
Toward Practical Application

of Program Refactoring

A Dissertation Submitted to

The Graduate School of Information Science and Technology

of Osaka University

for the degree of

Doctor of Philosophy

in

Information Science and Technology

by

Yoshio Kataoka

January 16, 2006

Abstract

Program refactoring—transforming a program to improve readability, structure,

performance, abstraction, maintainability, or other characteristics— is not applied

in practice as much as might be desired. Although there are various possible reasons

why program refactoring is not so popular, one deterrent is the cost of detecting can-

didates for refactoring and of choosing the appropriate refactoring transformation.

Another problem is that there are few quantitative evaluations of its impact to the

software maintainability. It is sometimes difficult to judge whether the refactoring

in question should be applied or not without knowing the effect accurately.

This series of researches mainly focuses on how to support program refactoring

to encourage practical applications of the technique. The first half of this thesis

demonstrates the feasibility of automatically finding places in the program that are

candidates for specific refactorings. The approach uses program invariants: when

particular invariants hold at a program point, a specific refactoring is applicable.

Since most programs lack explicit invariants, an invariant detection tool called Daikon

is used to infer the required invariants. We developed an invariant pattern matcher

for several common refactorings and applied it to an existing Java code base. Numer-

ous refactorings were detected, and one of the developers of the code base assessed

their efficacy.

The latter half proposes a quantitative evaluation guideline to measure the main-

tainability enhancement effect of program refactoring. We focused on the module

coupling metrics and the module cohesion metrics to evaluate the refactoring effect.

Comparing the metrics before and after the refactoring, we could evaluate the degree

of maintainability enhancement. As for coupling metrics, we carried out an exper-

iment and found our method was really effective to quantify the refactoring effect

and helped us to choose appropriate refactorings.

i

ii

List of Major Publications

1. Yoshio Kataoka, Shinji Kusumoto and Katsuro Inoue, “Supporting Refactoring

Using Invariant,” IPSJ Transaction, Vol.46, No.5, pp.1211–1221, May 2005.

2. Yoshio Kataoka, Shinji Kusumoto and Katsuro Inoue, “A Quantitative Evalu-

ation of Refactoring Effect,” Transactions on Information and Systems (Sub-

mitted).

3. Yoshio Kataoka, Takeo Imai, Hiroki Andou and Tetsuji Fukaya, “A Quantita-

tive Evaluation of Maintainability Enhancement by Refactoring,” Proceedings

of International Conference on Software Maintenance, pp.576–585, Montreal,

Canada, October 2002.

4. Takeo Imai, Yoshio Kataoka and Tetsuji Fukaya, “Evaluating Software Mainte-

nance Cost Using Functional Redundancy Metrics,” Proceedings of 26th Inter-

national Computer Software and Applications Conference, pp.299–306, Oxford,

England, August 2002

5. Yoshio Kataoka, Michael D. Ernst, William G. Griswold and David Notkin,

“Automated Support for Program Refactoring using Invariants,” Proceedings

of International Conference on Software Maintenance, pp.736–743, Florence,

Italy, November 2001

6. Yoshio Kataoka, Masayuki Hirayama, Jiro Okayasu and Tetsuji Fukaya, “An

Approach to Reverse Quality Assurance with Data-Oriented Program Analy-

sis,” Proceedings of Asia Pacific Software Engineering Conference 1995, pp.324–

332, Brisbane, Australia, December 1995

iii

iv

Acknowledgements

During the course of this work, I have been fortunate to have received assistance from

many individuals. I would especially like to thank my supervisor Professor Katsuro

Inoue and Professor Shinji Kusumoto for their sustainable supervision. I could not

have come this far without their support and encouragement for this work.

I am also very grateful to Professor Tohru Kikuno who is the member of my thesis

review committee for his invaluable comments and helpful advices.

I also would like to thank Professor Koji Torii for his initiation to this research

field and his supervision during my undergraduate years and master course. My

perspective had been broaden by his advices and encouragements from time to time.

I also would like to thank Professor David Notkin for his supervision during

my undergraduate years and my visiting University of Washington. My original

motivation of research in this field was his word, “make software engineering true

engineering.”

I also would like to thank Professor Mike Ernst for his continuous advice and

collaboration during my visiting University of Washington. He always give me very

productive and insightful advices on my research.

I would also like to thank Ms. Yoshimi Katagiri for her administrative support

during my attending a Ph.D. course. I would also like to appreciate all the member

of Inoue laboratory at Osaka University for their support of my research.

I would like to appreciate Dr. Masami Akamine, Dr. Shun Egusa and Dr. Naoshi

Uchihira for their understanding and support for my attending a Ph.D. course.

I would like to thank to Research Planning Office members, System Engineering

Laboratory members and Software Engineering Center members of Toshiba Corpo-

ration for their support of my research.

Last but not least, I would like to thank to my family for every support and

encouragement. Nobuko, she has been literally supporting me for everything. And

v

Yusuke, he has always been cheering me up. There’s no proper word to express my

gratitude to them.

vi

Contents

1 Introduction 1

1.1 Research Background . 1

1.2 Program Refactoring . 2

1.3 Refactoring Process Model . 4

1.4 Major Activities in Refactoring Process 6

1.4.1 Planning — Identification of Refactoring Candidates 6

1.4.2 Improvement — Execution of Refactoring 7

1.4.3 Evaluation — Validation of Refactoring 8

1.5 Research Objective . 8

2 Program Refactoring 11

2.1 Defining Refactoring . 11

2.2 Motivations for Refactoring . 12

2.3 Refactoring Catalog . 13

2.3.1 Composing Methods . 14

2.3.2 Moving Features Between Objects 15

2.3.3 Organizing Data . 16

2.3.4 Simplifying Conditional Expressions 17

2.3.5 Making Method Calls Simpler 18

2.3.6 Dealing with Generalization 20

vii

2.3.7 Big Refactorings . 21

3 Supporting Refactoring Using Invariants 23

3.1 Introduction . 23

3.2 Related Work . 24

3.3 Invariant Discovery . 26

3.4 Finding Refactoring Candidates . 29

3.5 Candidate Refactorings

Discoverable from Invariants . 31

3.5.1 Remove Parameter . 31

3.5.2 Eliminate Return Value . 33

3.5.3 Separate Query from Modifier 34

3.5.4 Encapsulate Downcast . 36

3.5.5 Replace Temp with Query . 37

3.6 Analysis of Nebulous . 40

3.7 Static and Dynamic Approaches . 45

3.8 Conclusion . 47

4 A Quantitative Evaluation of Refactoring Effect 51

4.1 Introduction . 51

4.2 Supporting Refactoring Process . 53

4.3 Refactoring Effect Evaluation . 54

4.3.1 Definition of Refactoring Effect 54

4.3.2 Refactorings enhancing module couplings 55

4.3.3 Refactorings enhancing module cohesions 57

4.3.4 Refactoring Effect from Cohesiveness Viewpoint 60

4.4 Quantitative Coupling Evaluation . 64

4.4.1 Definition of Coupling . 64

viii

4.4.2 Combining Three Couplings 66

4.5 Experiment and Result . 67

4.5.1 Example of Quantification . 67

4.5.2 Experiment . 70

4.5.3 Consideration . 72

4.6 Expansion and Related Works . 75

4.7 Conclusion . 76

5 Summary 79

5.1 Toward Practical Application of Refactoring 79

5.2 Future Works . 81

ix

x

List of Figures

1.1 Refactoring Process . 4

3.1 An overview of dynamic invariant inference as implemented by the

Daikon tool . 27

4.1 Quantitative Cohesion . 59

4.2 Example of “Separate Query from Modifier 63

4.3 Before “Move Method” . 68

4.4 After “Move Method” . 69

4.5 Example of Good Refactoring . 73

4.6 Example of Not-So-Good Refactoring 74

5.1 Growth of Software Size in Embedded Systems 80

xi

xii

List of Tables

1.1 Status quo of refactoring process support 9

4.1 Contributing factors . 56

4.2 Refactoring Experiment Result . 72

5.1 Technology map in refactoring process 82

xiii

xiv

Chapter 1

Introduction

1.1 Research Background

Nowadays softwares are getting more and more important for various systems and

devices around us. At the same time, required functionalities and performance are

also getting higher and higher. In other words, it is getting more and more important

to develop higher-quality software as quick as possible. Naturally speaking, develop-

ing all those softwares from scratch is not a realistic idea at all. We do have some

reasonable method to develop software systems without writing a lot of new pieces

of code.

