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Abstract

Aspect-Oriented Programming is proposed to improve modularity for crosscut-
ting concerns. In aspect-oriented programming, an aspect can capture crosscutting
structure based on Join Point Model which abstracts an execution of program as a
sequence of join points. A join point represents a well-defined event during pro-
gram execution such as method call, method execution, field access and exception
handling. A concern is called as a crosscutting concern when the related code
fragments of the concern spread across (crosscuts) the modules. A crosscutting
concern is hard to maintain since a developer needs to maintain all code fragments
consistently and code fragments of multiple crosscutting concerns are often mixed
at different places. Although such crosscutting concerns are found in many pro-
grams, rewriting all of them in aspect-oriented language is infeasible. Therefore,
finding concerns for which aspect-oriented programming is suitable and effective
is important. In this paper, we propose and discuss two aspects related to object-
oriented software development.

1. Dynamic analysis recording program execution

2. Modularization of assertions crosscutting objects

Dynamic analysis is a process collecting execution history of a program. The
collected information is used by debugger and several analysis tools since the in-
formation reflects the actual behavior of the program. Dynamic analysis needs to
watch the behavior of objects in the program. A developer is required to imple-
ment a program transformation tool in order to achieve dynamic analysis. We have
proposed to implement a dynamic analysis tool based on AOP to reduce efforts for
the tool development. Comparing an approach using a customized compiler which
generates code for dynamic analysis for program slicing, aspect-oriented analyzer
improves modularity and maintainability of the analysis system.

Another development aspect is modularization of assertions crosscutting ob-
jects. Assertion checking is a powerful tool to detect software faults during de-
bugging, testing and maintenance. Although assertion documents the behavior of
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one component, it is hard to document relations and interactions among several
objects since such assertion statements are spread across the modules. Therefore,
we propose to modularize such assertion as an aspect in order to improve software
maintainability. Taking Observer pattern as an example, we show a limitation of
traditional assertion and effectiveness of assertion aspect through the case study,
and discuss various situations to which assertion aspects are applicable.

Above two aspects become independent modules separated from the base-code,
or the core functional part of a program, using aspect-oriented programming. Re-
searchers in this area also proposed aspects for other purposes, e.g. implement-
ing non-functional requirements in software system. These aspects show useful-
ness and effectiveness of aspect-oriented programming. However, aspect-oriented
programming introduces two problems named “fragile base-code problem” and
“inter-aspect problem”. Fragile base-code problem is that an aspect may be broken
when the base code is modified by a developer who is unaware of aspects since
each aspect defined as a module collaborating with base-code has several assump-
tions on the base-code. Inter-aspect problem is caused when several aspects are
working at the same time, and an aspect accidentally breaks assumptions of other
aspects. Although the fragile base-code problem is partially supported with inte-
grated software development environment and the aspect-aware refactoring support
a developer to carefully modify base-code, the inter-aspect problem is not enough
supported.

To tackle the inter-aspect problem, we have proposed and implemented an ex-
tension of program slicing for aspect-oriented programs including multiple aspects.
Program slicing extracts a program dependence graph whose vertices represent
program elements and edges represent relationship between vertices respectively.
A developer can see inter-aspect relationship as a program slice. We have con-
ducted an experiment debugging an aspect-oriented program including four aspects
which are related to each other and causing inter-aspect problem. The result shows
that program slicing effectively supports developers’ debugging task.

Applications of Aspect-Oriented Programming show the effectiveness of aspect-
oriented programming in various areas. Although Aspect-Oriented Programming
brings new problems, developers can have the advantage of Aspect-Oriented Pro-
gramming supported with program analysis techniques.
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Chapter 1

Introduction

1.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) introduces a new module unit, or aspect, for
encapsulating crosscutting concerns [34]. The goal of Aspect-Oriented Program-
ming is to separate concerns in software. While the hierarchical modularity of
object-oriented languages is extremely useful, they are inherently unable to modu-
larize crosscutting concerns, such as logging and synchronization. These concerns
usually affect various modules in the system.

AOP provides language mechanisms that explicitly capture the crosscutting
structure. Encapsulating a crosscutting concern as an aspect improves modularity
of the software system followed by good maintainability and reusability of the
modules. Aspects separated from an object-oriented program are composed by
Aspect Weaver to construct a program with a crosscutting structure.

AspectJ [80] is an extension of Java for aspect-oriented programming and it is
one of the most famous and practical language in this area. In AspectJ, an aspect
represents a crosscutting concern as a set of advices. An advice is a method-like
unit consisting of a procedure and a pointcut definition associated with the pro-
cedure. A procedure, or an advice body, is a code fragment written in Java. The
advice body is executed when the condition specified by the associated pointcut is
satisfied. A pointcut is defined as a subset of join points, which are well-defined
events during program execution, such as method calls and field accesses. AspectJ
and other AOP languages provide their own Join Point Model to define events
which are available for a pointcut definition. For example, the join point model of
AspectJ regards program execution as a sequence of events including method calls
and field accesses. On the other hand, Ali et al. proposes a state-based join point
model which regards program execution as a sequence of state transition of objects
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after(): call(void Database.query(..)) {
// calling a logging method here.

}

Figure 1.1: Logging example in AspectJ

caused by changing objects’ fields [2].
Using join points, a developer can specify when the advice is executed in-

dependently of the implementation details of system functionality. One exam-
ple is a rule such as “This logging advice is executed for each method call to
Database.query()”. In AOP, this rule removes the logging method calls from
various callers since Aspect Weaver can automatically insert a logging method call
for each query method call. The rule described in AspectJ is shown in Figure 1.1.

In traditional object-oriented programming, a developer has to consistently
maintain the rule by hand. Whenever developers add or remove a database query,
they have to update logging code. This is a hard task since the logging code spreads
across the modules and the logging code may tangle with other similar code frag-
ments which contribute other concerns. AOP allows developers to easily distin-
guish the aspects and manage rules since a rule is explicitly defined as an aspect
and the code is automatically inserted based on the rules.

AOP improves maintainability and reusability of objects and aspects since
AOP separates crosscutting structures which usually consists of method calls to
infrastructural modules such as logging and synchronization from core function-
ality of objects. Separated crosscutting structure is modularized as aspects, and
core functionalities in the system are represented as objects without crosscutting
structure. In traditional programming, reusing a component needs some additional
tasks which include removing application specific crosscutting structure from the
component and adding crosscutting code for new application. In AOP, a developer
easily reuse a component for another system since crosscutting structure is already
separated.

Since AOP is widely applicable, the usage of aspect is categorized into three
groups listed below [36].

Development Aspects support developers’ task in the development process. This
category includes logging aspect for debugging and profiling for perfor-
mance improvement. These aspects are removed when the system is re-
leased.

Production Aspects contribute system functionality. An example is user authen-
tication aspect which requires a password at an appropriate time.
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Runtime Aspects improve performance of a system without changing the behav-
ior of the system. Optimization and memory management are included in
this category.

In this paper, we have tried to modularize development aspects for effective
software development since software systems often include development aspects
independently of the systems’ domains. We discuss two aspects closely related to
program analysis techniques to support various software development tasks.

1. Dynamic analysis aspect recording program execution

2. Aspect modularizing assertions crosscutting objects

One is dynamic analysis collecting execution history of a program. The col-
lected information is used by debugger and several analysis tools since the infor-
mation reflects the actual behavior of the program. Dynamic analysis is a variant of
logging since dynamic analysis also records information of the program execution.
In order to achieve dynamic analysis, a developer is required to implement analysis
tool using meta-programming techniques. Proposal of this paper is to implement
a dynamic analysis tool based on AOP to reduce efforts for tool development and
maintenance.

Another is modularization of assertions crosscutting objects. Assertion check-
ing is a powerful tool to detect software faults during debugging, testing and main-
tenance [62]. Assertion usually describes the behavior of one component and im-
proves the robustness of the component. However, it is hard to document relations
and interactions among objects since such assertion statements are spread across
the modules. Such crosscutting assertion often damages encapsulation of objects
followed by poor maintainability and reusability. Therefore, we propose to modu-
larize such assertions as an aspect in order to improve modularity and usability of
them.

Both two development aspects are closely related to program analysis tech-
niques since dynamic analysis is widely used in program analysis, and assertion
is often used as a description of a component’s property in program analysis. In
the following section, first we describe program analysis and relationship between
program analysis and the development aspects. Effectiveness of these aspects is
shown in Chapter 2 and Chapter 3.

Although the above aspects and other aspect proposed by researchers are ef-
fective, AOP brings two problems named “fragile base-code problem” and “inter-
aspect problem”. These problems are caused by aspects which are loosely coupled
with a base program via join point model. Therefore, we propose a program anal-
ysis extended for AOP in order to support developers’ debugging task. We explain
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these problems in Section 1.4 and debugging support for these problems in Chapter
4 respectively.

1.2 Program Analysis

Developers need to understand the components for maintaining software system.
Software maintenance activities span a system’s productive life and can account
for as much as 80 percent of the total effort expended on a software system [61].
Developing complex but high quality software efficiently is one of important goals
of software engineering research [57]. Program Analysis is a research area to sup-
port program understanding by extracting some properties from a program [29].
Program analysis abstracts a program as:

• a graph whose vertices represent program entities and edges represent rela-
tionship between entities respectively, or

• a metric value representing some software properties including complexity,
reusability and maintainability, or

• other models.

A developer can choose an analysis method to focus on an interesting perspec-
tive of a program. Extracting a graph representing a program is a typical abstraction
tool in program analysis. Various graphs are used as follows.

• Abstract syntax tree represents source code.

• Control flow graph represents the execution order of statements in a proce-
dure.

• Call graph represents caller-callee relationship among procedures.

• Program dependence graph represents control flow and data flow in a pro-
gram.

Calculating metric values from a program are also effective approach for ab-
stracting software properties. Examples are listed below.

• The number of classes, methods and lines of code are popular measures of
software size.

• Similarity value extracted from a pair of code is a hint to find duplicated
code.
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Some graphs and metric values are derived from others. For example, a pro-
gram dependence graph is extracted from an abstract syntax tree, cyclomatic com-
plexity [46] of a procedure is calculated from the control flow graph of the proce-
dure, respectively. A combination of properties often allows developers to evaluate
properties of software and to compare software with each other.

There are two approaches to extract such information from software. One ap-
proach is static analysis which analyzes products including source code and related
documents. Since static approach extracts software properties without execution
of the software, the result contains all possible behavior of a program. Another
is dynamic analysis which analyzes execution process of a program with a input.
Dynamic analysis extracts detailed information about software execution process,
including dynamic binding and exception handling, which are hardly extracted by
static analysis. Various applications of program analysis exist as follows.

Graph-based applications

Code optimization: The automatic code optimization removing unreach-
able operations in the control flow graph of a procedure during compi-
lation process is an application of static analysis. A dynamic analysis
is profiling performance of a program by measuring time consumed
for each procedure. The result of profiling shows a bottle-neck of a
program.

Test case generation: Static analysis generates various input parameters for
a procedure to cover as much lines of code as possible in the procedure
based on the control flow graph and conditions which are satisfied at
each assertion statement. Dynamic analysis reveals statements uncov-
ered by given test cases. In this purpose, both approaches are combined
to generate enough test cases for a procedure.

Debugging support: Program slicing is proposed to extract code related to
variables specified by a developer [74]. This technique uses a program
dependence graph reflecting both the control flow and the data flow in
a program [27]. Related statements are identified by reachability in a
program dependence graph. Although the original approach is based
on static analysis, dynamic information is also used to analyze detailed
information for one test case [1, 68].

Impact analysis: Impact analysis reveals code related to statements modi-
fied by a developer. This method is often regarded as a variant of pro-
gram slicing since this method extracts statements affected by modified
statements based on a program dependence graph. While this method
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is usually implemented using static analysis to predict the effect of soft-
ware modification [3], dynamic impact analysis is also proposed to in-
dicate procedures affected by software modification [4, 43].

Invariant detection and propagation: A component has invariants, or spe-
cial conditions always satisfied about its state during program execu-
tion. While a developer usually describes such invariants using asser-
tion statement, finding additional invariants is practical and important
problem [56]. Invariants are used to several purposes, e.g. predicting
incompatibilities in component upgrades [47].

Program understanding: Abstracting program source code is useful to un-
derstanding the structure of the program. A call graph of a program and
a document of a module interface including assertion are well-known
examples. Visualization of execution history dynamically extracted
from a program is also useful to understand the behavior of the pro-
gram. These techniques are important for software maintenance and
debugging.

Applications of numerical values

Evaluation of software quality: Software metrics measuring software qual-
ity are proposed to evaluate software quality including complexity, co-
hesion and coupling of a module [8, 46]. Static analysis is suitable for
this purpose since most of metrics measures software products. Dy-
namic analysis is used to analyze runtime behavior, e.g. the complexity
of communication among objects [75].

Similarity of source code: This is an application of static analysis to find
similar code fragments in a system in order to support software main-
tenance. The similarity between two source files may be measured by
the cosine measure when a source file is abstracted as a vector. Simi-
lar components are found by clustering components based on metrics
including size and complexity [49].

Similarity of software behavior: This is an application of dynamic analy-
sis for invasion detection and program understanding. One method to
calculate similarity of the behavior of a program is the cosine measure
of two vectors representing the call frequency of each method [60]. In
an invasion detection system, if similarity between usual behavior and
current behavior of program is under a threshold, the invasion detection
system can stop the program execution since the program is executing
unknown functions.
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Program understanding: Software metrics supports developers to under-
stand a program since developers can categorize modules based on the
metrics. The metric values are useful to decorate a graph to indicate
exceptional entities in the graph [12].

Program analysis research area includes various techniques and applications.
Dynamic analysis implementation is an important crosscutting concern since dy-
namic analysis is one of two categories of program analysis. Assertion is also
important concern since it provides useful information for program analysis which
supports debugging, testing and program understanding.

1.3 Development Aspects

Dynamic analysis usually crosscuts a program to be analyzed. Assertion crosscut-
ting objects is not always, but often observed too. This section explains traditional
approaches to handle these concerns and the differences between traditional ap-
proach and aspect-oriented approach.

