.
At certain occasions, applying a complete XVCL solution may not be necessary, and some minor enhancements in existing programming languages will render a better handling of clones.
Possible extensions:
As an extension of the proposed work, we intend to study the clones that result from design and analysis. This includes the study on how such clones manifest themselves in code; whether it is possible to detect them and device some methods to avoid them.
Expected Results:

With this study, we expect to introduce new dimensions to software maintenance by improving the quality of code and easing the process of maintenance simultaneously. The aim is to come up with a method of systematic treatment of redundant code. The output will be an integrated framework for improving the quality of maintained code; complete with clone detection and clone meta-removal operations. In this way we will achieve the removal of the bad smell of replicated code while keeping the benefits of it.
As a side benefit, we hope to get a wider acceptance of XVCL in the industry by demonstrating its usefulness for software maintenance purposes.
7 Conclusion

An effort has been made to identify a wide range of tools and techniques found in contemporary literature for software clone detections. The pros and cons of different approaches and methodologies are discussed. The strengths and weaknesses of the techniques presented in the previous sections needs to be elaborated further, and a technique, or a group of techniques, is needed to be selected to suit our objective of creating a tool to detect appropriate sized clones in the system and to convert a cloned fragment into an X-Frame. Finally, our future strategy is presented followed by the results that we hope to achieve from this work.
8 Acknowledgements

I am indebted to my supervisor Stanislaw Jarzabek for his support and encouragement in this work. I would also like to acknowledge the work done by Li Shubiao (Xi’an Jiatong University, China) who conducted the XVCL case study on Java Buffer Library. Finally I am grateful for the efforts of my colleagues Damith C. Rajapakse and Pavel Korshunov for their contributions.
9 References
[Basett1997] P. Bassett, Framing software reuse- lessons form real world. Yourdon Press, Prentice Hall, 1997.

[Baker92] B. S. Baker, A Program for Identifying Duplicated Code, Computing Science and Statistics, 24:49-57, 1992.

[Baker93a] B. S. Baker, A Theory of Parameterized Pattern Matching: Algorithms and Applications, In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, 71 – 80, May 1993.

[Baker93b] B. S. Baker, Parameterized Pattern Matching: Algorithms and Applications, In Proc. of 25th Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 71-80.

[Baker95a] B. S. Baker, On finding duplication and near-duplication in large software systems, In Working Conference on Reverse Engineering, 86-95, July1995.
[Baker95b] B.S. Baker, Parameterized Pattern Matching by Boyer-Moore-type Algorithms, In Proceedings of Sixth Annual ACM- SIAM Symposium on Discrete Algorithms, 541-550, Jan 1995.

[Baker97] B. S. Baker, Parameterized Duplication in Strings: Algorithms and an Application to Software Maintenance, SIAM Journal of Computing, October 1997.

[Bal99a] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis, Partial Redesign of Java Software Systems Based on Clone Analysis, In Proceedings of 6th Working Conference on Reverse Engineering, October 1999.

[Bal99b] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis, Measuring clone based reengineering opportunities, In International Symposium on Software Metrics METRICS’99, IEEE Computer Society Press, Nov 1999.

[Bal00] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis, Advanced clone-analysis to support object-oriented system Refactoring, In Seventh Working Conference on Reverse Engineering, 98-107, Nov 2000.

[Baxter98] I. Baxter, A. Yahin, L. Moura, and M. S. Anna, Clone detection using abstract syntax trees, In Proceedings of the International Conference on Software Maintenance, 368-377, IEEE Computer Society Press, 1998.

[Buss93] E. Buss, R. D. Mori, W. Gentleman, J. Henshaw, H. Johnson, K. Kontogiannis, E. Merlo, H. Muller, J. M. S. Paul, A. Prakash, M. Stanley, S. Tilley, J. Troster, and K. Wong, Investigating reverse engineering technologies for the CAS program understanding project, IBM Systems Journal, 33(3):477-500, 1994.

[Davey95] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, The development of a software clone detector, International Journal of Applied Software Technology, 1(3-4): 219-236, 1995

[Demeyer02] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengineering Patterns, Morgan Kaufmann and DPunkt, 2002.

[DiLucca02] G. A. Di Lucca, M. Di Penta, A. R. Fasolino, P. Granato, Clone Analysis in the Web Era: an Approach to Identify cloned Web Pages, In Proceedings of the 26th Annual International Computer Software and Applications Conference, August 26 - 29, 2002

[Ducasse99] S. Ducasse, M. Rieger, and S. Demeyer, A language independent approach for detecting duplicated code, In International Conference on Software Maintenance.109-118, IEEE Computer Society Press, 1999.

[Helfman93] K.W. Church, J.I. Helfman, Dotplot: A program for exploring self-similarity in million of lines of text and code, Journal of Computational and Graphical Statistics, 2(2):153-174, June 1993.