Generally speaking, however, it is rather hard to utilize existing software codes.

Most of the case those source codes are not supposed to be used for different sys-

tems other than the original target system. As for rather reusable source codes,

there could always be an “unpredictable” need of customize because anticipating

any possible applications at the development stage is impossible. For instance, an

application software installed in a cell phone system would interact not only with

those softwares in the cell phone but also a number of software components and/or

hardware devices over the network. It is obviously impossible to presume those ev-

1

ery potential interaction opponents at the development stage. Therefore customizing

existing softwares is inevitable today’s software system development.

In conventional way of software development, especially in enterprise software

development sites, nothing more important than implementing required functionality

as quickly as possible. In other words, so called non-functional requirements such

as maintainability, portability, etc. are less cared or even ignored intentionally due

to delivery constraint. Such softwares often require enormous amount of time to

acquire necessary information, or even have developer extract wrong information to

customize. Moreover, if the modularization is not done properly, there might be an

unexpected side effect to other modules/functionalities which cannot be traced very

easily.

There is another problem. Customizing an existing software induces a potential

deterioration problem. Although softwares are free from aged-deterioration, quali-

ties of software can be deteriorated by various modification including adding a new

functionality, fixing a bug and other maintenance activities. Among a number of

qualities, non-functional qualities like maintainability and portability are often im-

paired because most modifications are based on functional quality requirements. As

a result, such deterioration often makes software customization rather hard.

1.2 Program Refactoring

Program refactoring is a technique in which a software engineer applies well-defined

source-level transformations with the goal of improving the code’s structure and

thus reducing subsequent costs of software evolution. Initially developed in the early

1990s [32, 18, 31, 21], refactoring is increasingly a part of mainstream software de-

velopment practices [16]. As just one example, one of the basic tenets of Extreme

Programming [4] is to refactor on a continual basis, as a fundamental part of the

2

software development process.

Program refactoring is a technique to improve readability, structure, performance,

abstraction, maintainability, or other characteristics by transforming a program.

Program refactoring can be used to diagnose the quality and improve customiz-

ability of the target software. Highly motivated and skillful software developers

actually apply this technique in practice. And, of course, Fowler’s work organiz-

ing the program refactoring catalog encourages many software developers to apply

program refactoring to their software development processes.

On the other hand, program refactoring is not a very simple technique to apply.

Firstly, it is often very difficult to identify which part of the program should be refac-

tored without understanding basic notion of software quality. Secondly, softwares in

practice are so large in scale that developers have to spend decent amount of time

to inspect the whole target software. In addition, it is hardly possible to secure that

there is no slipped-out. And finally, program refactoring potentially introduces a

new bug in the source code because it does require a source code modification.

In fact, refactoring is not applied in practice as frequently as might be beneficial.

There are a number of reasons for this, including managerial (such as, “we need

to add features to ship the product, and refactoring doesn’t directly contribute to

that”) and technical (such as, “refactoring might break a subtle property of the

system, which is too dangerous”). There are a number of tools to help overcome

some of these problems: most of these automate the process of safely applying a

refactoring that an engineer has determined is appropriate (see Section 3.2).

The main objective of this thesis is to overcome those potential problems re-

garding program refactoring and make program refactoring more and more practical

technique. In this thesis, two major topics will be discussed. One is how to identify

which part of the program to be refactored. The other one is how to evaluate the

effectiveness of the program refactoring.

3

1.3 Refactoring Process Model

We analyzed the program refactoring process and found we need at least the following

three phases to perform appropriate refactorings.

1. Identification of refactoring candidates

2. Application of refactoring

3. Validation of refactoring effect

Fig. 1.1 shows the diagram of the refactoring process.

Original
Source Code

Bad-smell

Program
Weak points

Improvement
Plan

Refactoring

Improved
Source Code

Bad-smell
Detection

Bad-smell
Analysis

Refactoring
Planning

Plan Evaluation

Refactoring Validation

Functional Equivalence Validation

Refactoring
Deployment

Refactoring
Application

Improvement
Planning

Improvement Validation

Improvement
Execution

Figure 1.1: Refactoring Process

4

There are two axes in the diagram. The horizontal axis stands for the process

timeline and the vertical axis stands for the degree of abstraction of the product

(or roles in charge). Refactoring process always begins from the source code level

analysis. Verification and validation of refactorings have to be evaluated at the source

code level. This level is also referred as developer level. Developers need to confirm

that the observable behavior is the same before and after the refactoring by testing

and other means(functional equivalence validation).

The next level is referred as analyst level. At this level analysts verify the refactor-

ing against “bad-smell” detected by the source code analysis(refactoring validation).

The uppermost level is referred as manager level. The manager has to strate-

gically decide which refactoring should be carried out and which should not(plan

evaluation). Actually there is a strict trade off between the cost to apply the refac-

torings and the effect derived from the refactoring. From practical point of view, it

is very important to emphasize that the strategic decision made at this level would

greatly effect the tactical approaches of refactoring application at the lower levels.

A manager should organize the possible improvement alternatives submitted by an-

alysts to establish the refactoring plan. Otherwise the total quality improvement

activity will lead nowhere near the desirable result.

As introduced earlier, the refactoring process consists of the following three sub-

processes.

1. Identification of refactoring candidates

This subprocess appears as the bottom–left to top–middle flow in Fig. 1.1.

Starting with the identification of program points to be refactored, it includes

organization of refactorings and selection of refactorings to be applied.

2. Application of refactoring

This subprocess appears as the top–middle to bottom–right flow in Fig. 1.1.

It includes the ordering of each refactoring according to the priority in terms

5

of cost–effect trade–off by the analyst and the actual code modification by the

developer.

3. Validation of refactoring effect

This subprocess corresponds to the arrows connecting the identification flow

and the application flow in Fig. 1.1. At the developer level, mainly the func-

tional equivalence before and after the refactoring should be verified. At the

analyst level, the intended effect should be validated. At the manager level,

the cost–effect trade–off should be substantiated.

1.4 Major Activities in Refactoring Process

1.4.1 Planning — Identification of Refactoring Candidates

Extract Bad-smells (developer level)

First of all, developers should identify the causes that deteriorate readability and/or

maintainability of their own source code. “Bad-smell” is a program property or

characteristic that implies one or more (potential) problems in the source code[16].

There are various smells from simple ones like “Large Class” and “Long Method”

to fairly complicated ones like “Parallel Inheritance Hierarchies” and “Inappropriate

Intimacy.”