1.3.1 Dynamic Analysis

Dynamic analysis analyzes execution process of a program. The result of dynamic
analysis depends on both the software and the input for the software. Dynamic
analysis extracts detailed information about software execution process, includ-
ing dynamic binding and exception handling, which are hardly extracted by static
analysis.

A dynamic analysis tool requires extracting dynamic information from a target
program during its execution. Most of dynamic analysis methods model an execu-
tion as a sequence of events including method calls and returns since an execution
history of a program is usually too huge to analyze even if the granularity of the
history is method-level [59].

How to collect the execution history is a design issue for developers imple-
menting a dynamic analysis tool. Although inserting a logging method call into
the beginning and the end of each method is a simple implementation, automatic
insertion is required since inserting such code by hand is infeasible. The following
list shows approaches implementing automatic insertion.

Customized Compiler approach modifies a compiler to generate a program which
includes additional code recording the execution history. Although this ap-
proach is expensive to develop a new compiler and to maintain the compiler
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according to the update of the language specification, it can be applied to
fine-grained analysis.

Additional Preprocessor approach inserts analysis code to a target program dur-
ing the preprocess before compilation. This approach is easier than cus-
tomized compiler.

Object Code Translator approach adds analysis code to a target program during
the translation process. Since the translator manipulates object code already
compiled without analyzing source code, the translation rule may be simpler
than the preprocessor approach. However, the result might be affected by
code optimization.

Customized Debugger approach executes a program in a debugger, an emulator
or an execution environment which extract information from the execution
process. This approach enables an analysis without the modification of a
target program. If the integration of the method with a debugger is important,
this approach is suitable.

Java Virtual Machine Tool Interface [85] approach is similar to the customized
debugger approach since the Java Virtual Machine is one execution environ-
ment. An advantage of this approach is very inexpensive to implement a tool
since developers have to implement only a monitoring tool which records
the data from the Java Virtual Machine. Although this approach depends on
Java Virtual Machine specification, this interface is convenient.

The above approaches are usually a pair of the process which inserts code and
the inserted code. The inserting process is required to be updated when the spec-
ification of a target language is updated. If a pair of the process and the inserted
code is strongly coupled, updating such dynamic analysis tool is a hard task since
the developer needs to update all rules included in the dynamic analysis correctly.

The proposal of this paper is modularizing dynamic analysis as an aspect using
AOP. This approach stands on a point of view to divide the method and the anal-
ysis module in order to make the analysis module reusable and easy-to-maintain.
Aspect-oriented approach is similar to using a generic translator for a target lan-
guage and a translation program. However, such a generic translator approach uses
a meta-programming language to describe syntactic translation for code insertion.
Aspect-oriented approach uses the base level language to write an aspect. A seman-
tic translation by an aspect weaver is based on a join point model which abstracts
the dynamic behavior of a program [32].
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1.3.2 Assertion

Assertion checking is powerful, practical, scalable and simple to use. Assertion
is effective to detect software faults during debugging, testing and maintenance
[62]. Assertion also supports developers in understanding the software because it
documents the behaviors of a component and effectively prevents developers from
depending on implementation details of the component [47].

Practical programming languages such as Java, C and C++ have assert as a
language construct, a function of the standard library, or a macro of a preprocessor.
Assertion describes a condition which should be true such as consistency of data
structure and the range of a variable in a complex algorithm. The behavior of
assert(expr) statement is shown as follows.

assert(true) → do nothing
assert(false) → throw a runtime exception

Design by Contract [50] is one of the most famous approaches to design a
component using assertion checking effectively. Design by Contract improves ro-
bustness of software by specifying the behavior of a component based on precon-
ditions and postconditions for each method of components. Preconditions specify
the range of a parameter and the state of a component which must be satisfied be-
fore the method of the component is used. Postconditions specify the range of a
result value and the state of a component satisfied after the method call. In short,
preconditions protect the called component from illegal calls, and postconditions
protect the caller against erroneous implementations, respectively [64]. Design by
Contract also defines class invariants as common pre/post-conditions for all meth-
ods.

A simple way to implement Design by Contract is inserting appropriate asser-
tion statements into the beginning and the end of the method in order to check pre-
conditions and postconditions for the method. While Eiffel and other several lan-
guages provide language constructs to directly support Design by Contract, several
behavioral specification languages and tools are proposed for existing language.
For example, Larch [21] family includes a tool for C++. JML [87] and jContractor
[30] are proposed for Java. They provide language constructs or class library to
represent first order logic in order to improve expressiveness of assertions. The
pre/post-conditions for each method are written in the comment of each method or
in an external module.

We show an example of pop operation of a stack component in Figure 1.2.
This method fails with IndexOutOfBoundsException at the operation of
implementation.remove(-1) when a user calls this method for an empty
stack. However, the user cannot judge the failure is caused by a defect of the
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java.util.Vector implementation;

public Object pop(Object o) {
// Return a last element of a vector.
return implementation.remove(implementation.size()-1);

}

Figure 1.2: Pop operation of a stack component

requires !this.isEmpty();
ensures \result ==

\old(this.implementation.lastElement());
ensures this.implementation.size() ==

\old(this.implementation.size()-1);

Figure 1.3: Contract for pop operation of a stack component

stack or a misuse of the stack since there are no explicit information about the
responsibilities of the stack.

Figure 1.3 is the contract for the pop method written in JML. This example
fragment is a simplified version of the specification of java.util.Stack provided by
JML Project [88]. This contract explicitly prohibits the user from calling the pop
method for an empty stack. Advantages of Design by Contract are shown as fol-
lows.

• The contract throws an exception when the method is called for an empty
stack instead of when the remove statement is executed. Stopping a pro-
gram before its execution for erroneous input contributes to keep the integrity
of important data structure.

• A user can easily judge the cause of a failure. The failure is caused by a
misuse of a component when its precondition is not satisfied. The failure
is caused by a defect of a component when an exception is thrown by the
component even if the user satisfies the precondition of the method.

• Contract is a part of reliable interface document of a component. While the
external documentation of a component tends to become obsolete during the
software evolution process, a user can check whether the contract is valid or
not at runtime of the program.
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Assertions usually document the behavior of one component. Although asser-
tion has great ability to represent constraints for a component, it is hard to handle
and document properties held in interactions among objects since such assertion
statements are spread across the modules.

An example which shows a limitation of traditional assertion is a constraint of
“one subject-to-many observers” relationship for Observer pattern [16]. A devel-
oper can reuse the usual Observer pattern which models many-to-many relationship
for an observer pattern instance with one-to-many constraint since many-to-many
implementation covers one-to-many usage. In this case, the developer needs to
write assertions in order to prevent an observer from being attached to several sub-
jects. However, it is a hard task for the developer to describe such assertions for
that purpose in a modularized manner since an observer has no variable which
represents how many subjects the observer attaches to. So the developer needs to
add a field containing an attached subject to Observer and modify Subject to check
and update the field when an observer is attached. The scattered code damages
modularity and maintainability of the components.

The proposal of this paper is modularizing crosscutting assertions in an aspect.
Since assertion is useful information for developers and program analysis tools,
improving modularity of assertion is important.

1.4 Complexity of Aspect-Oriented Programming

Although aspect-oriented modularization is extremely useful, AOP brings two prob-
lems named “fragile base-code problem” and “inter-aspect problem”. This section
explains these problems caused by aspects which are loosely coupled with a base
program via join point model.

1.4.1 Fragile Base-Code Problem

Component developers unaware of extensions to the component developed by its
users may produce a seemingly acceptable revision of a base class which may dam-
age its extensions [52]. This problem is known as fragile base-class problem since
an extension of a base class means a subclass in object-oriented programming. In
aspect-oriented programming, this problem is called as fragile base-code problem
since the code in a system is categorized into two parts, base-code, or classes rep-
resenting core functional code, and aspects extending the base code.

A typical example of the problem is that renaming classes, methods or fields
influences matching semantics of call, execution, get/set and other pointcuts when
the names of classes, methods or fields are used in pointcut declaration [40]. A
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developer is required to update aspects after the developer modified base-code.
To tackle this problem, Pointcut Delta Analysis [40] and Aspect-Aware Refac-

toring [22] are proposed. Pointcut Delta Analysis lists the difference of join points
between base code and new revision of the base code for developers. Aspect-Aware
Refactoring adds the update of relevant pointcuts to usual refactoring process in
order to ensure that a developer updates pointcuts. Although these approaches par-
tially solve the problem, further research is needed in this area.

1.4.2 Inter-Aspect Problem

Inter-aspect problem is caused by multiple aspects [55].

(a) Multiple advices may be executed at the same join point. An execution se-
quence of advices may affect the result of calculation. An example is a
pair of Logging aspect and Parameter Validation aspect. When a method
is called, Logging aspect outputs the method name, and Parameter Valida-
tion checks the input parameter and throws an exception if the parameter
is invalid. When the parameter validation aspect throws an exception, the
output depends on whether or not the logging aspect is executed before the
parameter validation.

(b) An advice may overwrite the data of the base code in order to implement
an aspectual behavior. For example, an Encryption aspect which encrypts
all strings in a database system damages keyword search function in the
database since the keyword search compares keywords and strings in the
database but the keywords are incomparable with the encrypted strings [7].

(c) An advice may be activated during another advice execution. In such a case,
an aspect may change the behavior of another aspect. When two advices
are activated during an execution of each other advice, the advices cause an
infinite loop.

Douence et al. takes a formal approach for problem (a) to check whether the
aspects are independent on each other or not [13]. A program analysis for aspect-
oriented program proposed and discussed in this paper focuses on problem (b) and
(c).

1.5 Research Overview

In this research, we have discussed effectiveness of two development aspects mod-
ularizing dynamic analysis and assertion crosscutting objects. Although these as-
pects and other aspect proposed by researchers [58, 70] are effective to improve
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software modularity and maintainability, fragile base-code problem and inter-aspect
problem caused by aspects might reduce the maintainability of software. There-
fore, we have proposed an extension of program slicing for aspect-oriented pro-
gramming in order to support software maintenance, and have shown effective-
ness of program slicing through an experiment of debugging an aspect-oriented
program including multiple aspects which are causing inter-aspect problem. Al-
though Aspect-Oriented Programming brings new problems, developers can have
the advantage of Aspect-Oriented Programming supported with program analysis
techniques.

1.5.1 Dynamic Analysis for Program Slicing Using Aspect-Oriented
Technique

Chapter 2 describes effectiveness of modularizing dynamic analysis implementa-
tion. In a case study, a program slicing system which uses dynamic information
including method calls and inter-procedural data flow is developed. The dynamic
analysis aspect written in AspectJ achieved better maintainability and readability
than the dynamic analysis tool developed by traditional approach.

1.5.2 Modularization of Assertions Crosscutting Objects

In Chapter 3, effectiveness of modularizing assertion is discussed. Although asser-
tion is well-known practical tool to improve robustness and predictability of com-
ponents, assertion spreads across components when a developer specifies inter-
component properties. The assertion crosscutting objects damages the encapsu-
lation of the components. Taking Observer pattern with an inter-component con-
straint as an example, we have compared an aspect-oriented assertion module using
a simple aspect-oriented language with a traditional implementation. The result
shows that the aspect-oriented approach improves modularity of the system and
that the approach is promising for various situations.

1.5.3 Debugging Support for Aspect-Oriented Program Based on Pro-
gram Slicing and Call Graph

Chapter 4 describes a development support based on program slicing technique
extended for aspect-oriented program. Although aspect-oriented programming is
useful, inter-aspect problem and fragile base-code problem are risky for developers
when the developers introduce AOP into their product process.

There is not enough development support for AOP yet since several tools used
in object-oriented programming is not directly applicable to AOP. For example,
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Lopes et al. pointed out that unit-testing tool like JUnit [89] cannot be applied to
AspectJ unit-testing [73].

Program slicing is a basic program analysis technique which is applicable to
various tools including debugging support, impact analysis and program under-
standing. Therefore, we have extended program slicing for aspect-oriented pro-
gramming by defining a rule to convert an aspectual behavior to an object behavior
to handle aspects in traditional program slicing method. We have implemented the
program slicing tool and conducted an debugging experiment. As a result, the pro-
gram slicing for AOP is useful for developers to debug an AOP program including
multiple aspects.
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Chapter 2

Dynamic Analysis for Program
Slicing Using Aspect-Oriented
Technique

2.1 Introduction

Aspect-oriented programming aims to modularize crosscutting concerns in aspects.
Since dynamic analysis recording program execution affects over all target pro-
gram, dynamic analysis is a typical crosscutting concern. In this chapter, we ap-
ply aspect-oriented programming to develop a program slicing tool using dynamic
analysis in order to show the effectiveness of aspect-oriented programming.

Program slicing is a very promising approach to localize faults efficiently in
a program [74]. By definition, program slicing is a technique which extracts all
statements that may possibly affect a certain set of variables in a program. The set
of all extracted statements is called a program slice.

In recent software development, a programmer uses not only procedural lan-
guages like C and Pascal but also object-oriented languages like Java [18] and
C++ [67]. Object-oriented programs have many dynamically-determined elements
since object-oriented languages introduce new concepts including class, inheri-
tance, dynamic binding and polymorphism [6]. In the slice calculation process,
such dynamic elements affects the size of a program slice since a program slice
should include all statements which are possibly executed. Dynamic analysis ob-
serving program execution is effective to remove statements which are not actually
executed. Dependence-Cache (DC) slicing combines dynamic data dependence
analysis and a static control dependence analysis in order to calculate accurate
slices with lightweight costs [5, 68]. Ohata et al. extend DC slicing method for

15



object-oriented languages [53].

To implement DC slice calculation tool for Java, how to analyze dynamic data
dependence is an important issue. A dynamic analyzer observes a target program to
collect information about dynamic data dependence. Such dynamic analysis cannot
be encapsulated in a single module in traditional programming language. Instead,
inserting dynamic analysis code into a target program has been implemented as a
pre-processor [53], or as a customized Java Virtual Machine (JVM) [38]. However,
maintaining rules inserting code is difficult in the former approach since the rules
are implemented in complex meta-programming, the latter approach is expensive
to maintain the system since JVM must be re-customized when new versions are
released.