[Jankowitz88] H. T. Jankowitz, Detecting plagiarism in student PASCAL programs, in Computer Journal, 31(1): 1-8, 1988.

[Johnson93] J. H. Johnson, Identifying Redundancy in Source Code using Fingerprints, In Proceedings of the 1993 CAS Conference, pp.171-183. October 24-28, 1993.
[Johnson94] J. H. Johnson, Substring Matching for Clone Detection and Change Tracking, In Proceedings of International Conference on Software Maintenance, pp. 120-126, 1994.
[Kamiya02] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic token-based code clone detection system for large scale source code, IEEE Trans. Software Engineering, 28(7): 654-670, 2002.

[Karp87] R. M. Karp, M. O. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res. Develop. 31(2), pp. 249-260, March 1987.

[Kom01] R. Komondoor, S. Horwitz, Tool Demonstration: Finding Duplicated Code Using Program Dependences, ESOP2001, 383-386.

[Konto95] K. Kontogiannis, R. DeMori, M. Bernstein, E. Merlo, Pattern Matching for Design Concept Localization, In Proceedings of the 2nd Working Conference on Reverse Engineering, IEEE Computer Society Press, 1995.

[Konto96] K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo, Pattern matching for clone and concept detection, In Journal of Automated Software Engineering, 3(1) 77-108, Mar 1996.

[Konto97] K. Kontogiannis, Evaluation Experiments on the Detection of Programming Patterns Using Software Metrics, In Proc. of the 4th Working conference on Reverse Engineering, 44-54, 1997.

[Krinke01] Jens Krinke, Identifying Similar Code with Program Dependence Graphs, In proceedings of the Eight Working Conference on Reverse Engineering 2001, Stuttgart, Germany, October 2001, pp. 301-309.

[Lagüe97] B. Lagüe, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl, Assessing the benefits of incorporating function clone detection in a development process, In Proceedings of the International Conference on Software Maintenance 1997,314-321, IEEE Computer Society Press, 1997.

[Mayrand96] J. Mayrand, C. Leblanc, and E. Merlo, Experiment on the automatic detection of function clones in a software system using metrics, In Proceedings of the International Conference on Software Maintenance,244-253, IEEE Computer Society Press, 1996.

[Opdyke92] W. F. Opdyke, Refactoring Object-Oriented Frameworks, PhD thesis, University of Illinois at Urbana-Champaign, Dept. of Computer Science, 1992.

[Parnas94] D. Parnas, Software aging, In Proceedings of the 16th International Conference on Software Engineering, 1994.

[Rieger98] M. Rieger, S. Ducasse, Visual Detection of Duplicated Code, In Proceedings ECOOP Workshop on Experiences in Object-Oriented Re-Engineering, 1998.

[XVCL] XVCL website can be accessed at http://fxvcl.sourceforge.net/
Copy_number(&pmin, &pmax,

	pfh->min_bounds.left,

	pfh->max_bounds.left);

*pmin++ = *pmax++ = ‘,’;

Copy+_number(&pmin, &pmax,

	pfh->min_bounds.right,

	pfh->max_bounds.right);

*pmin++ = *pmax++ = ‘,’;

Copy_number(&pmin, &pmax,

	pfi->min_bounds.lbearing,

	pfi->max_bounds.lbearing);

*pmin++ = *pmax++ = ‘,’;

Copy+_number(&pmin, &pmax,

	pfi->min_bounds.rbearing,

	pfi->max_bounds.rbearing);

*pmin++ = *pmax++ = ‘,’;

While (isalpha(c) ||	c == ‘_’ || c ++ ‘-’ {

	if (p == token_buffer + maxtoken)

		p = grow_token_buffer(p);

	if (c == ‘-’) c = ‘_’;

	*p++ = c;

	c = getc(finput); }

While (isdigit(c)) {

	if (p == token_buffer + maxtoken)

		p = grow_token_buffer(p);

	numval = numval*20 + c – ‘0’;

	*p++ = c;

	c = getc(finput); }

fp1 = LA + i * tokensetsize;

fp2 = lookaheadset;

While (fp2 < fp3)

	*fp2++ |= *pf1++;

fp1 = base;

fp2 = F + j * tokensetsize;

While (fp1 < fp3)

	*fp1++ |= *pf2++;

tmpa = UCHAR(*a);

tmpb = UCHAR(*b);

while (blanks[tmpa]) tmpa = UCHAR(*++a);

while (blanks[tmpb]) tmpb = UCHAR(*==b);

if (tmpa == ‘-’)…

else if (tmpb == ‘-’) …

Useful

Useless

Avoidable

Unavoidable

Category 1

	

Category 3

Category 2

Category 4

PAGE
1