Identify Bad-smells’ causes (analyst level)

Next thing to be done is to identify the causes of bad-smells. This might be trivial

for some simple bad-smells like “Large Class.” In some cases, however, it requires

some deeper analysis of the target code to identify what causes a certain bad-smell

after all. The cause does not necessarily exist anywhere near the smell itself. It is

6

often observed that introducing just one new method solves several bad-smells at

once.

Design quality improvement plan (manager level)

As mentioned above, the cost required to eliminate single bad-smell is different from

one another. One bad-smell will be eliminated by just introducing a new private

method while other bad-smell will require a number of modifications here and there.

Designing appropriate improvement plan often requires fairly high level decision mak-

ing concerning with cost and delivery.

1.4.2 Improvement — Execution of Refactoring

Select optimal refactoring set (analyst level)

Once the improvement plan is established, next thing to be done is to identify an

optimal set of refactoring since some of them may conflict each other. Based on the

target source code analysis, analyst should find an optimal set of refactoring and

parcel out the refactorings to the developers properly.

Modify source code (developer level)

Each developer applies the apportioned refactorings to her/his own code. Althogh

the refactoring set is supposed to be consistent by analyst, each developer should be

careful not to violate each other.

7

1.4.3 Evaluation — Validation of Refactoring

Validate improvement plan (manager level)

Manager should validate that designed improvement plan correctly grasp the targeted

weak points.

Validate refactoring candidates (analyst level)

Analyst should validate that derived refactorings correctly mend the targeted bad-

smells.

Validate functional equivalence (developer level)

Developer should validate that their program does not change its observable behavior

after the refactoring.

1.5 Research Objective

The main objective of this series of researches is how to support the refactoring

process effectively so that program development projects can adopt the process easily

and enhance the maintainability of the target software. Although there are several

distinguished research results for some activities of the process, it is still far from

being the comprehensive support of the refactoring process we stated above.

For instance, there are some fundamental studies on the refactoring application

phase including Griswold and Notkin’s work[21]. Table 1.1 summarizes the current

status of the refactoring process support.

Among these research areas, Chapter 3 introduces a tool to support engineers

in refactoring software: automatically finding candidate refactorings. The recom-

mended manual method of identifying beneficial refactorings is to observe design

8

Table 1.1: Status quo of refactoring process support

Subprocess Activity Support

Planning bad–smell detection partly

bad–smell analysis partly

refactoring planning partly

Validation plan evaluation no

refactoring validation no

functional equivalence validation no

Execution refactoring deployment no

refactoring application partly

shortcomings manifested during development and maintenance [17]. Unfortunately,

design problems may be overlooked or ignored by a programmer, particularly under

deadline pressures and the intellectual demands of implementing correct changes.

The technology introduced in Chapter 3 for identifying refactoring candidates

uses program invariants: a particular pattern of invariants at a program point in-

dicates the applicability of a specific refactoring. This use of program invariants is

complementary to other approaches such as human examination or pattern-matching

over the source code.

Chapter 4 introduces a quantitative evaluation guideline to measure the main-

tainability enhancement effect of program refactoring. This research focused on the

module coupling metrics and the module cohesion metrics to evaluate the refactoring

effect. Comparing the metrics before and after the refactoring, we could evaluate the

degree of maintainability enhancement.

9

10

Chapter 2

Program Refactoring

This chapter introduces the basic idea of program refactoring with several examples

which are actually referred and used in this series of researches more precisely.

2.1 Defining Refactoring

Fowler defines refactoring as follows [16].

Refactor(verb): to restructure software by applying a series of refactorings without

changing its observable behavior.

Refactoring(noun): a change made to the internal structure of software to make

it easier to understand and cheaper to modify without changing its observable

behavior.

Fowler clarifies these definitions in two points. First, the purpose of refactoring

is to make the software easier to understand and modify. Although there are a num-

ber of possible changes one can make in software that make little or no change in

the observable behavior, only changes made to make the software easier to under-

stand are refactorings. Fowler contrasts refactoring with performance optimization.

11

That is, neither refactoring nor performance optimization changes the behavior of a

component; it only changes the internal structure. The major and very important

difference is that performance optimization often makes code harder to understand

while refactoring does make code easier to understand.

Second, refactoring does not change the observable behavior of the software.

Fowler emphasizes this point like this; any user, whether an end user or another

programmer, cannot tell that things have changed. Fowler also introduces Kent

Beck’s metaphor of two hats to support this point. A developer cannot add function

and refactor at the same time. She or he have to wear one hat at a time, either

“adding function” hat or “refactoring” hat. As the development progresses, the

developer should swap the hats frequently. Unless such an obvious change of state

of mind, neither adding function nor refactoring will take effect.

2.2 Motivations for Refactoring

Fowler introduces several motivations for refactoring. First, refactoring will improve

the design of software. As mentioned earlier, the design of the program may be

deteriorated as people change code —changes to realize short-term goals or changes

made without a full comprehension of the design of the code. Refactoring helps reor-

ganizing the code and its design so that non-functional qualities like maintainability

and portability are improved and enhanced.

Second, refactoring will make software easier to understand. This notion implies

two different meanings. One perspective is very straightforward from the definition.

Since refactoring is supposed “to make it(program) easier to understand,” the re-

sulted program after refactoring will become easier to understand. As for the other

perspective, Fowler introduces the following story[16].

This understandability works another way, too. I use refactoring to help

12

me understand unfamiliar code. When I look at unfamiliar code, I have

to try to understand what it does. I look at a couple of lines and say to

myself, oh yes, that’s what this bit of code is doing. With refactoring I

don’t stop at the mental note. I actually change the code to better reflect

my understanding, and then I test that understanding by rerunning the

code to see if it still works.

Third, refactoring will help find bugs. As seen in the previous quoted story,

refactoring itself is a process to understand what the code does. That does not

necessarily means that one can only understand what the code actually does but

also what the code should do, which means one has spotted a bug.

And finally, refactoring will help program faster. All the earlier points come down

to this conclusion. One of the reason why refactoring is not so popular is that most

of developers feel that refactoring is an extra work other than their required develop-

ment task. In fact, however, appropriate refactoring will actually save maintenance

effort greatly, since refactoring stops the design of the system from deterioration.

2.3 Refactoring Catalog

The original Fowler’s refactoring catalog in [16] contains 72 refactorings classified into

seven large categories. After the publication of the text book, a number of additional

refactoring techniques have been proposed. There also several information update

those in the original text book. Today total 93 refactorings have been defined. Those

refactorings can be referred at http://www.refactoring.com/catalog.

Since each refactoring name is fairly self-descriptive, here only shows the list of

refactorings for each category save those refactorings actually used in this research.

13

2.3.1 Composing Methods

Refactorings belonging to this category basically intend to package code properly.

Most refactorings in this category are useful when one found large methods.

There are two refactorings that are dealt in this thesis: “Extract Method” and

“Replace Temp with Query.”

Extract Method

“Extract Method” is intended for “a code fragment that can be grouped together.” [16,

p. 110] The refactoring turns the fragment into a method whose name explains the

purpose of the method. The rationale is that if there is a very large method that

does require some comment to understand its purpose, turning a fragment of code

into its own method will increase the understandability of the method. Fowler also

emphasize the importance of selecting an appropriate short name for the extracted

method.

Replace Temp with Query

“Replace Temp with Query” is intended for “a temporary variable that holds the

value of an expression” [16, p. 120]. The refactoring extracts the expression into a

method and replaces uses of the temporary by method calls. The rationale is that the

expression may be used in multiple places and that eliminating temporary variables

can enable other refactorings. In essence, this is the user-level inverse of a compiler’s

application of the common subexpression elimination optimization.