On the other hand, aspect-oriented programming proposes a new module unit,
or aspect, for encapsulating crosscutting concerns such as logging and synchro-
nization [34]. Modularizing dynamic analysis for DC slicing in an aspect seems a
natural usage of AOP since the dynamic analysis is a crosscutting concern. How-
ever, effectiveness of AOP is not clear. In this chapter, we introduce AOP for en-
capsulating dynamic analysis into an aspect to examine its effectiveness. We have
implemented a DC slice calculation system using AspectJ [80], and conducted an
experiment to evaluate the usefulness of our approach compared with a customized
JVM approach. As a result, we confirmed that the AOP approach can greatly re-
duce the effort required for implementing dynamic analysis.

The structure of this paper is as follows: Section 2.2 describes the DC slicing.
Section 2.3 presents a brief overview of Aspect-Oriented Programming and our
approach to DC slice calculation using AOP. In Section 2.4, the implementation of
DC slicing tool is presented. Section 2.5 evaluates the proposed method, compares
our method with the customized JVM approach and discusses about experimental
results. Section 2.6 summarizes the results and discussions.

2.2 Program Slicing

Program slicing is a promising approach for program debugging, testing, and un-
derstanding [74]. Given a source program p, a program slice is a collection of
statements possibly affecting the value of slicing criterion (in the pair <s, v>, s is
a statement in p, and v is a variable defined or referred to at s). Although many slice
calculation algorithms have already been proposed, we use a program dependence
graph (PDG) in this research [54].
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2.2.1 Program Dependence Graph

A PDG is a directed graph whose nodes represent statements in a source program,
and whose edges denote dependence relations (data dependence or control depen-
dence) between statements. An edge drawn from node Vs to node Vt represents
that node Vt depends on node Vs. PDG also includes special nodes which repre-
sent method call and parameter passing [71].

Control dependence and data dependence are defined as follows.

Control Dependence (CD) Consider statements s1 and s2 in a source program
p. When all of the following conditions are satisfied, we say that a control
dependence (CD), from statement s1 to statement s2 exists if:

1. s1 is a conditional predicate, and

2. the result of s1 determines whether s2 is executed or not.

This relation is written by CD(s1, s2).

Data Dependence (DD) When all of the following conditions are satisfied, we
say that a data dependence (DD), from statement s1 to statement s2 by a
variable v, exists if:

1. s1 assigns a value to v, and

2. s2 refers to v, and

3. at least one execution path from s1 to s2 without re-defining v exists
(we call this condition reachable).

This relation is denoted by DD(s1, v, s2).

The program slicing calculation consists of the following four phases:

Phase 1: Defined and Referred Variables Extraction
We identify defined variables and referred ones for each statement in a source
program.

Phase 2: Data Dependence Analysis and Control Dependence Analysis
We extract data dependence relations and control dependence relations be-
tween program statements.

Phase 3: Program Dependence Graph Construction
We construct a PDG using dependence relations extracted in Phase 2.
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Phase 4: Slice Extraction
We calculate the slice for slicing criterion specified by a user. In order to
calculate the slice for a slicing criterion <s, v>, PDG nodes are traversed in
reverse order from Vs corresponding to statement s. The program slice is the
statements corresponding to the nodes which are reachable to the criterion
node via control/data dependence path in PDG.

We can obtain sufficient information about control dependence from static
analysis. However, in static analysis, information about data dependence contains a
redundant part because we analyze all execution paths, including paths which may
be never executed. If we use program slicing for debugging and program under-
standing, analyzing detailed information about one program execution path with a
specific input is effective. Dependence Cache (DC) slicing has been proposed to
realize such a requirement [5, 53, 68].

In DC slice calculation, the data dependence analysis is performed during pro-
gram execution, and the information of dynamically determined elements is col-
lected. Control dependence is analyzed statically from the source code since a
high cost is needed to analyze control dependence during program execution. DC
slicing requires a reasonable cost for the calculation of practical programs.

2.2.2 Dynamic Data Dependence Analysis for DC Slicing

When a value is assigned to variable v at statement t and the value of variable v is
referred to at statement s, dynamic data dependence (DD) relation about v from t
to s can be extracted if we can resolve v’s defined statement t. We create a Cache
Table that contains all variables in a source program and the most-recently defined
statement information for each variable. When variable v is referred to, we extract
a dynamic DD relation about v using the Cache Table. The following steps show
the extraction algorithm for dynamic DD relations.

Step 1: We create a cache C(v) for each variable v in a source program.
C(v) represents the statement which most recently defined v.

Step 2: We execute a source program and conduct the following processes on each
execution point.
In executing statement s,

• when variable v is referred to, we draw a DD edge from the node cor-
responding to C(v) to the node corresponding to s about v, or

• when variable v is defined, we update C(v) to s.
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1: a[0] = 0;
2: a[1] = 1;
3: a[2] = 2;
4: a[3] = 2;
5: a[4] = 2;
6: read(c);
7: b = a[c] + 5;

Figure 2.1: Example program using array

Table 2.1: Cache transition of Figure 2.1

Statement
number a[0] a[1] a[2] a[3] a[4] b c
executed

1 1 - - - - - -
2 1 2 - - - - -
3 1 2 3 - - - -
4 1 2 3 4 - - -
5 1 2 3 4 5 - -
6 1 2 3 4 5 - 6
7 1 2 3 4 5 7 6

For example, Figure 2.1 is a program using an array. Table 2.1 shows the
transition of cache C(v) of each variable v at each statement when the program is
executed with input c = 0.

The table becomes C(a[0]) = 1, C(a[1]) = 2, C(a[2]) = 3, C(a[3]) = 4, C(a[4])
= 5 and C(c) = 6 when statement 6 is executed. When variable a[0] is referred to
at statement 7, data dependence DD(statement1, a[0], statement7) is extracted
because statement 7 refers to a[0] and C(a[0]) = 1.

Figure 2.2 shows an example of the DC slice. This DC slice with input = “inc”
and slice criteria = (d) is the part contained in rectangles (a)..(f) of Figure 2.2.
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class Count {

  public static void main(String[] args) {
    if (args.length == 0) {
      System.out.println("java Main [sft|inc]");
      return;
    }

    Counter counter;
    boolean isIncrementCounter = false;
    if (args[0].equals("inc")) {
      counter = new IncrementCounter();
      isIncrementCounter = true;
    } else if (args[0].equals("sft")) {
      counter = new ShiftCounter();
    } else return;

    int x = 0;
    for (int i=0; i<1000; ++i) {
      counter.proceed();
      x = counter.value();
      if (x > 1000) break;
      System.out.println(x);
    }

    String result;
    if (isIncrementCounter) {
      result = "increment counter = ";
      result = result + Integer.toString(x);
    } else {
      result = "shift counter = ";
      result = result + Integer.toString(x);
    }
    System.out.println(result);
  }
}

abstract class Counter {
  private int count = 1;
  public Counter() {}
  public int value() { return count; }
  public void proceed() { count = newValue(count); }
  abstract protected int newValue(int old);
}

class IncrementCounter extends Counter {
  protected int newValue(int old) {
    return old + 1;
  }
}

class ShiftCounter extends Counter {
  protected int newValue(int old) {
    return old << 1;
  }
}

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.2: Source program and DC slice example (slice criteria = (d), input =
“inc” )
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Table 2.2: Pointcut Designators of AspectJ

type of join point representations
call A method or a constructor is called.
execute An individual method or

a constructor is invoked.
get A field of object is read.
set A field of object is set.
handler An exception handler is invoked.

2.3 Dynamic Analysis Using Aspect-Oriented Program-
ming

The DC slice calculation requires dynamic program information. Although various
ways exist in implementing the dynamic analysis, each way requires a high cost in
implementation or in runtime.

2.3.1 Aspect-Oriented Programming

The goal of Aspect-Oriented Programming (AOP) is to separate concerns in soft-
ware. While the hierarchical modularity of object-oriented languages is extremely
useful, they are inherently unable to modularize crosscutting concerns, such as
logging and synchronization. AOP provides language mechanisms that explic-
itly capture the crosscutting structure. Encapsulating the crosscutting concern as a
module unit aspect, which is easier to develop, maintain and reuse is possible. As-
pects separated from an object-oriented program are composed by Aspect Weaver
to construct the program with a crosscutting structure.

AspectJ is an aspect-oriented extension for Java [80]. AspectJ provides lan-
guage constructs to write aspects. Join points are well-defined points in the ex-
ecution of the program. The programmer chooses collections of join points as
pointcuts, and defines a method-like construct named advice, which is an addi-
tional behavior at the join points. Examples of join points which programmer can
use are shown in Table 2.2. Advice can be united by three types of forms, before
(immediately before join points), after (immediately after), and around (before and
behind).

The AspectJ compiler is an Aspect Weaver, which composes objects and as-
pects at source code level. AspectJ generates normal Java code, which includes
aspects. Since AspectJ knows where an aspect is built in, The AspectJ compiler
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aspect LoggingAspect {

  pointcut AllMethodCalls(): 
    !within(LoggingAspect) &&
    call(* *.*(..));

  pointcut MethodExecs():
    !within(LoggingAspect) &&
    execution(* somepackage.*.*(..));

  static Stack callStack = new Stack();
  static JoinPoint lastCall = null;

  Object around(): AllMethodCalls() {
    callStack.push(thisJoinPoint);
    lastCall = thisJoinPoint;
    proceed(); // execute original call
    lastCall = callStack.pop();
  }

  before(): MethodExecs() {
    if (lastCall != null) {
      Logger.logs("executed",
        lastCall.getSignature(), 
        lastCall.getSourceLocation(),
        thisJoinPoint.getSignature(),
        thisJoinPoint.getSourceLocation());
    }
  }
}

Figure 2.3: The aspect which records dynamic bindings

can generate codes accessing the contextual information such as the signature of
methods and the position in the source code for each join point.

2.3.2 Example of an Aspect

Here, an aspect which records dynamic bindings is shown in Figure 2.3, as an
example of the aspect. This code records how dynamic bindings are resolved.
Whenever a method is called, it records a signature of the method to be invoked
and actually executed.

On one hand, if the aspect is not available, we have to insert code which records
method invocation to the overall the program. On the other hand, since we can use a
character “*” for pattern matching with a class name or a method name in AspectJ,
an aspect becomes a small and simple module.
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2.3.3 Dynamic Analysis of Program Execution

Dynamic analysis is used for various program purposes [1, 42, 53, 60, 75]. In the
past, the following methods of dynamic analysis have been used for Java programs:

(a) Using a preprocessor to insert analysis operations into the target program [53].

(b) Using Java Virtual Machine Profiler Interface (JVMPI) to collect dynamic
information [42].

(c) Using Java Debugger Interface (JDI) [84] to collect dynamic information.

(d) Using customized Java Virtual Machine for dynamic analysis [38].

In method (a), the preprocessor and conversion rules on an abstract syntax tree
are made to insert operations for analysis in the target program. However, mak-
ing generic conversion rules is difficult because of complex language factors. For
example, a code fragments for logging should be generated for each method call
appeared in a program. However, it is a complex meta-programming since multi-
ple method calls can be appeared in one expression. On the other hand, problems
of maintainability and reusability of a preprocessor exist, as well as conflict with
other preprocessors. Therefore, implementing and maintaining the preprocessor is
costly.

In (b), JVMPI is used to observe program execution. JVMPI is an interface of
JVM used for profiling the CPU and for memory usage. JVM makes it possible
to collect detailed events on program execution (e.g. method call, thread control,
memory allocation and garbage collection). However, an overhead that JVM gen-
erates the events is expensive. Also, an analyzer using JVMPI must process events
which are asynchronously generated. When an analyzer causes an error, both the
analyzer and the JVM are aborted. Therefore, debugging the analyzer itself is dif-
ficult.

In (c), JDI is used to observe program execution. JDI is an interface with
libraries used to implement a debugger. A program using JDI communicates with
the Java Virtual Machine Debugger Interface (JVMDI) of JVM, which executes
a program being debugged. JVMDI is a similar interface to JVMPI. A debugger
program can set breakpoints, receive events such as field accesses and method
calls, and receive stack frame information at each breakpoint. However, a debugger
communicates with a target JVM by a socket, and frequently blocks the execution
of a program to get information from the JVM. Consequently, JDI requires a high
runtime cost. Although using JVMDI directly is possible, similar problems to the
JVMPI approach arise.
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(d) is a method that customizes JVM to observe and analyze program execu-
tion. An advantage of this method is that JVM can access all information in a Java
runtime environment. However, JVM customization depends on its implementa-
tion. Whenever a new version of JVM is released, it must be re-customized.

In the AOP approach, a dynamic analysis aspect can be composed based on
a join point model, which is more abstract than conversion rules for syntax tree.
The aspect approach achieves good modularity, maintainability and reusability.
The approach also achieves complex handling of control elements, such as multi-
threading and exception in a well-organized way. Moreover, AspectJ composes
the source codes of objects and aspects, and does not depend on implementation
of a specific JVM. Since a program linked to the aspect becomes a standard Java
program, debugging the aspect using a small test program and a debugger for Java
is easy.

2.3.4 Dynamic Analysis Using AspectJ

In AspectJ, an aspect can access contextual information, e.g., a position of a join
point, the signature of a method being called or the field being accessed. The
dynamic analysis aspect can be written using this feature of AspectJ.

An algorithm of the data dependence analysis and polymorphism resolution
based on AspectJ join point model is described as follows.

Data Dependence Analysis

When new value is set to a field: The aspect logs the signature of the field,
and the position of the assignment statement.

When a field is referred to: The aspect receives the statement information
of the last assignment to the field, and logs a data dependence relation
from the assignment to the reference.

Polymorphism Resolution

When a method is called (before call): The aspect pushes the method sig-
nature and the position of calling into a call stack prepared for each
thread of control.

When a method is invoked (before execution): The aspect checks the top
of the call stack, and generates a call edge from the caller to the actually
invoked method.

After a method call: The aspect removes the top of the call stack.

When an exception is thrown: The aspect removes the top of the call stack.
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public aspect DataDependsAnalysisAspect {

  pointcut target(): 
    !within(slice.aspect.*);

  pointcut exclude():
    within(somepackage.*);

  pointcut field_set():
    target() && !exclude() &&
    (set(* *) || set(static * *));

  pointcut field_get(): 
    target() && !exclude() &&
    (get(* *) || get(static * *));

  FieldDef def = new FieldDef();

  before(): field_set() {
    def.put(
      thisJoinPoint.getTarget(),
      thisJoinPoint.getSignature(),
      thisJoinPoint.getSourceLocation());
  }
  before(): field_get() {
    SourceLocation setpos = 
      def.get(thisJoinPoint.getTarget(),
              thisJoinPoint.getSignature());
    Logger.logDataDepends(
      thisJoinPoint.getTarget(),
      thisJoinPoint.getSignature(),
      setpos,
      thisJoinPoint.getSourceLocation());
  }
}

Figure 2.4: A piece of the implementation of dynamic data dependence analysis
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A piece of code where the dynamic data dependence analysis is implemented
is shown in Figure 2.4. A polymorphism resolution is a multi-threaded extension
of the code shown in Figure 2.3.

The dynamic analysis aspect uses a wildcard of AspectJ to analyze all assign-
ments and references for each field. In this implementation, we can add the aspect
into the target program without any changes of the aspect. If we do not want to
analyze certain classes in the target program, writing a new sub-aspect inherited
from the dynamic analysis aspect is possible.

The aspect keeps the original behaviors of the program. When the aspect is
linked into the program, the control flow and the data flow are modified. However,
since the aspect only reads data of the program without modifying such data, the
data flow is not affected. Also, the aspect handles objects using weak reference
so as not to affect the lifetime of objects. On one hand, weak reference is an
available mechanism in Java, which does not prevent the weak-referenced object
from being collected as garbage. On the other hand, since the control flow that is
simply modified by the aspect may cause an infinite loop, an effort which prevents
causing a loop is required. We will discuss this issue in Section 2.4.4.

2.4 Implementation

2.4.1 DC Slicing Tool

We have implemented a dynamic analysis module using AspectJ, and have then
developed a DC slice calculation system for Java. Figure 2.5 illustrates the system
overview.

Using this system, a user can calculate a DC slice through the following steps:

Step 1: The AspectJ compiler weaves the target Java program and the dynamic
analysis aspect.

Step 2: The program is executed as usual in a Java program. The dynamic analysis
aspect in the program generates a file containing dynamic information of the
program execution.

Step 3: The DC slice calculation tool is executed with the source code of the
target program and a dynamic information file which is generated by Step 2.
The tool extracts static information from the source code, constructs PDG,
and then opens a window of a source code viewer.

Step 4: The slice criterion is specified and the DC slice is viewed via a graphical
user interface.

26



Target Program (Java)

AspectJ

Java Bytecode
(Aspect Woven)

Java Virtual Machine

Normal
Result

Analysis
Result

PDG

Source Code Viewer
(GUI)

User

slice criterion DC Slice

Dynamic Analysis Aspect

PDG Constructor

Figure 2.5: DC slicing system

2.4.2 Static Analysis Supplement

In AOP, an aspect may be limited by usable join points and by the applicable op-
eration to the join points. The join points of AspectJ do not include local control
structures (e.g. if, while, for statements), nor does AspectJ allow access to local
variables. Such fine-grained join points are rarely required to improve separation
of concerns.

Although the usual dynamic analysis requires the observation of the behavior
of all variables and control structures, we cannot implement the proper dynamic
analysis in AspectJ. Instead, we statically collect information about local variables
and control structures for the compensation. This approach seems sufficient be-
cause the data dependence of local variables and the execution paths of local con-
trol structures are limited, and they are only affected slightly from dynamically
determined elements in OOP. In section 2.5.2, we will discuss this issue based on
the result of experimental evaluation.
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2.4.3 Analysis of Libraries

Since AspectJ links the aspects to a target source code, AspectJ cannot link them
into library classes. In this case, the library classes indicate reusable components
which are not included as source codes.

In this research, libraries are excluded from analysis for the following reasons:

Library classes are reliable. Since library classes are repeatedly reused, it can be
assumed that defects in the libraries are already removed. Therefore, we do
not need to conduct a detailed analysis into the library classes.

Amount of code of library is numerous. The cost of the dynamic analysis of li-
braries is generally higher than for the main program.

When a program uses callback from the library, a hidden dependence via the
library might be caused. This dependence can be extracted by the dependence
analysis at bytecode level [38].

However, even if we use the bytecode analysis, a dependence analysis to im-
portant objects, such as file I/O and basic data structures, is unavailable because of
the limitations in the Java language described in Section 2.4.4. Therefore, we cope
with the problem by using static analysis.

When a program calls a method in a library, the aspect receives only informa-
tion from the caller method since the aspect is not attached to the library. Then,
the aspect extracts a virtual data dependence relation between a call statement and
a return value. We assume that a return value of the called method is usually af-
fected by the parameters of a call. Also, if another method is called back from a
library, the aspect receives only information of the called method. Then the aspect
extracts a virtual control dependence relation between the last call to a library and
the called method.

2.4.4 Loop Caused by Aspect

Although AspectJ has an advantage that allows programmers to easily write aspects
in Java, AspectJ causes dependence relations from the dynamic analysis aspect to
classes used to record dynamic information. Therefore, if the aspect is built into
such classes, the aspect and classes might cause a loop.

Figure 2.6 shows an example of such a loop. In Figure 2.6, the aspect operates
by corresponding to a method call Foo.getX. The aspect calls Foo.hashCode to
get the hash code of the object, and calling Foo.getX occurs in Foo.hashCode.
Solving the problem that the aspect and classes cause a loop is not possible in Java
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Aspect onMethodCall

Foo.getX()

4.call
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3. require Hashcode

caller

1. call
2. activate

Foo.HashCode()

Figure 2.6: An example of a loop caused by an aspect

Table 2.3: Target programs

Program # of classes Size (LOC)
P1 Simple database 4 262
P2 Sorting 5 228
P3 DC slice calculation 125 16207

language. Only the approach such as the customized JVM approach can solve this
problem.

Since we have implemented the data analysis module using a Java standard
library, a loop might be caused if the target program has the methods called from a
standard library. Since we use only a hash table and an output stream in a standard
library, two methods are called from the library. One method is Object.toString,
which is a method that converts an object into a character string to make data
readable. Another method is Object.hashCode, which is a method that calculates
the hash code for fast access to data structures. Avoiding the loop is possible by not
weaving the aspect into these methods. This implementation causes a decrease in
the completeness of the information, but we consider that this incompleteness does
not influence practical use because these methods are only used to store objects
to a certain data structures, such as the hash table, and these methods are usually
independent on the other part of the program.
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Table 2.4: Slice size [LOC]

Slice criterion Customized JVM Aspect Aspect/JVM
S1 (P1) 29 36 1.24
S2 (P2) 28 50 1.79
S3 (P3) 708 839 1.19

2.5 Experimental Evaluation

2.5.1 Overview

We have compared the DC slice system with the system developed using the cus-
tomized JVM approach [38] in order to evaluate the proposed DC slice system.
The evaluation stands on the viewpoint of implementation cost, modularity of the
dynamic analysis and quality of resulted program slice since a customized JVM ap-
proach analyzes Java bytecode and extracts data dependencies even in the libraries.

In the evaluation, we have used the programs shown in Table 2.3 as the input
of the systems. P1 is a simple database program which contains few elements of
the object-oriented language. P2 is a program which uses polymorphism to switch
sorting algorithms. P3 is the DC calculation system presented in this paper. The
calculation system includes many features of Java, such as polymorphism, classes
and package hierarchies, exception handling, and interactive user interfaces.

We have executed each program once with certain input data, and calculated
the DC slice for arbitrary slice criterion.

In Section 2.5.2, we evaluate and discuss DC slice size. In Section 2.5.3 and
2.5.4 we also discuss time cost and module size necessary for DC slice calculation.

2.5.2 Slice Size

Here we compare the two slicing tools from the viewpoint of resulting slice size.
Table 2.4 shows the size of DC slice for slice criterion S1 in P1, S2 in P2, and S3
in P3. Since each program outputs a set of data to file or GUI, the slice criterion is
chosen from the variables referred at an output statement.

The DC slices calculated by both systems included the correct DC slice that is
obtained manually, but they also included redundant statements. The difference of
the slice size shows the difference of correctness.

In our approach, we have to statically analyze the target program to collect in-
formation about local variables and local control structures. Therefore, statements
which are possibly dependent but are actually independent of the slice criterion
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included in the slice result. For example, assume that there are some conditional
clauses in the program and one of them is not executed because the corresponding
conditional predicate is not satisfied. Then, the statements not executed in the con-
ditional clause are included in the result of our approach, but excluded from the
result of customized JVM approach.

On one hand, for the program P1 with a slicing criterion S1, the DC slice sizes
of the customized JVM approach was 29 lines of code (LOC) and the size of our
approach was 36 LOC, respectively. No substantial difference exists because the
program size of P1 is small and does not include the characteristics of an object-
oriented program.

On the other hand, for the program P2 with a slicing criterion S2, the size of our
approach became about twice the size of the customized JVM approach. Program
P2 is small but contains several methods which use many local variables and nested
control structures.

The difference is not huge for a program P3 with a slicing criterion S3, although
the size of P3 is much larger than the other programs, P1 and P2. Program P3 is
skillfully decomposed into modules with proper sizes, and each method has a few
local variables and simple control structures.

As we expected, the result shows that the size of the DC slice of our approach
is larger than the slice of the customized JVM approach for programs that include
many local variables and local control structures. However, for the size of the target
program (especially P3), the difference of the resulting slice size between the two
approach is insignificant.

This is because our approach uses dynamic information such as a method call
and a field reference. Even if statements never executed are included in a slice
using static information, a method called from such statements is excluded from
the slice since no dynamic information for the statements is available.

Removing never executed statements from a slice using the information of a
control flow and lack of dynamic information for the statements is a future work.

2.5.3 Analysis Cost

Here we evaluate the time necessary for calculating the DC slice. Table 2.5 shows
the time needed to execute the Java program with a normal JVM, with a customized
JVM, and the program to which dynamic analysis aspect has been attached with
a normal JVM (our approach) for the same input. These values are measured in a
JIT disabled environment. The execution time with enabled JIT is shown in Table
2.6.

In general, our approach shows better performance than the customized JVM
approach. We believe that the cost of a dynamic analysis of the local variables is
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Table 2.5: Execution time (JIT disabled) [sec.]

Target program Normal Customized JVM Aspect
P1 0.18 1.8 0.26
P2 0.19 2.8 0.39
P3 1.2 81.0 10.3

Table 2.6: Execute time (JIT enabled) [sec.]

target program Normal Aspect
P1 0.24 0.34
P2 0.24 0.41
P3 1.1 9.9

very expensive, because of infrequent use of the library in P1 and P2. Moreover, in
P3, analyzing internal processing in the library required further cost. As program
size becomes larger, analysis cost must increase further because more libraries are
used.

Our aspect approach has the advantage that we can use a JIT compiler to im-
prove performance. In small programs such as P1 and P2, performance of the
program without optimization by JIT compiler is better, because the optimization
is not effective in this case. However, in a practically-large scale program like P3,
the JIT compiler is very effective to improve performance. Although the effect
of the JIT compiler varies with runtime environment, JIT makes a crucial differ-
ence on system performance [86]. Improving performance is paramount because a
program is executed repeatedly in the debugging process.

2.5.4 Effort to Implement the Slicing Tool

In this section, we examine the effort of implementing the slicing tool. The size of
the dynamic analysis module implemented as an aspect is about 400 lines of code
(LOC). The total size of DC slice calculation tool reached about 16,000 LOC in
Java.

In our approach, the aspect is described in the viewpoint of the join point model
without meta-programming facilities. It results good readability compared with
the pre-processor approach. Moreover, because the aspect is small and simple, the
programmer (user) can easily modify the implementation to adapt each runtime
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environment.
On the other hand, the customized JVM approach needed to add about 16,000

LOC to the JVM and Java compiler, whose total size is about 500,000 LOC [39].
The additional code consists of two parts, dynamic analysis and source code anal-
ysis. The dynamic analysis handles local variables that the aspect does not handle.
The source code analysis extracts a map between source code and byte code. This
map is required to map a node in a program dependence graph to a line in source
code.

Furthermore, the overall program must be re-customized when the original
JVM is updated. Therefore, keeping the customized JVM consistent with the orig-
inal JVM is unrealistic. Our aspect approach, which uses the aspect written once,
is applicable to any platform where the aspect weaver is available. Since AspectJ
is written in Java, the aspects achieve good reusability, much cheaper to implement
than the customized JVM approach.

2.6 Summary

In this chapter, we have examined modularization of dynamic analysis which col-
lects dynamic information for program slicing. We have developed a DC slice
calculation system including a dynamic analysis aspect and evaluated its useful-
ness.

Since we make pointcuts of the aspect in a generic form, the dynamic data
dependence analysis aspect can be woven into various object-oriented programs
without changes. We have improved maintainability and readability of the dynamic
analysis since the aspect is simply defined without meta-programming facilities.

Although we have chosen AspectJ to implement the module, the design of the
dynamic analysis is reusable for other aspect weaver supporting a join point model
which is compatible with the AspectJ model. AspectJ join point model has a lim-
itation that does not allow developers to analyze local variables and local control
structures. If a developer needs fully implemented DC slicing system, the devel-
oper needs an appropriate aspect weaver which supports fine-grained join points.
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Chapter 3

Modularization of Assertions
Crosscutting Objects

3.1 Introduction

Design by Contract [50] provides behavioral specifications including precondi-
tions, postconditions and invariants to improve robustness of software. Precondi-
tions protect the called component from illegal calls, and postconditions protect
the caller against erroneous implementations, respectively [64]. However, they are
hard to handle properties held in interactions among objects because traditional
assertions specify behaviors of one object used by arbitrary clients.