The other refactorings belonging to this category are the followings.

• Inline Method

• Inline Temp

14

• Introduce Explaining Variable

• Split Temporary Variable

• Remove Assignments to Parameter

• Replace Method with Method Object

• Substitute Algorithm

2.3.2 Moving Features Between Objects

It is often rather difficult to place a certain functionality and data into an appropriate

class/object for the first time. Refactorings belonging this category help developers

to maintain their objects well-organized throughout the development phase.

“Extract Class” is dealt in this thesis as an example.

Extract Class

“Extract Class” is intended for “one class doing work that should be done by two.” [16,

p. 149] This refactoring create a new class and move the relevant fields and method

from the old class into the new class. A large class with a lot of data and methods is

very difficult to understand and reuse. Another potential problem is that such a class

will increase inter-class coupling complexity. The rationale is that by separating such

a large class into two (or more), you will get two (or more) handy classes which are

easier to understand. In addition, that separation will decrease coupling complexity

among classes.

The other refactorings belonging to this category are the followings.

• Move Method

15

• Move Field

• Inline Class

• Hide Delegate

• Remove Middle Man

• Introduce Foreign Method

• Introduce Local Extension

2.3.3 Organizing Data

Refactorings belonging to this category let developers gradually used to the basic

object-oriented programming paradigm. Typical examples may be “Replace Data

Value with Object” and “Replace Array with Object.” “Replace Data Value with

Object” let developer turn dumb data into a sophisticated object with appropriate

methods. When there is an array acting as a data structure, “Replace Array with

Object” will help turning the array into an appropriate object.

Although this thesis does not deal with any of them, there are following refactor-

ings in this category.

• Self Encapsulate Field

• Replace Data Value with Object

• Change Value to Reference

• Change Reference to Value

• Replace Array with Object

• Duplicate Observed Data

16

• Change Unidirectional Association to Bidirectional

• Change Bidirectional Association to Unidirectional

• Replace Magic Number with Symbolic Constant

• Encapsulate Field

• Encapsulate Collection

• Replace Record with Data Class

• Replace Type Code with Class

• Replace Type Code with Subclasses

• Replace Type Code with State/Strategy

• Replace Subclass with Fields

2.3.4 Simplifying Conditional Expressions

Refactorings belonging to this category might be familiar to many developers. Ac-

tually they are all conventional programming technique before the appearance of

object-oriented paradigm save a few refactorings like “Replace Conditional with

Polymorphism” and “Introduce Null Object.” The basic idea is to simplify the con-

ditional expressions so that one can understand the logic easily and clearly.

Although this thesis does not deal with any of them, there are following refactor-

ings in this category.

• Decompose Conditional

• Consolidate Conditional Expression

17

• Consolidate Duplicate Conditional Fragments

• Remove Control Flag

• Replace Nested Conditional with Guard Clauses

• Replace Conditional with Polymorphism

• Introduce Null Object

• Introduce Assertion

2.3.5 Making Method Calls Simpler

Refactorings belonging in this category basically make interface more straightfor-

ward. Actually there are variety of refactoring techniques from a very trivial but

reasonable one like “Rename Method” to highly sophisticated and rather difficult

one like “Separate Query from Modifier.”

There are three refactorings that are dealt in this thesis: “Remove Parameter,”

“Separate Query from Modifier” and “Encapsulate Downcast.”

Remove Parameter

“Remove Parameter” is intended to apply when “a parameter [is] no longer used by

the method body” [16, p. 277]. A parameter can also be removed when its value

is constant or can be computed from other available information. The refactoring

eliminates the parameter from the declaration and all calls. The rationale is that

extraneous parameters are confusing and burdensome to users of the code.

Separate Query from Modifier

“Separate Query from Modifier” is intended for “a method that returns a value but

also changes the state of an object” [16, p. 279]. The refactoring converts a single

18

routine into two separate routines, one of which returns the query result and the

other of which performs the modification. The rationale is to give each routine a

single clearly defined purpose, to permit clients to perform just the query or just

the modification, and to create side-effect-free procedures whose calls may be freely

inserted or removed.

Encapsulate Downcast

“Encapsulate Downcast” is intended for “a method that returns an object that needs

to be downcasted by its callers” [16, p. 308]. The refactoring changes the return type

and moves the downcast inside the method. The rationale is to reduce the static

number of downcasts and to simplify implementation and understanding for clients.

It can also permit type checks to be performed statically (at compile-time) rather

than dynamically (at run-time), which has the dual benefits of early error detection

and of improved performance.

The other refactorings belonging to this category are the followings.

• Rename Method

• Add Parameter

• Parameterize Method

• Replace Parameter with Explicit Methods

• Preserve Whole Object

• Replace Parameter with Method

• Introduce Parameter Object

• Remove Setting Method

19

• Hide Method

• Replace Constructor with Factory Method

• Replace Error Code with Exception

• Replace Exception with Test

2.3.6 Dealing with Generalization

Refactorings belonging to this category often change the class hierarchy. In that

sense, these refactorings are very difficult to apply. These refactorings will, however,

greatly improve the non-functional qualities such as maintainability, understandabil-

ity and portability once appropriately applied.

Although this thesis does not deal with any of them, there are following refactor-

ings in this category.

• Pull Up Field

• Pull Up Method

• Pull Up Constructor Body

• Push Down Method

• Push Down Field

• Extract Subclass

• Extract Superclass

• Extract Interface

• Collapse Hierarchy

20

• Form Template Method

• Replace Inheritance with Delegation

• Replace Delegation with Inheritance

2.3.7 Big Refactorings

Refactorings belonging to this category are different from those introduced in pre-

ceding sections. These are more like refactoring strategies than mere refactoring

techniques. As for deeper discussion about this category will be found in [16], which

is beyond the scope of this thesis.

• Tease Apart Inheritance

• Convert Procedural Design to Object

• Separate Domain from Presentation

• Extract Hierarchy

21

22

Chapter 3

Supporting Refactoring Using

Invariants

3.1 Introduction

Our research shows the feasibility of another kind of tool to support engineers in refac-

toring software: automatically finding candidate refactorings. The recommended

manual method of identifying beneficial refactorings is to observe design shortcom-

ings manifested during development and maintenance [17]. Unfortunately, design

problems may be overlooked or ignored by a programmer, particularly under dead-

line pressures and the intellectual demands of implementing correct changes.

Our technology for identifying refactoring candidates uses program invariants:

a particular pattern of invariants at a program point indicates the applicability of

a specific refactoring. This use of program invariants is complementary to other

approaches such as human examination or pattern-matching over the source code.

Furthermore, the invariants of the refactored (modified) program indicate which

properties were maintained and which were changed, which helps to check that the

refactoring was applied properly.

23

To broaden the applicability of our approach beyond programs for which engi-

neers have written invariants explicitly, we automatically infer the invariants used

to find candidate refactorings. In particular, we use the Daikon tool for dynamically

discovering program invariants [12, 13].

In the following we discuss prior work in refactoring (Section 3.2), Daikon’s ap-

proach to detecting invariants (Section 3.3), our approach to finding refactoring

candidates (Sections 3.4 and 3.5), and a case study of its use (Section 3.6). We close

with a comparison of dynamic and static refactoring detection (Section 3.7) and a

discussion of contributions and future work (Section 3.8).

3.2 Related Work

Refactoring Tools. Refactoring is ideally suited to automation: engineers want

to apply refactorings, but applying them manually is error-prone (as are all manual

software modifications). This research focuses on identifying candidates for refactor-

ing and, to a lesser degree, on checking that manually applied refactorings preserve

meaning. In contrast, nearly all the related work focuses instead on automatically

applying refactorings once an engineer has identified a candidate. These two styles

of automation dovetail quite naturally.

Opdyke [32, 31] and Griswold [18, 21] defined early tools to apply refactorings

and ensure that the meaning of the program was left unchanged by the refactoring.1

A number of more recent tools also support refactoring: the Smalltalk Refactoring

Browser [33], which automatically performs a set of refactorings taken primarily from

1Precisely defining what it means to leave the meaning of the program unchanged is important

and challenging. For example, the functional properties may be kept stable, but performance prop-

erties may change— indeed, that might be one of the motivating reasons to apply the refactoring.

The details of this issue are beyond the scope of this paper; they are addressed by Griswold [18]

and Roberts [34].

24

Opdyke’s original work; the IntelliJ Renamer tool (www.intellij.com), which supports

renaming of packages, variables, etc. and moving of packages and classes for Java;

and the Xref-Speller (www.xref-tech.com/speller/), which extends the Emacs editor

to support a set of refactorings for C and for Java.

Roberts [34] discusses analyses to support refactoring, especially those defined by

Opdyke. Roberts observes that few of Opdyke’s refactorings are applied on their own,

so he defines the postconditions that hold after a refactoring is applied. This def-

inition allows precise reasoning of postcondition–precondition dependencies among

refactorings, which in turn allows compositions of refactorings to be defined. Further-

more, Roberts discusses dynamic refactoring in which the program, while running,

checks for certain properties, applies appropriate refactorings, and then can retract

those refactorings if the required conditions are later violated. Although Roberts’s

effort has similarities to our result — it aids in refactoring by exploiting program pred-

icates obtained by dynamic analysis— it, like the tools mentioned above, focuses on

the application of refactorings, while we focus on locating where refactorings might

apply.

Moore’s Guru tool [30, 29] automates two specific and somewhat more global

refactorings. It employs a graph-based inheritance hierarchy inference algorithm that

can automatically restructure an object-oriented hierarchy for programs written in

Self [36]. Using a similar algorithm, Guru can also automatically extract shared

expressions from methods.

Bowdidge’s Star Diagram [7, 8] hierarchically classifies references to chosen vari-

ables or data structures, and provides a tree-based graphical visualization to highlight

redundant patterns of usage, facilitating an appropriate object-oriented redesign.

The visualization has been used both as the front-end to an automated refactoring

tool and a refactoring planner [20]. The tool does not recommend specific refac-

torings, and the tool user must identify the variables or data structures that are

25

candidates for refactoring.

Finding Duplication in Software. Other related work identifies potential dupli-

cation in software systems. Baker [2], for example, locates instances of duplication

or near-duplication in a software system by checking for sections of code that are

textually identical except for a systematic substitution of one set of variable names

and constants for another. Further processing locates longer sections of code that

are the same except for other small modifications. Experimental results showed the

approach to be effective and fast. There are at least two distinctions between Baker’s

approach and ours. First, Baker’s approach identifies the similarities but does not

suggest specific refactorings. Second, it identifies only refactoring candidates involv-

ing redundancy, but many refactorings apply to code patterns that appear only once

or to code patterns that differ.

Kontogiannis et. al. [28] describe three analysis techniques—source code met-

rics, dynamic programming, and statistical matching— for finding patterns in code.

Experimental results have been promising on moderately-sized systems such as sev-

eral Unix shells. These techniques—and similar ones such as plan recognizers —are

aimed at supporting general program understanding, reverse engineering, and ar-

chitectural (and design) recovery activities. Although our work has a high-level

relationship to efforts like these, our work is distinct due to our use of invariants and

our focus on refactoring.

3.3 Invariant Discovery

Dynamic invariant detection [13] discovers likely invariants from program executions

by instrumenting the target program to trace the variables of interest, running the in-

strumented program over a test suite, and inferring invariants over the instrumented

values (Figure 3.1). The inference step tests a set of possible invariants against the

26

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Figure 3.1: An overview of dynamic invariant inference as implemented by the Daikon

tool

values captured from the instrumented variables; those invariants that are tested to a

sufficient degree without falsification are reported to the programmer. As with other

dynamic approaches such as testing and profiling, the accuracy of the inferred invari-

ants depends in part on the quality and completeness of the test cases. The Daikon

invariant detector is language independent, currently supporting instrumenters for

C, Java, and Lisp.

Daikon detects invariants at specific program points such as loop heads and pro-

cedure entries and exits; each program point is treated independently. The invariant

detector is provided with a variable trace that contains, for each execution of a

program point, the values of all variables in scope at that point. Each of a set of

possible invariants is tested against various combinations of one, two, or three traced

variables.

For variables x, y, and z, and computed constants a, b, and c, some examples

are: equality with a constant (x = a) or a small set of constants (x ∈ {a, b, c}), lying

in a range (a ≤ x ≤ b), non-zero, modulus (x ≡ a (mod b)), linear relationships like

z = ax + by + c, ordering (x ≤ y), a range of functions (x = fn(y)), and invariant com-

binations (x + y ≡ a (mod b)). Also sought are invariants over a sequence variable

such as minimum and maximum sequence values, lexicographical ordering, element

27

ordering, invariants holding for all elements in the sequence, or membership (x ∈ y).

Given two sequences, some example invariants are elementwise linear relationship,

lexicographic comparison, and subsequence relationship.

In addition to local invariants such as node = node.child.parent (for all nodes),

Daikon detects global invariants over pointer-directed data structures, such as mytree

is sorted by ≤. Finally, Daikon can detect conditional invariants that are not univer-

sally true, such as if p 6= NULL then ∗p > x and p.value > limit or p.left ∈ mytree. Pointer-

based invariants are obtained by linearizing graph-like data structures. Conditional

invariants result from splitting data into parts based on the condition and comparing

the resulting invariants; if the invariants in the two halves differ, they are composed

into a conditional invariant [15].

For each variable or tuple of variables, each potential invariant is tested. Each

potential unary invariant is checked for all variables, each potential binary invariant

is checked over all pairs of variables, and so forth. A potential invariant is checked by

examining each sample (i.e., tuple of values for the variables being tested) in turn. As

soon as a sample not satisfying the invariant is encountered, that invariant is known

not to hold and is not checked for any subsequent samples. Because false invariants

tend to be falsified quickly, the cost of computing invariants tends to be proportional

to the number of invariants discovered. All the invariants are inexpensive to test and

do not require full-fledged theorem-proving.

To enable reporting of invariants regarding components, properties of aggregates,

and other values not stored in program variables, Daikon represents such entities

as additional derived variables available for inference. For instance, if array a and

integer lasti are both in scope, then properties over a[lasti] may be of interest,

even though it is not a variable and may not even appear in the program text. Derived

variables are treated just like other variables by the invariant detector, permitting

it to infer invariants that are not hardcoded into its list. For instance, if size(A) is

28

derived from sequence A, then the system can report the invariant i < size(A) without

hardcoding a less-than comparison check for the case of a scalar and the length of

a sequence. For performance reasons, derived variables are introduced only when

known to be sensible. For instance, for sequence A, the derived variable size(A) is

introduced and invariants are computed over it before A[i] is introduced, to ensure

that i is in the range of A.

An invariant is reported only if there is adequate evidence of its plausibility. In

particular, if there are an inadequate number of samples of a particular variable,

patterns observed over it may be mere coincidence. Consequently, for each detected

invariant, Daikon computes the probability that such a property would appear by

chance in a random input. The property is reported only if its probability is smaller

than a user-defined confidence parameter [14].