We show one variant of Observer pattern [16] for an example. In the Observer
pattern, observers and subjects are modeled as many-to-many relationship, in other
words, a number of observers may observe one subject and an observer may ob-
serve several subjects. After a developer has implemented the observer pattern, the
developer may reuse the many-to-many relationship code for one subject-to-many
observers relationship because many-to-many implementation covers one-to-many
usage. Although the developer may add assertions to observers and subjects in
order to prohibit attaching an observer to several subjects, the assertions in the
observers and the subjects strongly depend on each other.

This kind of assertions crosscutting objects is caused when a developer assumes
some interaction patterns among the objects. Assertion specifying interactions is a
promising tool for software maintenance since the behavior out of the interaction
patterns expected by the developer may indicate a defect [11]. To use assertions
effectively, we need a method to write assertions in a well-modularized manner
since assertions crosscutting objects are harmful to the maintainability of software.

We propose to modularize assertions crosscutting objects as an aspect using an
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aspect-oriented language. In order to show the effect of modularization, we have
defined a simple language whose pointcuts are a subset of AspectJ and compared
two versions of the observer pattern with the one-to-many constraint in Java and in
our language. As a result, modularized assertion simplifies objects and improves
the maintainability of the objects.

This chapter consists of six sections. In the next section, we present the back-
ground of the research. Section 3.3 describes our proposal modularizing cross-
cutting assertions to aspects. In Section 3.4, we show the difference between our
approach and traditional assertion. In Section 3.5, we discuss software quality af-
fected by our approach, situations to which our approach is applicable and related
work. We draw conclusions in Section 3.6.

3.2 Motivation

Design by Contract [50] improves robustness of software by specifying the behav-
ior of a component based on preconditions and postconditions for each method of
the component. Preconditions protect the called component from illegal calls, and
postconditions protect the caller against erroneous implementations, respectively
[64].

Practical programming languages such as Java and C++ have assert as a
language construct, a function of the standard library, or a macro of a preprocessor.
The behavior of assert(expr) statement is shown as follows.

assert(true) → do nothing
assert(false) → throw a runtime exception

Preconditions and postconditions of a method are regarded as assert state-
ments inserted into the beginning of the method and the end of the method, respec-
tively.

Assertion checking is powerful, practical, scalable and simple to use. Asser-
tion is effective to detect software faults during debugging, testing and mainte-
nance [62]. Assertion supports developers in understanding the software because it
documents the behaviors of a component and effectively prevents developers from
depending on implementation details of the component [47].

Several behavioral specification languages and tools including JML [87], jCon-
tractor [30], Larch [21] and Contract4J [82] are proposed to use assertion effec-
tively. They provide several convenient functions and predicate to improve ex-
pressiveness of assertions. A developer describes properties for each method of a
component using these languages. Gibbs et al. have proposed Temporal Invariants,
or an extension of assertion for temporal properties held in a series of method calls
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1. attach(Observer)
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2. update(Subject)

update();

Subject

Collection 
  observers;
attach();
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notify();

Figure 3.1: Observer Pattern

for one component [17]. On the other hand, Yamada et al. have proposed Moxa,
or an aspect-oriented extension of JML [76]. Moxa provides language constructs
to write common properties to several methods and classes. These approaches ex-
tend assertions to describe a property related to several methods. However, they
are hard to handle properties held in interaction among objects because traditional
assertions specify behaviors of only one object used by arbitrary callers.

We show a variant of Observer pattern [16] for an example. Observer pattern
is an interaction pattern between Observers and Subjects. Figure 3.1 shows the
structure of the pattern. Subject represents an object which has some data, and
Observer represents an object watching subjects. An observer first attaches itself
to a subject by calling the attach method. When the state of a subject is updated,
the subject notifies the attached observers by calling updatemethod of them. The
notified observers call some methods of the subject to get updated information.
An observer calls the detach method of a subject when the observer no longer
need notification message from the subject. Observers and subjects are modeled as
many-to-many relationship in the pattern. In other words, a number of observers
may observe one subject and an observer may observe several subjects.

The assertion is hard to handle inter-object properties since the traditional as-
sertion is described for each class. We discuss a variant of the observer pattern,
a model of one subject-to-many observers relationship in order to show a limita-
tion of the traditional assertion. After a developer has implemented an instance
of the usual observer pattern, the developer can reuse the many-to-many relation-
ship code for one-to-many relationship since many-to-many implementation covers
one-to-many usage. The developer may want to add assertions in order to prevent
an observer from being attached to several subjects. However, it is a hard task for
the developer to describe the assertion for that purpose in a modularized manner
since an observer has no variable which represents how many subjects the observer
attaches to. So a developer need to add a field containing an attached subject to
Observer and modify Subject to check and update the field when an observer is
attached. The scattered code damages modularity and maintainability of the com-
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ponents. We show detailed code in Section 3.4.
We propose to write such crosscutting assertions in an aspect. In Aspect-

Oriented Programming [34], an aspect is a module unit for a crosscutting structure
such as above example. The features of our approach are following:

• Our approach is based on aspect-oriented programming. It is important to
separate crosscutting assertions from objects since assertion is often regarded
as a part of the interface of an object [50]. The crosscutting assertions of
objects affect modularity and maintainability of the objects.

• An aspect-oriented approach also enables developers to separate assertions
into aspects for each purpose. Developers could not group assertions for
each purpose in traditional approaches since traditional assertions are written
for each method of a class. While Moxa also supports developers to group
common properties for several methods, our approach allows developers to
group several properties of classes for each purpose.

• Crosscutting assertions are caused in various situations. For example, devel-
opers write a method along with assumptions for the usage of the method.
The developers usually write such assumptions in a comment such as “This
method foo is to be called from the method bar”. We should assert such as-
sumptions since other developers may accidentally break assumptions when
they reuse the method, and violated assumptions often cause a defect. We
discuss the applicability of our approach in Section 3.5.4.

• Developers can deploy an aspect including application specific assertions to
legacy components. Heineman pointed out that a service should be provided
to enforce local properties specified by components as well as global prop-
erties specified by the application [25].

In the next section, we present the details of our approach.

3.3 Assertion as an Aspect

We propose to modularize crosscutting assertions in aspects. First we discuss lan-
guage constructs which are useful to describe assertion. After the short discussion,
we introduce a new simple aspect-oriented language whose pointcut designators
are a small subset of AspectJ [80] to show basic language constructs to write as-
sertions.

Pre-/post-conditions of a method are checked before/after the method is called
respectively. Therefore, we regard them as before/after advices with a call
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pointcut in AspectJ. When assertions are separated from the objects, the separated
assertions need a way to access context information including a method caller ob-
ject, a callee object, their own fields, method parameters and a return value through
context exposure provided by AspectJ.

Comparing with an aspect implementing some functionality (or non-functional
requirements), an aspect for assertion has following features.

• An aspect observes method call events and often accesses contextual infor-
mation, a caller object and a callee object. So a developer often uses pointcut
designators including call, this, target and args.

• An aspect has utility methods and fields to collect information through sev-
eral method calls.

• An aspect sometimes needs to access private members of the object.

We have developed a simple aspect-oriented language specialized to write an
aspect for assertion based on the above features. Our language provides several
pointcut designators to easily access context information.

We allow a module of our language to include a block written in AspectJ to
declare methods for utility functions and advices handling context information.
We have defined our language to be converted to AspectJ since our purpose is not
to develop a new practical language but to use a simple subset of AspectJ to write
assertions.

3.3.1 Assertion Module

In this language, a developer declares assertion aspect using the keyword assertion.
The declaration of a module consists of the name of the module, a module level
pointcut and a set of advices.

assertion name ( params ) : pointcut
  << advice definition >>
end

The name of a module is provided just for management, it has no meaning in
programming semantics. A module may have a module level pointcut describing a
common pointcut among advices included in the module. The pointcut is optional,
a developer may omit “: pointcut” fragment. Our language provides following
primitive pointcuts to specify context in simple expression:
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• p calls q represents a method call from p to q. p and q usually specify
objects declared as parameters of the module. p and q may be type name or
a wild card “*” when the developers have no interest in caller/callee objects,
respectively. This statement is translated into following pointcut designators:
call(* *.*(..)) && this(p) && target(q).

• p calls q.method(params), which is another form of the pointcut,
is also allowed to specify the signature of the methods. This form is trans-
lated into the following pointcut designators: call(* *.method(..)) &&
args(params) && this(p) && target(q).

• if(expr) represents a condition of the context. The assertions in the con-
text module are enabled when the expr is true. This pointcut is exactly
same as if pointcut of AspectJ.

• method(signature) represents a method signature constraint. This
pointcut is simply converted to call(signature) pointcut. A developer
uses this pointcut to specify methods when the developer is not interested in
objects.

Although above pointcuts are sufficient to write usual assertions, other pointcut
designators are also useful to write assertions. For example, cflowbelow can
specify pre/post-conditions for recursive method calls. Examining how powerful
pointcuts such as cflow and dflow [45] affect the expressiveness of assertions
is future work.

Parameters in the module declaration are module level variables, so all advices
in the module can access the parameters. It allows developers to declare common
parameters for each assertion.

3.3.2 Assertion Advice

An assertion module includes a number of advices. An advice is defined in the
following format:

def name ( params ) : pointcut
  pre
    <<expression or code block>>
  post
    <<expression or code block>>
end

The name, the parameters and the pointcut of an advice are same as the mod-
ule level declaration. pre and post specify preconditions and postconditions,
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respectively. A developer writes a list of Boolean expressions and code blocks in
AspectJ. A list of expressions separated by “;” specifies conditions that must be
satisfied. A code block is a procedure executed at the beginning or the end of the
method. We assume that the code block updates variables for assertion checking.
Here we show an example code as follows.

assertion OneSubjectManyObserver
def attach(Observer o, Subject s):

* calls s.attach(o)
pre o.subject == null;
post o.subject == s;

s.getObservers().contains(o);
{
Logger.log(o, "connects", s);
}

end
end

The above code is same as following AspectJ code:

aspect OneSubjectManyObserver {
// condition attach
before(Observer o, Subject s):
call(* Subject.attach(Observer)) &&
target(s) && args(o) {
assert o.subject == null;

}
after(Observer o, Subject s):
call(* Subject.attach(Observer)) &&
target(s) && args(o) {
assert o.subject == s;
assert s.getObservers().contains(o);
Logger.log(o, "connects", s);

}
}

And an assertion module may include utility methods, member variables (fields),
inter-type declarations, internal classes and arbitrary advices in AspectJ. The for-
mat is simple block form as follows.

{
  <<AspectJ Code Block>>
}
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Observer

1. attach(Observer)update();

Subject

attach();

Subject
   subject;

assert(observer.subject == null);
observer.subject = this;

Figure 3.2: Crosscutting assertion in Java

3.3.3 Implementation

We have implemented a translator from our language into AspectJ using Racc, or
a parser generator for Ruby [90]. Our translator converts pointcut declarations to
AspectJ style, and just copies code blocks to the output. Therefore, developers can
use several pointcut designators which are not directly supported by our translator,
e.g. cflow. Since our language is translated into AspectJ, the code optimization
of AspectJ provides executable code with less-overhead [26].

3.4 Case Study

We have implemented an Observer pattern with the one subject-to-many observers
relationship constraint as a case study. One-to-many relationship means that an
observer can register to only one subject, and one subject can be observed by mul-
tiple observers. Such relationship is found when a subject represents a data model
and several views for the model are provided as observers. Developers can sim-
ply reuse normal Observer pattern to achieve the purpose, but some constraints are
needed to prevent an observer to watch several subjects. Here, we are comparing
two implementations, in Java and our language, in the view point of the modularity.

Figure 3.2 shows the overview of the implementation in Java, and Figure 3.3
shows code fragments added to the usual Observer pattern implementation. This
implementation is problematic because it damages the encapsulation of Observer.
An observer has a reference to a subject and the method Subject.attach
checks and updates the field. When an observer calls attach, the subject checks
that the observer is not connected to any subjects using the subject field of the
observer. After the subject accepts the observer, the subject updates the observer’s
field. The observer must not modify the field by itself nevertheless it is the field of
the observer. It is a bad manner to prevent a component to modify its field and to
allow another component to modify the field.
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// Extended interface for Observer
interface Observer2 extends Observer {

public Subject getSubject();
public void setSubject(Subject subject);

}

// Extend an Observer
public class NewObserver extends AnObserver

implements Observer2 {
Subject subject;

public void setSubject(Subject subject) {
this.subject = subject;

}

public Subject getSubject() {
return subject;

}
}

// New subject
public class ASubject implements Subject {

:
:

public void attach(Observer o) {
assert (o instanceof Observer2) &&
(((Observer2)o).getSubject() == null);

assert !observers.contains(o);
this.observers.add(o);
assert observers.contains(o);
((Observer2)o).setSubject(this);

}

public void detach(Observer o) {
assert (o instanceof Observer2) &&
(((Observer2)o).getSubject() == this);

assert observers.contains(o);
this.observers.remove(o);
assert !observers.contains(o);
((Observer2)o).setSubject(null);

}
}

Figure 3.3: One-to-many relationship in Java
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attach(Observer)update();
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Subject Observer.subject;

assert(observer.subject == null);
observer.subject = this;

OneSubjectManyObserverAspect

Figure 3.4: Assertion modularized in an aspect

The broken encapsulation also affects maintainability of the code. Developers
need to maintain two versions of the subject and the observer for one-to-many and
many-to-many relationships because the code fragments included in the observer
and the subject depend on each other to implement the one-to-many constraint.
Developers cannot mix one-to-many observers and many-to-many observers for
one subject.

Figure 3.4 shows the overview of a solution in our approach. The aspect has
separated crosscutting assertions from subjects and observers. The source code is
shown in Figure 3.5. The field of Observer.subject is also moved to the
aspect. The aspect introduces the field subject into Observer. Its value must be
null before the method attach, and a reference to subject is set to the field after
attach is called. The value is cleared after the method detach is called.

The aspect modularizes all related assertions, fields and methods. The mod-
ularization prevents a developer from accidentally mixing these assertions with
assertions for other purposes and from misusing methods and fields defined only
for the assertions.

An advantage of our approach is that developers can deploy one-to-many rela-
tionship for generic observers and subjects. Another advantage is that developers
can mix one-to-many observers and many-to-many observers for one subject since
the aspect affects only a pair of AnObserver and ASubject.