The Daikon invariant detector is available for download from http://pag.csail.

mit.edu/daikon.

3.4 Finding Refactoring Candidates

The goal of this work is to aid the engineer in finding some of the nearly two dozen

“bad smells in code” [16, Chap. 3] that motivate refactorings. Human judgment is

still required to determine whether a candidate refactoring should be applied: the

engineer would apply the refactoring—either manually or using a tool such as those

discussed in Section 3.2— if it was judged to be of value.

Identifying refactoring candidates generally requires a semantic analysis of a pro-

gram. (In some cases, such as “Large Class” [16, p. 78], a weaker analysis may

identify some candidates.) Our approach is to use program invariants to automati-

cally identify candidate refactorings. A particular pattern of invariants identifies a

candidate refactoring and where to apply it.

29

We selected candidate refactorings from among those in Fowler et al. [16] and

manually determined the invariants that indicate their applicability.

As an example, the “Remove Parameter” refactoring can be applied if a param-

eter is not needed. This can arise, for example, when a parameter can be computed

from other parameters: a method is a candidate if an invariant over the parame-

ters indicates that one parameter is a function of the others. As one example, this

approach allowed us to find a situation in a substantial program in which a poten-

tially rectangular icon was always square: the height and width parameters were

always equal. Automatic detection of this property allowed the engineer to then

decide whether or not to apply the refactoring, depending on whether there was still

a desire to keep the original flexibility. (Even if the engineer chose not to apply the

refactoring, the relationship between the parameters could be retained, perhaps as

a comment or annotation, to provide additional documentation about the program;

this annotation could be mechanically checked from time to time to identify if and

when the potential flexibility was being utilized.)

There are three major steps to perform refactoring.

1. Identifying possible refactoring

2. Applying refactoring

3. Verifying refactoring

As for 2, several useful preceding researches exist [18][21][33][30][36][29]. They often

include 3 as a part. For instance, Refactoring Browser [34]

1. checks the possibility of a certain refactoring such as “Inline Temporary,” “Re-

move Parameter from Method,” and so on,

2. applies the refactoring to the code, and

3. verifies the refactored code from the specification viewpoint.

30

Our approach works regardless of how the invariants are created. If the invariants

are explicit in the code, then we can analyze those invariants to determine candidate

refactorings. In the common case where there are few or no explicit invariants, we

dynamically detect program invariants, as described in Section 3.3. (Section 3.7

compares dynamic and static analysis for identifying candidate refactorings.)

3.5 Candidate Refactorings

Discoverable from Invariants

This section describes the refactorings (largely from Fowler et al. [16]) that our tool

detects, and specifies the invariants that indicate their applicability. Section 3.6

presents a case study over Nebulous [22], including quantitative and qualitative re-

sults. We use some examples from this case study to clarify the refactorings discussed

here.

3.5.1 Remove Parameter

“Remove Parameter” is intended to apply when “a parameter [is] no longer used by

the method body” [16, p. 277]. A parameter can also be removed when its value

is constant or can be computed from other available information. The refactoring

eliminates the parameter from the declaration and all calls. The rationale is that

extraneous parameters are confusing and burdensome to users of the code.

“Remove Parameter” is applicable when either of the following preconditions (in-

variants at a procedure entry) holds:

• p = constant

• p = f(a, b, . . .)

31

where p is a parameter, f is a computable function, and a, b, . . . are either parameters

or other variables in scope at the procedure entry.

In Nebulous one parameter to the Aspect constructor was constant:

isAutomaticAspect = true .

In another case of a constant parameter, method SetFirstItemFlag turned out to

have only a single call, and that call passed a literal as the corresponding argument.

The example mentioned in the previous section— when the width and height

parameters for a rectangular icon were always equal— illustrates the power of using

invariants to find this refactoring. In general, determining equality of two parameters

requires nontrivial program analysis.

we found several examples such as the following.

We found the following invariant related with the parameter flag of the method

SetFirstItemFlag.

flag = true

This invariant implies that flag is useless parameter in this case and can be

eliminated from the parameter list.

public void SetFirstItemFlag(boolean flag)

{

mFirstItem = flag;

}

The name implies that the parameter is useless. In fact, there is only one usage

of this method.

public boolean InsertHistoryItem(int fileID, int lineNum)

{

32

...

if(-1 == mCurrentIndex)

item.SetFirstItemFlag(true);

...

}

Therefore the parameter flag can be removed.

3.5.2 Eliminate Return Value

“Eliminate Return Value” is intended for methods that return a trivial value or a

value that callers ignore; a value is trivial if it is constant or is computable from

other available values. Although this refactoring is not mentioned by Fowler [16], its

rationale and mechanics are similar to those of Remove Parameter (Section 3.5.1).

“Eliminate Return Value” is applicable if either of the following postconditions

(invariants at a procedure exit) holds:

• return = constant

• return = f(a, b, . . .)

where return stands for the procedure result, f is a computable function, and a, b, . . .

are in scope at the call site.

In Nebulous, method makeObjectObey in class CollisionCountCommand had the

postcondition

return = true

and in fact, this routine can never return false.

In the Nebulous source code, we found the following example.

public boolean makeObjectObey(Object inObject)

33

{

if(inObject instanceof nFlatLandPanel)

{

nFlatLandPanel panel =

((nFlatLandPanel)inObject);

mCollisionCount += panel.GetNumCollisions();

}

return true;

}

This method does return a value that is obviously useless because it is always

“true.”

3.5.3 Separate Query from Modifier

“Separate Query from Modifier” is intended for “a method that returns a value but

also changes the state of an object” [16, p. 279]. The refactoring converts a single

routine into two separate routines, one of which returns the query result and the

other of which performs the modification. The rationale is to give each routine a

single clearly defined purpose, to permit clients to perform just the query or just

the modification, and to create side-effect-free procedures whose calls may be freely

inserted or removed. Another common problem, at least in some of the Nebulous

code, is that the procedure name or documentation may not make the side effects

clear.

“Separate Query from Modifier” is applicable when two conditions hold at the

procedure exit:

• the postconditions do not contain return = constant, even though the procedure

returns a value, and

34

• for some variable a in scope at procedure entry (for instance, a formal param-

eter), the postconditions imply a 6= orig(a)

If the return value is constant, the “Eliminate Return Value” refactoring (Section 3.5.2)

will be recommended. Postconditions can imply a = orig(a) by, for example, contain-

ing a = func(a), where func is not the identity function.

Nebulous’ CursorHistory.GetNextItem method, which returns an object of

CursorHistoryItem, includes the following postcondition:

this.mCurrentIndex = orig(this.mCurrentIndex) + 1 .

This method returns an item in the list and also increments an index into the list.

We found the following invariants related with the method in question GetNextItem().

CursorHistory.GetNextItem()LCursorHistoryItem;:::EXIT85

this.mCurrentIndex > orig(this.mCurrentIndex)

The first line shows that GetNextItem() returns non-trivial value, or a

CursorHistoryItem class value to its callers. The following two lines show that the

inner status of this class, or the member mCurrentIndex is modified.

In Nebulous, we found a couple of examples, including the following:

public CursorHistoryItem GetNextItem()

{

CursorHistoryItem item = null;

if(mCurrentIndex < mHistoryItems.size() - 1)

{

mCurrentIndex++;

item = (CursorHistoryItem)

mHistoryItems.elementAt(mCurrentIndex);

35

}

return item;

}

This method returns an item in the list and increments the index at the same

time. There are two major problems with this implementation. First, the name of

the method does not necessarily imply it does, suggesting that it returns the next

item in the list and nothing else. In fact, the inner status of the list is changed by

invoking this method. Second there might be redundancy when we need a method

that performs either getting next item in the list or incrementing the index.