Our language enables a developer to easily write assertions. When a developer
uses AspectJ to implement one-to-many observer pattern aspect, the implementa-
tion is similarly modularized as our language. The difference from our language is
that a developer writes a pair of before and after advices for a method in AspectJ
instead of a set of preconditions and postconditions in one advice.
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assertion OneSubjectManyObserver

{ // AspectJ inter-type declaration
public Subject AnObserver.subject = null;

}

def attach(ASubject s, AnObserver o):

* calls s.attach(o)
pre !s.getObservers().contains(o);

o.subject == null;
post s.getObservers().contains(o);

{ // code executed after s.attach
o.subject = s;

}
end

def detach(ASubject s, AnObserver o):

* calls s.detach(o)
pre s.getObservers().contains(o);

o.subject == s;
post !s.getObservers().contains(o);

{
o.subject = null;

}
end

end

Figure 3.5: One-to-many relationship aspect
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3.5 Discussion

In this section, we discuss about behavioral subtyping, modular reasoning, situa-
tions to which our approach is applicable and related work.

3.5.1 Behavioral Subtyping

Behavioral subtyping guarantees that all objects of a subtype preserve all of the
original type’s invariants [15]. Our approach enables developers to add assertions
to a component using an aspect, or an external module. When a developer cre-
ates a new subclass of a component, assertion should automatically affect the new
subclass for the consistency of the assertion. For example, when an aspect adds
an assertion to a class P, a class Q which is a subclass of P is also affected by the
assertion.

Our approach allows developers to add preconditions to a component. This fea-
ture may break behavioral subtyping since a subtype may have weak preconditions
and strong postconditions of the supertype, but cannot have strong preconditions
and weak postconditions [44]. However, we decided to allow strong preconditions
since a developer sometimes can assume the stronger preconditions based on ap-
plication constraints [25].

On the other hand, we prohibit removing assertions from objects for safety.
Although the behavioral subtyping allows weak preconditions, we prevent a devel-
oper from being confused by mixing a code fragment explicitly violating a precon-
dition with an aspect removing the precondition.

3.5.2 Modular Reasoning

Assertion documents the abstract behavior of a method. Well-modularized asser-
tions provide useful information for a developer to understand interactions among
objects.

Assertions separated from a component might reduce the comprehensibility of
the component since assertions for a component crosscut a class and several as-
sertion modules. Therefore, Aspect Visualizer [9] and tools finding aspects are
important for managing aspects. If a developer finds aspects using Aspect Visual-
izer, the developer can inspect all related assertions. This is easier than finding all
crosscutting assertions in other classes with grep or other tools [35]. A program
just crashes even if a developer who does not know assertion added by an aspect
writes a code fragment which violates the assertion. A developer can get asser-
tion information from the stack trace of a crashed program, so it is not too serious
problem.
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3.5.3 Avoiding Side Effects

Assertion aspect should have no side effects for the state of objects. If the side-
effect free methods are available, we should enforce aspects to call only such
methods. Java with Access Control proposed by Kniesel et al. [37] is promising
approach for this purpose since it provides readonly context prohibiting side
effects and a method statically checking the context.

We allow an aspect to have its own state in order to calculate some statistical
value, record a log or other similar purposes. Assertion aspect does not reduce
maintainability since a developer does not need impact analysis for an assertion
aspect when the aspect has no side effect on other objects.

3.5.4 Applicability

We have shown the example of the Observer pattern. Here we discuss the applica-
bility of our approach. Our approach is also applicable to following situations:

• Client specific assertions for a reusable component. A simple example is
a list (e.g. java.util.List) containing strings which match a certain
regular expression. If several developers want to share such a list in their
application, they may develop a new list component. However, many lists are
hard to maintain when each component needs a customized list respectively.
This problem is well-known since a developer often needs to handle a set
of data with containers, and C++ template mechanism and Java Generics
support containers with type constraints. Our assertion approach supports
other constraints that cannot be handled in type checking mechanisms.

• Assertions for experimental/untrustworthy code. A developer can add strict
assertions to only new code but not to other well-tested code when the devel-
oper creates a new client accessing a long-lived component. After the new
client is tested, the developer may remove assertions easily by just removing
the assertion aspect. A developer can also write assertions for untrustwor-
thy input from an external component added by a user after the system is
released, e.g. a plug-in extending the software.

• Assertions describing developers’ expectation. Developers sometimes have
implicit assumptions such as “When this method foo calls the method bar,
the object holds a particular condition.” Although some developers declare
this kind of expectation as a comment, other developers may accidentally
break such assumptions when they introduce subclasses or aspects [48]. Our
assertion may protect the method from the illegal usage by specifying the
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caller’s state. Specifying strict assertion for the usage of a component, de-
velopers might assure the behavior and the quality of the component.

• Assertions for component behavior affecting other components. A compo-
nent usually accesses other components to achieve its task. Our assertion can
specify a condition about method calls to other components. Since a wrong
series of method calls from a component indicates a defect of the component
[11], an assertion checking the behavior of an object is useful for developers.
Developers can write assertions and utility advices checking the behavior of
the object independent from the object code. Temporal invariants are also
useful for this purpose [17].

• Collaborating with unit testing. JUnit [89] is a well-known unit testing tool
for Java. JUnit provides class libraries which support to write assertions
and a tool which executes a test suite and collects the result. Our approach
supports to test interactions among objects in addition to unit testing since
assertion methods of JUnit can specify only the state of an object but cannot
specify the expected behavior of the object, e.g. methods should be called in
a test case.

3.5.5 Related Work

Zhao et al. proposed Pipa, or an extended language of JML which enables pro-
grammers to write assertions for advices [78]. Hanneman et al. have shown the
usefulness of aspects implementing interactions among objects [23], and published
their code [24]. If a developer introduces Pipa into an Observer pattern imple-
mented in AspectJ, the result may be similar to our approach because Pipa code
fragments are assertions for each advice and our code fragments are translated into
assertion statements in advices. However, the purpose of Pipa is different from
ours. Pipa aims to introduce assertion checking for advices; our approach aims to
modularize crosscutting assertions. The concept of crosscutting assertion in our
approach includes assertion for a set of the components which may be coded only
in classes as main functionality (base code).

Yamada et al. proposed Moxa, another extension of JML [76]. Moxa pro-
vides an assertion module which enables programmers to write assertions shared
by several methods and classes. Our approach focuses on modularizing crosscut-
ting assertions into an aspect, their approach focuses on modularizing common
properties into an aspect. The approaches may collaborate with each other.

Gibbs et al. have proposed Temporal Invariants, or an extension of assertion
for temporal properties for one component [17]. Temporal invariants can describe
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temporal properties held in a series of method calls for one component. This ap-
proach can replace a process collecting context information (some flags checking
control flow) with an expression of the temporal logic. When a developer can write
temporal invariants for several components, it would be more useful tool.

Our current implementation statically weaves assertions into other modules.
Dynamic deployment of aspect [51] enhances flexibility and usability of assertions
since it allows developers to temporarily deploy assertions for a certain context to
components.

3.6 Summary

Assertion documents the behavior of a component. Assertion checking is a power-
ful tool to detect software faults during debugging, testing and maintenance. Since
traditional assertions are described for each method, the assertions crosscut sev-
eral modules in order to specify inter-object properties. Crosscutting assertions are
harmful to the modularity and maintainability of the components. Therefore we
have proposed to modularize such assertion as an aspect using an aspect-oriented
language. We have introduced a simple aspect-oriented language to show basic
language constructs to write assertions, and developed a translator for the language
into AspectJ. We have implemented two version of the Observer pattern in java
and our language and have shown that crosscutting assertions in Java are modular-
ized in our language. Aspect-oriented assertion is promising to improve software
maintainability, and is applicable to various situations. In the future work, we are
planning to research design by contract for inter-aspect properties and examine
how powerful pointcuts such as cflow and dflow affect the expressiveness of
assertions.
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Chapter 4

Debugging Support for
Aspect-Oriented Program Based
on Program Slicing and Call
Graph

4.1 Introduction

Aspect-Oriented Programming (AOP) proposes a new module unit, or aspect, for
encapsulating crosscutting concerns such as logging and synchronization [34]. In
Object-Oriented Programming, program code implementing crosscutting concerns
is normally scattered among objects related to the concerns. In AOP, one crosscut-
ting concern can be written in a single aspect. AOP improves maintainability and
reusability of objects and aspects.

The goal of Aspect-Oriented Programming (AOP) is to separate concerns in
software. While the hierarchical modularity of object-oriented languages are ex-
tremely useful, they are inherently unable to modularize crosscutting concerns,
such as logging and synchronization. AOP provides language mechanisms that ex-
plicitly capture the crosscutting structure. Encapsulating the crosscutting concern
as a module unit aspect, which is easier to develop, maintain and reuse is possi-
ble. Aspects separated from an object-oriented program are composed by Aspect
Weaver to construct the program with a crosscutting structure.

In AspectJ, an aspect represents a crosscutting concern as a set of advices.
An advice is a method-like unit consisting of a procedure and a condition used
to execute the procedure. The condition of an advice execution is specified by a
pointcut. A pointcut is defined by a subset of join points, which are well-defined
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events during program execution, such as method calls and field accesses. Using
join points, a developer can separate crosscutting concerns from objects. Various
applications of AOP have been reported [23, 65].

Although AOP is useful, it introduces a new complexity into a program. Since
an aspect modifies the behavior of objects, a developer must inspect objects and
related aspects to understand system behavior; otherwise, the developer may inject
a defect, which is hard to detect, such as accidental advice executions and inter-
aspect problems. A typical inter-aspect problem occurs when two aspects prevent
each other’s behavior, while each aspect behaves correctly when the aspect stands
alone [55]. Early detection of inter-aspect problems is crucial to support the de-
bugging tasks.

In this chapter, we propose an application of a call graph generation and pro-
gram slicing to support a debugging task for aspect-oriented software development.
A call graph is a directed graph whose vertices and edges represent methods and
method call relations, respectively. We add advice vertices and advice execution
relations into a call graph for detection of infinite loops and accidental advice exe-
cutions. On the other hand, program slicing is a very promising approach to local-
ize faults in a program [74]. By definition, program slicing is a technique which
extracts all statements that may possibly affect a certain set of variables in a target
program. We extend a DC slicing [53], which is a program-slicing method based
on static and dynamic dependence relations in a program.

We implement a call graph construction and program slice calculation tool as
an Eclipse plug-in [83]. When a developer runs a program and finds the incorrect
value of a variable using a debugger, he/she calculates a program slice based on the
variable to find the statements which have affected the incorrect value.

We conduct two experiments to evaluate the tool. In one experiment, we apply
the tool to certain programs and show that program slicing visualizes changes of
dependence relations caused by aspects. In the other experiment, we have students
debug a program of AspectJ using a program slice. As a result, we show program
slicing is appropriate for the debugging of aspect-oriented programs.

The structure of this chapter is as follows: in Section 4.2, we present a brief
overview of Aspect-Oriented Programming. In Section 4.3, we describe infinite
loop detection using a call graph. In Section 4.4, we present an extension of pro-
gram slicing for an aspect-oriented program. In Section 4.5, we evaluate the pro-
posed method and discuss experimental results. In Section 4.6, we conclude our
discussion with remarks regarding plans for future work.
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4.2 Aspect-Oriented Programming

4.2.1 Features of Aspect-Oriented Programming

Aspect-Oriented Programming is an improved programming paradigm based on
the other module mechanisms such as procedural programming and Object-Oriented
Programming. In OOP, an object implements a part of the system’s functional-
ity. Objects interact with each other via messages (or method calls) to achieve the
system’s goal. While the hierarchical modularity of object-oriented languages is
extremely useful, they are inherently unable to modularize crosscutting concerns,
such as logging and synchronization. Since such concerns are implemented as
an interaction of related objects, program code must be scattered among objects.
Scattered code causes the following problems:

• When a specification of a crosscutting concern is changed, developers must
modify all related objects.

• Developers cannot reuse an object independently of other objects since ob-
jects are connected to each other with a crosscutting concern.

• Developers cannot reuse implementation of a concern independently of ob-
jects. If another set of objects interacts in the same way, developers must
re-implement the concern.

AOP introduces a new module unit named ‘aspect’ to encapsulate a crosscut-
ting concern. In AOP, one concern can be written in a single aspect. An aspect
consists of some advices. An advice is a method-like unit consisting of a proce-
dure and a condition used to execute the procedure. A condition to execute an
advice is specified by a pointcut. A pointcut is defined by a subset of join points,
which are well-defined events during program execution, such as method calls and
field accesses. Using join points, a developer can separate crosscutting concerns
from objects. Modularized crosscutting concerns have good maintainability and
reusability.

A part of available join points are shown as follows:

• A method call to an object,

• A method execution of an object after dynamic binding,

• A field access of an object, and

• Exception handling.
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class SomeClass {
  public void doSomething(int x) { ... }
}

aspect LoggingAspect {
  before(): call(void SomeClass.doSomething(..)) {
    Logger.logs(thisJoinPoint); 
} }

aspect ParameterValidationAspect {
  before(int x):
    args(x) && call(void *.doSomething(..)) {
    if ((x < 0)||(x > Constants.X_MAX_FOR_SOMETHING)) {
      throw new RuntimeException("invalid parameter!"); 
} } }

Figure 4.1: Aspect examples: Logging and parameter checking

Advices are linked to objects by three types of forms: before (immediately
before join points), after (immediately after), and around (replacement of join
points). Advices can access runtime context information, for example, a called
object, a caller object, and parameters of a method call.

A sample code of aspects is shown in Figure 4.1. LoggingAspect logs a method
call to SomeClass.doSomething. ParameterValidationAspect validates all method
calls whenever the method name is doSomething, and throws an exception if the
validation fails. In this example, when the specification of the parameter validation
is changed, developers change only the aspect instead of all callers of doSome-
thing. On the other hand, both aspects are executed when SomeClass.doSomething
is called. In such a case, a compiler (or an interpreter) serializes advices being
executed. In AspectJ, developers write the precedence of aspects to adjust the exe-
cution sequence of advices.

Various applications of AOP have been reported. In OOP, design patterns are
design components describing how objects should interact [16]. Since an interac-
tion of objects is a kind of crosscutting concern, developers can write a pattern as
an aspect. Aspects implementing design patterns are reusable components [23].
On the other hand, it is also useful for applications to support debugging and to
write crosscutting concerns in a distributed software environment [65].

4.2.2 Complexity of Aspects

Although AOP is useful, AOP introduces new complexity as follows:

(a) Multiple advices may be executed at the same join point. An execution se-
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quence of advices may affect the result of calculation. An example is the
program in Figure 4.1. When the parameter validation aspect throws an ex-
ception, the output depends on whether or not the logging aspect is executed
before the parameter validation.

(b) An advice may be activated during another advice execution. In such a case,
an aspect may change the behavior of another aspect. When two advices
are activated during an execution of each other advice, the advices cause an
infinite loop.

(c) In the software evolution process, a pointcut definition may become obsolete
according to the changes of objects.

(d) An incorrect or obsolete pointcut definition causes accidental advice execu-
tions. It is impossible to predict the behavior of an advice accidentally exe-
cuted.

Problems (a) and (b) are a part of inter-aspect problem [55], a research regard-
ing how to solve such issues exists [13]. Problem (c) is known as fragile base-code
problem. Aspect-aware refactoring is proposed for the problem since aspects may
conflict with refactoring techniques in OOP [22]. Problem (d) debugging point-
cut definition is partially supported by the Integrated Development Environment in
AspectJ [79].

Detecting inter-aspect problems and accidental advice executions is difficult
since aspect interference is required in certain cases. For example, ParameterVal-
idationAspect must validate method calls in other aspects. Therefore, we focus
on the debugging defects caused by aspects instead of focusing on the safe com-
position rules of aspects [28]. We propose a debugging support based on a call
graph and program slicing. Debugging support is effective for problem (a), (b) and
(d). Although program slicing is also applicable to debug a defect of problem (c)
caused by a pointcut definition which becomes obsolete, program slicing cannot
prevent a pointcut from being obsolete.

4.3 Loop Detection using Call Graph

Carelessly defined, incorrect pointcuts cause accidental advice executions. Acci-
dental advice executions are hard to detect since a developer who inspects a code
fragment is hard to recognize whether or not the code fragment is modified by
aspects when the fragment is viewed in isolation [66]. A typical result of an incor-
rect pointcut is an infinite loop [81]. Infinite loops should be statically detected in
a compilation process instead of runtime.
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Foo.foo()

before() : call(Foo.foo());

after() : call(Foo.foo());

call

call

foo() body
call

before() : 
  execution(Foo.foo());

call

after() : 
  execution(Foo.foo());

call

Figure 4.2: Before advice call and after advice call handled as method calls

A call graph is a simple way to visualize advice executions and to detect an
infinite loop. A call graph is a directed graph representing the calling relationships
between the program’s methods [19]. When a cyclic path from a vertex v to the
vertex v itself exists, the path represents a candidate of an infinite loop.

We use a simple extension of a call graph for AOP. We treat an advice as a
method in the same way AspectJ compiles an advice into a standard Java method
[26]. When a join point specified by a pointcut of an advice exists in a method
body, we regard the advice execution as a method call from the method to the
advice. We construct a call graph whose vertices and edges represent methods and
advices, and method call relations and advice execution relations, respectively. If a
path from a vertex vm corresponding to a method m to a vertex vadv corresponding
to an advice adv exists, the advice adv may be called during the execution of the
method m.

A key point of the call graph construction is how to handle control flow that
is dynamically determined in AOP. In AspectJ, such control flow is caused by the
polymorphic methods of objects and the dynamic pointcut designators of aspects.
In order to resolve such dynamic elements, we construct a call graph in the follow-
ing steps.

First, the class hierarchy of a program is extracted from source code. This class
hierarchy includes the method lookups modified by the inter-type declaration of the
aspects in the program [66].

Next, we construct a method call graph whose vertices and edges represent
methods and method calls, respectively. We resolve a polymorphic method as fol-
lows: When the method m of the class c overrides the method m defined in the
superclass d and the method n calls d.m, a method call edge from vn to vc.m and
another edge from vn to vd.m are connected.

Finally, advices vertices and advice call edges are added to the graph. Dynamic
pointcut designators such as cflow and if are dynamically checked in the pro-
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around() : call(Foo.foo());

call return value

advice body

Foo.foo() body

return valuecall

Figure 4.3: Around advice call handled as a method call

gram execution. We regard join point shadows [26] which may trigger an advice
execution as an advice call. before and after advices are simply replaced to
method calls as shown in Figure 4.2. An around advice is handled in another way
since an around advice replaces join points. Figure 4.3 shows that an around
advice replaces a method call. When a keyword proceed exists in an around
advice, the keyword represents an original join point replaced by the advice. We
regard the proceed keyword as a method call relation from the proceed to the
original join point when the join point is a method call.

A call graph approach is easier to implement than other approaches such as
formal techniques. Both a framework to detect inter-aspect dependence relations
[13] and a framework to allow developers to manually control advice executions
exist [55]. However, these approaches cannot detect accidental aspect dependence
relations which are not inter-aspect relations. A call graph visualizes all aspect
dependence relations in a program.

We can detect candidates of infinite loops from a call graph based on depth
first search [69]. Figure 4.4 shows an example of a call graph. An ellipse vertex
represents a method, and a rectangle vertex represents an advice. All edges rep-
resent a method call relation. The program represented by the call graph consists
of three classes: Main, Counter, AnotherCounter, and two aspects, Foo and Bar.
The aspect Foo counts a method call of Main.getX() using a Counter object. The
aspect Bar logs the result of Main.getX(). Any vertices are not explicitly connected
to vertices representing constructors since these objects and aspects are created by
static initializers when the Java Virtual Machine loads classes. In the graph of Fig-
ure 4.4, a cyclic path including the vertex corresponding to the advice before():
call(Main.getX) is represented by bold line edges. The cyclic path is an infinite
loop.

Developers can confirm that inter-aspect dependence relations are their inten-
tional result. Developers detect accidental dependence relations and remove errors
of a control flow. Our tool is implemented for call graph construction and cycle
detection. Since a call graph grows proportionally to program size, automatically
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public Main()

public Object()

public Bar() public Counter()

Bar#before set(int Counter.f)

Main#getX() PrintStream#println(int)

Main#main(String[])

Foo#before call(public static int Main.getX(..))

public Foo()

public AnotherCounter()

Counter#incF()

AnotherCounter#incF()

Figure 4.4: A call graph
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extracting cycles and dependence relations between aspects is important. The im-
plementation details are described in Section 4.5.1

4.4 Program Slicing

Program slicing is a promising approach for program debugging, testing, and un-
derstanding [74]. Given a source program p, a program slice is a collection of
statements possibly affecting the value of slicing criterion (in the pair <s, v>, s is
a statement in p, and v is a variable defined or referred to at s). We extend program
slicing to an aspect-oriented program to aid in a debugging task.

4.4.1 A Slice Calculation Algorithm

A program slice is calculated through the following three phases:

(a) Extract dependence relations in a target program,

(b) Construct a program dependence graph, and

(c) Traverse a graph.

Phase (a) is an extraction of dependence relations. Program slicing is based
on data and control dependence relations. A data dependence relation is a relation
between an assignment and a reference of a variable. When all of the following
conditions are satisfied, we say that a data dependence relation from statement s1

to statement s2 by a variable v exists:

1. s1 assigns a value to v, and

2. s2 refers to v, and

3. At least one execution path from s1 to s2 without re-defining v exists. We
call this condition reachable.

The above definition is a static data dependence relation. A dynamic data depen-
dence relation is extracted when the value assigned at a statement s1 has reached
to a reference statement s2 during program execution.

On the other hand, a control dependence relation is a relation between a condi-
tional statement and a controlled block. Consider statements s1 and s2 in a source
program p. When all of the following conditions are satisfied, we say that a control
dependence relation, from statement s1 to statement s2 exists if:
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1. s1 is a conditional predicate, and

2. The result of s1 determines whether s2 is executed or not.

A dynamic control dependence relation is extracted when a statement s2 is exe-
cuted after a conditional predicate s1 is evaluated during program execution.

Phase (b) is a construction of a program dependence graph. The nodes of a
graph represent statements of a program, and directed edges represent data and
control dependence relations. In Phase (c), a program slice is calculated by back-
ward traversal of the program dependence graph from a slicing criterion.

We choose DC slicing from three slicing methods: static slicing, dynamic slic-
ing and DC slicing. These slicing methods are classified by a method how to extract
dependence relations. Static slicing is used for program understanding and verifi-
cation [74] since static slicing analyzes source codes of a program to extract the
possible behaviors of the program. Dynamic slicing analyzes a program execu-
tion with a certain input data. Since a dynamic slice includes statements actually
executed, dynamic slicing is used to support a debugging task [1]. In DC slice
calculation, the dynamic data dependence analysis is performed during program
execution, and the information of dynamically determined elements is collected.
Control dependence relations are statically extracted from the source code since
a high cost is required to analyze control dependence relations during program
execution. DC slicing requires a reasonable cost for the calculation of practical
programs [53]. Therefore, our approach is based on DC slicing.

An example of a DC slice for Java is shown in Figure 4.5. In this program, an
instance of the class IncrementCounter, and an instance of the class ShiftCounter,
output their value. The input parameter of this program determines which counter
is used. A slice with input “inc” and slicing criterion (c) is indicated by rectangles
(a), · · · , (e) in Figure 4.5. When a program results in an invalid output, developers
choose the variable which contains the output as a slicing criterion, and calculate a
slice to localize a fault.

4.4.2 Extension for Aspect-Oriented Program

We extend program slicing to an aspect-oriented program to aid in a debugging
task. We assume that a target program has no infinite loops since a developer has
already removed infinite loops using a call graph. Therefore, our approach focuses
on a debugging task to remove a defect detected by a test case. In the debugging
process, a developer first runs a test case to collect dynamic information. Next,
a developer activates a tool to construct a program dependence graph. Finally, a
program slice is calculated by slice criteria specified by the developer. A developer
can localize a fault using the program slice.
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class Count {

  public static void main(String[] args) {
    if (args.length == 0) return;

    Counter counter;
    boolean isIncrementCounter = false;
    if (args[0].equals("inc")) {
      counter = new IncrementCounter();
      isIncrementCounter = true;
    } else if (args[0].equals("sft")) {
      counter = new ShiftCounter();
    } else return;

    for (int i=0; i<3; ++i) counter.proceed();
    String result = Integer.toString(counter.value());
    System.out.println(result);
}

abstract class Counter {
  private int count = 1;
  public Counter() {}
  public int value() { return count; }
  public void proceed() { count = newValue(count); }
  abstract protected int newValue(int old);
}

class IncrementCounter extends Counter {
  protected int newValue(int old) { return old + 1; }
}

class ShiftCounter extends Counter {
  protected int newValue(int old) { return old << 1; }
}

(a)

(b)

(c)

(d)

(e)

Figure 4.5: DC slice example

Program slicing for aspect-oriented languages has already been proposed, but
has not been implemented and evaluated yet [77]. We choose AspectJ as a target
language and extend program slicing from Java to AspectJ. In this basic idea, which
is the same as a call graph extension, we regard an advice execution as a method
call.

Data dependence relations and control dependence relations in advices are the
same as program slicing for OOP. Features of program slicing introduced for AOP
are following:

Join point information: An advice can access runtime context information such
as a caller object and parameters of a method call. We regard such informa-
tion as parameters passed to the advice from the join point. In order to ac-
cess context information, AspectJ provides thisJoinPoint object. The
method thisJoinPoint.getArgs(int) is prepared for accessing pa-
rameters. Since the parameter of the method call to getArgs is determined
in runtime, the caller of getArgs is handled as references to all parame-
ters of the method of the join point. The other context properties such as the
method signature and this object are regarded as a reference to a parameter
passed to the advice from the join point.
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A pointcut reference: An advice depends on a pointcut definition. A program
slice includes a pointcut definition when a corresponding advice is included
in the slice. Since a pointcut determines an advice execution, we connect a
control dependence edge from a pointcut to an advice.

A dynamic pointcut: Dynamic context sometimes determines whether or not an
advice is executed. Since a program slice should include all statements
which may affect a slicing criterion, the slice always includes statements
which may have been affected by advices which use a dynamic context.
Static analysis can reduce a slice based on a call graph [63]; however, this is
a subject for future work.

An advice call relation: The idea of handling an advice call is same as the case of
the call graph construction. A vertex corresponding to a join point shadow
is regarded as a caller vertex of the advice.

4.4.3 Dynamic Analysis

In the DC slice calculation process, dynamic information of a target program is
required. Dynamic information consists of dynamic data dependence relations and
dynamic binding information. Dynamic analysis, a process collecting such infor-
mation, is also a crosscutting concern. Therefore, we implement a dynamic analy-
sis aspect in AspectJ. This aspect is based on the dynamic analysis aspect for Java,
which has been developed in the case study described in Chapter 2. Developers
link the aspect to the target program to extract dynamic information.

A dynamic analysis aspect collects dynamic information as follows:

Data Dependence Relation

When a new value is set to a field: The aspect logs a signature of the field
and the position of the assignment statement.

When a field is referred to: The aspect receives the position of the last as-
signment to a field, and logs a data dependence relation from the as-
signment to the reference.

Polymorphism Resolution

When a method is called (before call): The aspect pushes the method sig-
nature and the position of calling into a call stack prepared for each
thread of control.
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When a method is invoked (before execution): The aspect checks the top
of the call stack, and generates a call edge from the caller to the actually-
invoked method.

After a method call: The aspect removes the top of the call stack.

When an exception is thrown: The aspect removes the top of the call stack.

Since aspects cannot access local variables in AspectJ, we analyze intra-method
dependence relations statically and inter-method dependence relations dynami-
cally. As a result, our slice becomes larger than a complete DC slice. To calculate
a complete DC slice, intra-method data dependence relations need to be extracted
dynamically too. Though dynamic information is effective to distinguish objects
and to extract inter-method dependence relations, dynamic intra-method depen-
dence relations are less effective. When a dynamic analysis aspect conflicts with
other aspects in the target program, conflicts are solved by precedence declaration
in AspectJ and by static analysis using a call graph.