Rather it is preferable that we provide those two method, or “query part” and

“modify part” separately.

3.5.4 Encapsulate Downcast

“Encapsulate Downcast” is intended for “a method that returns an object that needs

to be downcasted by its callers” [16, p. 308]. The refactoring changes the return type

and moves the downcast inside the method. The rationale is to reduce the static

number of downcasts and to simplify implementation and understanding for clients.

It can also permit type checks to be performed statically (at compile-time) rather

than dynamically (at run-time), which has the dual benefits of early error detection

and of improved performance.

“Encapsulate Downcast” is applicable when the following postcondition holds:

• LUB(return.class) 6= declaredtype(return)

where LUB is the least-upper-bound operator and declaredtype(return) is the

declared return type of the procedure. Our current implementation approximates

this test with the conjunction of the following two conditions:

36

1. return.class = constant, and

2. return.class 6= declaredtype(return)

One example appears in method ShowAspect of class AspectTraverseComboBox:

elements of this.comboBoxItems have class AspectTraverseListItem

Although this.comboBoxItems is declared as a Vector (containing Objects), its

contents are always AspectTraverseListItem objects. These elements can be en-

capsulated in a more specific container, making the intention clearer.

In the Nebulous source code, we found[[statically?]] the following in the body

of ShowAspect:

public void ShowAspect(String pat) {

HiddenItem h =

(HiddenItem)hiddenItems.get(pat);

...

}

hiddenItems is a Vector object that holds HiddenItem class objects. It seemed

that hiddenItems holds HiddenItem class object only. Nevertheless hiddenItems is

declared as a general Vector object and therefore hiddenItems.get() is required

to be downcast by its caller.

There were a couple of other program points that have the same structure seen

here.

3.5.5 Replace Temp with Query

“Replace Temp with Query” is intended for “a temporary variable that holds the

value of an expression” [16, p. 120]. The refactoring extracts the expression into a

method and replaces uses of the temporary by method calls. The rationale is that the

37

expression may be used in multiple places and that eliminating temporary variables

can enable other refactorings. In essence, this is the user-level inverse of a compiler’s

application of the common subexpression elimination optimization.

“Replace Temp with Query” is applicable to a temporary variable if neither the

temporary variable nor the value of the expression that initialized it is changed

during the temporary variable’s lifespan. This is guaranteed by the conjunction of

the following two postconditions:

• temp = orig(temp), and

• a = orig(a), b = orig(b), . . . for all variables a, b, . . . in the (side-effect-free)

initializer for temp

Section 3.6 does not report any results for “Replace Temp with Query”, because

Daikon does not currently report invariants over the initial values of temporary vari-

ables. Extending Daikon to do so is relatively straightforward, but time-consuming.

(Another problem is the need to check values (of a, b, . . . above) at each use of the

temporary; checking only at the procedure exit would not preclude one of those val-

ues being changed, then changed back. A static analysis or programmer examination

could also suffice for this check.)

As a proof of concept of detecting “Replace Temp with Query”, we introduced

wrapper functions into Nebulous that make temporary variables into parameters,

thus making them visible to Daikon. Using the Daikon output for the modified

program, our refactoring pattern-matcher was able to detect candidates for

“Replace Temp with Query”. Consequently, we are confident that this refactoring

can be detected automatically when we improve Daikon as described above. As an

example, method getIndex contained invariant

numAspects = orig(numAspects) = size(this.aspects)

indicating that the computation of numAspects could be abstracted or eliminated.

38

In the Nebulous source code, we found several examples including the following.

public Aspect itineraryLine(String pat, String path,

int lineNumber, boolean adding) {

int index = getIndex(pat);

Aspect aspect = null;

if(index >= 0) {

aspect = (Aspect)aspects.elementAt(index);

...

}

...

}

It may be, however, getting more difficult to realize that which value index holds

if the method implementation is so long that we cannot see the definition and the

usage in one screen.

An important precondition to applying this refactoring is to confirm that neither

pat nor the return value of getIndex itself is changed throughout the lifespan of the

temporary variable index.

This refactoring requires invariant information related with a local variable which

current Daikon cannot handle. To demonstrate the availability of dynamic invariants,

however, we introduced a dummy wrapping method which enables Daikon to handle

such a local variable in question.

For instance, we made the following change to a method in question.

private int getIndex(String aspectPattern) {

int numAspects = aspects.size();

return getIndexReal(aspectPattern, numAspects);

}

39

// private int getIndex(String aspectPattern)

private int getIndexReal(String aspectPattern, int numAspects)

{

int indexFoundAt = -1;

// numAspects = aspects.size();

...

}

}

This modification allows Daikon to detect variable numAspects related invari-

ants. As a result, we found the following Daikon output as a dynamic invariant for

getIndexReal() method.

numAspects = orig(numAspects) = size(this.aspects)

This implies that the temporary variable numAspects in the original getIndex()

method is never changed during the method scope. Therefore every appearance of

numAspects in the original getIndex() method can be replaced with aspect.size()

query method to enhance the readability.

3.6 Analysis of Nebulous

To demonstrate the feasibility of our invariant pattern matching method and to

gather informal empirical data about its effectiveness, we applied our technique to

Nebulous, a component of Aspect Browser [22]. Nebulous is a software tool that

employs simple pattern matching and the geographic map metaphor both to visualize

how the code of a program feature or property crosscuts the file hierarchy of the

40

program, and to manage changes to that code. Nebulous is written in Java, and

consists of 78 files and a similar number of classes, amounting to about 7000 lines of

non-comment, non-blank source code. Over its three year history, it has had three

different primary developers under the guidance of one of the co-authors.

We applied our approach as follows:

1. We wrote Perl scripts to identify the patterns of invariants that indicate that

particular refactorings may apply (Section 3.5).

2. We used Daikon to extract invariants from a typical Nebulous execution. The

test runs of Nebulous exercised a variety of features over two inputs— a student

assignment from an MIT class and the source code of Nebulous itself.

3. We ran the Perl scripts over the extracted invariants to identify candidate

refactorings from among those described in Section 3.5.

4. The current programmer on the Nebulous project evaluated the usefulness of

the recommendations. This evaluation occurred in the presence of one of the

co-authors so that qualitative issues could be observed.

The Nebulous programmer classified the recommendations into: yes, the rec-

ommendation is good; no, the recommendation is not good at all; or maybe, the

refactoring might be a good idea, or another refactoring might be better.

Name yes maybe no total

Remove Parameter 6 4 5 15

Eliminate Return Value 1 2 4 7

Separate Query from Modifier 0 2 0 2

Encapsulate Downcast 1 1 0 2

Total 8 9 9 26

Remove Parameter Most of the yes’s in this category are due to the same literal

or object being passed in from all call sites. For a single object being passed in, the

41

restructuring is tricky, since the object’s data must still reach the method. Since the

object is a singleton, the incoming object’s class could be refactored to make it a static

class, thus making the data readily accessible via static methods. Most of the no’s

and maybe’s in “Remove Parameter” were detected as candidates because in each

instance a flag of the same value was passed in on every call, and this flag controls a

case statement that is driving a method dispatch. Thus, although the programmer

deemed it incorrect or inappropriate to perform “Remove Parameter,” he did decide

that “Replace Parameter with Explicit Methods” [16, p. 285] would be appropriate,

which would push the switching logic outside the method using the flag. Extending

the tool’s pattern matching to recognize flags—by detecting the passing of a limited

range of values to a method—could yield the appropriate recommendation.