4.5 Implementation and Evaluation

We have implemented a call graph calculation and a program slicing tool. In order
to evaluate our tool, we have conducted two experiments. In one experiment, we
have applied our tool to the AspectJ source code of design patterns [24], and eval-
uated how program slicing works for the aspect-oriented programs. In the other
experiment, we have evaluated how program slicing affects the debugging task.
We have measured the working time of a debugging task using a program slice.

In Section 4.5.1, we describe the implementation overview of our tool. We
present the former experiment in Section 4.5.2 and the latter experiment in Section
4.5.3.

4.5.1 Implementation Overview

Developers repeatedly modify source code and run test cases in their debugging
process. Integrated Development Environments provide tools which support de-
bugging tasks. Our tool should be used with other tools such as a debugger, an
incremental compiler, and a customized editor in the IDE. For example, when de-
velopers find a location where the value of a variable is incorrect, they can then
calculate a slice based on the variable.

We have chosen Eclipse [83] for the platform of our tool. Eclipse is an open
source IDE, and developers can write a plug-in in Java to add new functionalities
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Table 4.1: Target codes
Name Size (LOC)
ChainOfResponsibility 517
Observer 667
Singleton 375
Mediator 401
Strategy 465

to the IDE. We have implemented the tool as an Eclipse plug-in based on Java and
AspectJ development plug-ins. The size of our plug-in is about 5,000 lines of code.

Eclipse plug-ins handle important events in the IDE, for example, saving files
and completion of compilations. We have used such event handlers to implement
the plug-in. When compilation succeeds, our slice plug-in extracts static infor-
mation from a source code and constructs a call graph. If the call graph contains a
cyclic path, notification is shown by a dialog. On the other hand, we have integrated
our tool to the editor provided by AspectJ plug-in. Our tool allows developers to
specify a slice criterion on the source code editor and shows a program slice by
underlining on the editor.

In order to analyze AspectJ source code, our tool collects the information from
AspectJ Development Tools plug-in [79]. On the other hand, we can apply a DC
slicing tool for Java byte-code [72] since the current version of AspectJ compiler
generates Java byte-code [80]. However, when we use the tool for Java byte-code,
we need to preserve a mapping from AspectJ source to Java byte-code. Preserving
such a mapping is difficult since pointcut information and join point shadows are
not expressed in Java byte-code. We have chosen an approach to analyze AspectJ
source code instead of Java byte-code. Since we have implemented the tool ex-
tracting information from the compiler, our tool does not handle run-time weaving.

4.5.2 Experiment 1: Evaluation of Program Slicing

We have conducted an experiment to evaluate how program slicing works for
aspect-oriented programs. We have applied our tool to the AspectJ source code
of several design patterns [24]. We have used five patterns in Table 4.1 since De-
velopers can effectively implement these patterns using AspectJ [23]. We describe
the result of the slicing in Section 4.5.2, and discuss analysis costs in Section 4.5.2.
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class Sample {

  private int aField;

  public int foo() {
    int x = bar();
    ...  }

  protected int bar() { // never executed
    return 0;  }

  private int baz() {
    return aField;  }
}

aspect redirectMethodCall {
  int around(Sample sample):
    this(sample) && call(int Sample.bar()) {
    return sample.baz();  }
}

activate

call

Figure 4.6: A slice including an aspect replacing a method call

Evaluation of Slicing Result

First, we construct a call graph based on the source code of five design patterns.
As a result, the call graph consists of 179 vertices and 240 edges, and a subgraph
including a loop is extracted from the graph. The only one loop included by the
subgraph is a recursive call of the method recieveRequest defined by ChainOfRe-
sponsibilityProtocol aspect. We can easily see that the loop is just a recursive call
since the loop consists of the method vertex and a recursive call edge.

Next, we execute five programs of design patterns and calculates program slices
based on the variable which contains the output of the program. Program slicing
is effective for tracking inter-module dependence relations. In this experiment, a
program slice is calculated based on a certain variable in an aspect for each design
pattern. In order to get the same information as the slice, developers must track def-
initions of methods and advices manually, and this task requires much time since
developers must track several files which affect the variable. One design pattern is
usually defined as a set of aspects, an abstract defining the structure of the pattern,
and as concrete aspects declaring the actors of the pattern. For example, an Ob-
server pattern is defined as one abstract aspect named ObserverProtocol, and two
concrete aspects: ColorObserver and CoordinationObserver. ObserverProtocol
contains code on how Observer objects and Observed objects interact. ColorOb-
server and CoordinationObserver declare that Screen objects act as observers, and
that the color and the coordination of Point objects are observed. Developers must
inspect two classes and three aspects to track the location where the value of the
variable originates.

An advantage of program slicing is the visualization of codes and dependence
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Table 4.2: Time cost of dynamic analysis (seconds)
Normal Execution with

Target Execution Dynamic Analysis
ChainOfResponsibility 3.76 3.93
Observer 0.32 0.37
Mediator 3.21 5.69
Singleton 0.14 0.32
Strategy 0.18 0.22

relations modified by aspects. Figure 4.6 shows a slice including an aspect replac-
ing a method call. Such a method replacement aspect is used in unit testing and
temporary implementation. Recognizing a change of dependence relations by such
aspects is difficult because aspect definitions are usually separated from class def-
initions. AspectJ Development Tools (AJDT) plug-in [79] provides an extended
editor, which shows the locations where the advice is executed. However, since
AJDT cannot visualize statements replaced by advices, developers must carefully
consider around advices replacing original join points.

Evaluation of Time and Space Requirements

Analysis cost for the program slicing consists of the following costs: the cost of
static dependency extraction in compile time, the cost of dynamic dependency ex-
traction in run time and the cost of slice calculation for traversal a program depen-
dence graph.

Static analysis is implemented by a traversal of an abstract syntax tree (AST),
constructed by an AspectJ compiler. Although only a rough estimation, the traver-
sal process is proportional to the size of the AST, and AST size is proportional
to the size of the target program. The time cost required to analyze 10,000 lines
of code-implementing design patterns is 14.7 seconds. The cost accounts for 17
percent of 85.5 seconds, the total compilation time.

The time cost of dynamic analysis is shown in Table 4.2. The overhead of
our tool for dynamic analysis is acceptable. The time cost of slice calculation is
proportional to the size of a program dependence graph.

Memory cost usually depends on the size of a target program. Aspects also
affect memory cost since aspects complicate program dependence relations. For
example, the memory cost required to analyze the design patterns is about 20MB.

In order to test scalability, we have constructed a program dependence graph
of AspectJ compiler version 1.1.1 [80]. The size of the compiler is about 60,000
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Table 4.3: Test cases of the program
Input Expression Output Value Output String
(* (+ 5 3) (+ 5 5)) 80 (* (+ 5 3) (+ 5 5))
(* (+ 5 4) (+ 5 4)) 81 (* (+ 5 4) )
(+ (+ 4 2) 5 (* 4 2)) 19 (+ (+ 4 2) 5 (* ))

*
5

+
4

1

2

1

2

(* (+ 5 4) (+ 5 4)) =

Figure 4.7: A graph representing an expression

lines of code (without unit tests). Since our tool requires about 200MB memory to
compile and to analyze, the scalability of the tool is achievable by decomposing a
system to the subsystems. On the other hand, when a program slice becomes larger
and crosscutting many classes and aspects, a developer cannot track a slice using
a normal text editor. Examining how a large program slice should be shown to a
user is a future work. We are going to investigate the decomposition of a program
slice into small pieces using concept analysis [14].

4.5.3 Experiment 2: The Debugging Task

In order to evaluate how program slicing influences a debugging task, we com-
pare the working time of debugging between students using a program slice, and
students working without a program slice. Twelve graduate students of computer
science attended the experiment. They have had experienced with Java but not with
AspectJ. Therefore, we prepared the preliminary tasks in order to allow students
to get used to Eclipse and AspectJ. We conducted the experiment using the fol-
lowing steps: First, we explained to the information science students about Java
and Eclipse, and gave them the task of debugging a small Java program (Task 1).
Next, we explained about AspectJ and Aspect-Oriented Programming, and gave
the student the task of writing an aspect (Task 2). Finally, we gave them the task of
debugging an AspectJ program (Task 3).

We prepared a small AspectJ program for Task 3. The program processes an
expression consisting of literals and two kinds of operators: adders, and multipli-
ers. An expression is defined by a graph whose nodes are terms of the expression.
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Table 4.4: Time required for debugging task (minutes)
Group Task 1 Task 2 Task 3
1. works without the slice 150 186 200
2. works with the slice 200 210 190

An example of a graph representing (∗ (+ 5 4) (+ 5 4)) is shown in Figure 4.7.
The program contains the following aspects:

Print Aspect constructs a string representation of a graph and outputs the string
when the program is finished.

Loop Detection Aspect observes a traversal of a graph to detect whether or not the
graph has a cyclic path. When the aspect detects a loop, the aspect throws an
exception.

Caching Aspect caches a value of the nodes and prevents re-evaluation of shared
nodes.

Graph Destruction Aspect destructs a graph. When a node is evaluated, the node
is removed from the graph.

Task 3 included debugging a program which contained a bug. We have pre-
pared a bug caused by an aspect preventing the behavior of another aspect. When
the Caching Aspect omits a re-evaluation of the nodes, the aspect omits a process
of the Print Aspect too. Sample inputs and outputs for the program are shown
in Table 4.3. Since inputs are internally represented as a graph, shared nodes are
omitted in the output.

We gave the students the correct output and a short explanation for each aspect.
We randomly chose half of the students, and gave them a program slice. The
program slice was calculated based on an output variable in the Print Aspect. The
program slice indicates that the output variable is affected by the Caching Aspect
and the Print Aspect, but is not affected by the other two aspects.

We collected information on how the students modified the program and on
how long it took them to fix the bug. We asked the students whether or not a
program slice was useful for debugging using a program slice.

Table 4.4 shows the average time the students took for the tasks. Although stu-
dents who used a program slice showed a better performance time than the students
who did not use the slice, no statistically intentional difference exists.
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Students who used a program slice reported that a program slice was a good
guideline for reading a program and was useful for excluding source code not re-
lated to a bug since a program slice visualizes all dependence relations including
indirect impact by aspects. However, students also reported that they needed to
inspect the entire program to confirm whether or not a modification of an aspect
impacts other modules. Therefore, we conclude that combining program slicing
with impact analysis or other techniques to support a bug-fixing task is important.

In summary, we cannot say that program slicing is quantitatively effective to
bug-fixing of AOP. However, according to the students’ opinions, it is very useful
to localize a fault in AOP. It is important to combine program slicing with other
techniques to support bug-fixing tasks, especially for AOP, in the reduction of de-
bugging time.

The conclusion of the experiment is limited since only one group works with
program slicing and another group works without the technique. The result is
affected by the distinction of the programming ability of each group.

4.6 Summary

In this chapter, we have proposed an application of program slicing to support a
debugging task for aspect-oriented programs.

A key feature of Aspect-Oriented Programming is the separation of crosscut-
ting concerns. Developers encapsulate an interaction between multiple objects into
an aspect. Since crosscutting code is localized to a module, AOP improves main-
tainability and reusability.

An aspect modifies objects’ behavior without modification of their code. If
developers change code without knowledge about classes and related aspects, de-
velopers may inject a fault such as an accidental advice execution. Such bugs are
difficult to detect; therefore, we propose a support using a call graph and program
slicing. The call graph and program slicing are already available for procedural
programs and object-oriented programs. We have extended the call graph by re-
garding an advice execution as a kind of method call. We have also extended DC
slicing based on the same idea.

We have implemented a call graph construction and slice calculation tool as
an Eclipse plug-in. We have conducted two experiments to evaluate the tool. In
one experiment, we applied the tool to certain programs and showed that program
slicing visualizes changes of dependence relations caused by aspects. In the other
experiment, we had students debug a program of AspectJ using a program slice.
As a result, program slicing effectively showed aspect dependence relations to a
developer. Program slicing was also effective in localizing faults.
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For future work, we are planning to extend our research on debugging support
using impact analysis. We will also apply a reflection analysis based on dynamic
analysis [20].
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Chapter 5

Conclusions

5.1 Summary of Major Results

In this paper, we have proposed to modularize two development aspects using
aspect-oriented programming and implemented a development support based on
program slicing technique.

First, we have proposed and implemented dynamic analysis for program slicing
as an aspectual module. This approach improves modularity and maintainability
of the dynamic analysis since the behavior of aspect is written in base code, not a
meta-programming language used in traditional approaches.

Second, we have proposed to write assertions crosscutting objects as an aspect.
Assertion is a part of the interface of an object, crosscutting assertion damages
maintainability of the modules. Aspectual assertion is promising approach to re-
duce inter-dependence between module interfaces since it is applicable to various
situations.

Using these aspects more effectively, we have extended program slicing tech-
nique for aspect-oriented programs and developed a program slicing tool for As-
pectJ. An experimental evaluation shows that the program slicing technique sup-
ports debugging a program including multiple aspects which causes inter-aspect
problem.

5.2 Directions of Future Research

Although aspect-oriented programming is effective to improve modularity followed
by better maintenability and reusability, managing concerns in a large scale system
is difficult for developers. A program slice for a entire system is too large for devel-
opers to see [41]. In order to support to manage concerns, visualizing crosscutting
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structure is important. Existing research for visualization of aspects focuses on
visualizing relationship among an aspect and classes affected by the aspect [10].
Visualizing inter-aspect relationship extracted by program slicing technique is a
research direction which supports aspect-oriented software development.

Another direction is modular analysis for dependence relationship among pro-
gram entities. Since many class libraries and frameworks are used for software
development in recent years, program analysis tools can access only a part of the
source code in the system. In such a situation, a method effectively combining
modular analysis for each component and available inter-component relationship
information is important. Although this is not a special problem for aspect-oriented
programming, the problem becomes more important since AOP environments are
often implemented as a framework or a middleware.
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