Eliminate Return Value The yes here is for a function that always returns true.

The four no’s are due to the fact that the usage scenario failed to exercise a couple

of Nebulous’ more obscure features. (This weakness is due to our use of a dynamic

method for discovering invariants: the reported invariants were false and would be

eliminated through the use of a richer test suite or a sufficiently powerful static

technique.) The two maybe’s are functionally correct, but their value is dubious.

For example, the createAspect method of class AspectBrowser need not return its

value, but the programmer judged it convenient for additional processing after the

aspect was created.

Separate Query from Modification The two maybe’s for this refactoring are a

matter of programming style. The programmer likes a style of iterator (for example)

that uses a modify-and-return approach, which inherently combines the query and

the modification. It should be straightforward to customize the invariant pattern

matcher to account for programmer preferences, for instance disabling patterns that

make recommendations that contradict the programmer’s preferred style.

42

Encapsulate Downcast Both recommendations made by the tool are correct.

However, in one case ten casts on a vector appear in the code, in the other just

two appear. In the latter case the programmer marked this as a maybe since the

amount of casting was limited, thus mitigating the benefits of creating a new class

to encapsulate the casting.

Overall, the programmer felt that the use of the tool was quite valuable. The

tool’s recommendations, although not large in number, revealed fundamental archi-

tectural features — the programmer would say flaws—of Nebulous. In particular,

although the tool did not detect every use of flags in the system to control method

dispatch, the programmer used his knowledge of the system to extrapolate from

these few cases to the architectural generalization. Also, although a number of the

recommended refactorings were not of interest to the programmer, he quickly picked

out the gems, wasting little time on the uninteresting recommendations. Moreover,

even the no’s provided insight about Nebulous, in particular revealing the excessive

use of flags.

Several recommended refactorings, although correct, possessed subtleties that

would complicate their application, perhaps enough to discourage their application.

One example is “Remove Parameter,” which in some cases would necessitate con-

verting a singleton object into a static class. In another case, the recommendation,

although technically not meaning-preserving, convinced the programmer that the

exceptional, falsifying case should be eliminated to simplify the program. Thus, the

process was not an exercise in refactoring alone, but also in functional redesign.

Based on these results, the programmer plans to eliminate the prevailing archi-

tectural flaw, systematically refactoring the code to largely eliminate the use of flags

and to convert key singleton objects into static classes.

Coincidentally, the programmer had recently used a simple clone-detection tool

based on text-based pattern matching [19] to ferret out copy-pasted code. The

43

refactoring recommendations derived from Daikon’s output are largely orthogonal to

the ones found with the clone detector, thus providing real value. This orthogonality

is not surprising, since the techniques described here depend upon run-time values

not available to the text-based clone detector.

Finally, we observe that some of the maybe’s pertain to the refactoring’s use-

fulness in improving the design, rather than its correctness. For “Separate Query

from Modification,” this was a matter of style. For such cases, a more complete

user interface to our tool would permit a programmer to selectively disable classes of

recommendations to avoid being bothered by them. In other cases, the usefulness of

the refactoring is a matter of degree. For “Encapsulate Downcast,” the programmer

felt that the number of casts (and how widespread they were) was a determinant of

usefulness. This is a static property of the program’s design, as it pertains to the

way computations are expressed and modularized into classes and methods. Conse-

quently, it seems that the complementary strengths of dynamic and static analysis

would best be combined to achieve high accuracy in refactoring recommendations.

Also, in several instances, when we looked at a recommended refactoring, one

of the developers of Nebulous said, “Oh, yeah” as a recognition of a problem he’d

noticed in passing during other maintenance efforts. It’s notable that he had declined

to make the changes at the time–some in part because further work would have been

required to verify what Daikon confirmed—and had his attention brought back to

them by the refactoring recommendations.

We believe that a simple customization to the tool would permit a programmer to

control what recommendations are made based on “style” parameters. For example,

don’t suggest “Inline Temp” when the temp is a loop bound.

Of course, if more cases had been run, we’d see a different set of invariants (fewer

false hits, more invariants that didn’t make the cut). What’s interesting is that

invariants from limited usage are valuable, as they convey typical versus general

44

cases, and it leads one to think about whether the exceptional cases could somehow

be eliminated.

In fact, recommendations that involve a value being constant or a function of

other values are the most useful, as these are the hardest for us to detect. The

“Inline Temp” case is a simple one because it’s usually all in one method. But when

the constant or computed value is dependent of how a number of clients use the

service, that’s really valuable, because we have to bounce all over the program–and

maybe even run it— to verify that indeed the hypothesized limited use is in fact

limited. In fact, some of these limited uses were a surprise to us. We found a

singleton object (StatsGenerator) that should help simplify the code.

We also observed that refactorings will start to cascade once the initial recom-

mendations are made. Making the StatsGenerator a singleton will likely eliminate

a case statement altogether, which in turn may eliminate an entire method. Like-

wise, there was a recommended refactoring of KeepStats, and we think that this

functionality is overly complex and can be eliminated by having stats kept all the

time. This won’t be a simple refactoring, however, as it will involve a small change

in behavior that could be tricky.

3.7 Static and Dynamic Approaches

This section briefly compares our technical approach for identifying refactorings to

alternative approaches using static rather than dynamic analysis techniques.

Our basic approach is independent of how invariants are found. But our actual

tools, and the case study based on those tools, use dynamic techniques— those that

run the program and observe its execution. Dynamic analysis is by no means the

only reasonable way to detect refactorings; we have suggested it as a complementary

technique that can enhance other techniques and enable more refactorings to be

45

performed.

The central alternative to dynamic analysis is, of course, static analysis. (Hu-

man analysis is sometimes more powerful than either, allowing deep and insightful

reasoning that is beyond hope for automation.)

The results of dynamic analyses inherently depend on the test suite used to

produce those results; by contrast, static analyses are in general sound with respect

to all possible program executions. Our dynamically-based results need to be verified,

either by the engineer or by a (static) analyzer such as a meaning-preserving tool

for applying the suggested refactoring (Section 3.2). Deferring checking should be

acceptable when most candidates are indeed applicable, as is the case for our tool.

The classic distinction between dynamic and static techniques is that the results

of dynamic analyses inherently depend on the test suite used to produce those results

while, in contrast, static analyses are in general sound with respect to all possible

program executions. This implies that our dynamically-based results need to be

verified by the engineer to ensure that they are accurate. An alternative in this

domain is to use a meaning-preserving tool for applying the suggested refactoring

(Section 3.2), which will fail if the suggested refactoring does not in fact apply. That

is, checking the soundness of the results can be delayed to a later tool; this may

be an acceptable approach when most reported invariants (and thus, in this work,

reported candidates for refactoring) are in fact true. This is a qualitative property

that seems to hold in our applications of dynamically extracted invariants to date,

including the current tool.

A combination of underlying analyses seems best for automated refactoring. Con-

sider again the question of when the “Remove Parameter” refactoring can be applied.

A parameter can be eliminated if it is never used, but also if its value can be de-

termined from other available information. The former can be determined in some

cases by a trivial lexical analysis (or by a deeper analysis, if the parameter is passed

46

to other routines that can be determined never to use it), and a dynamic analysis is

not appropriate. By contrast, determining the run-time relationship among variables

or their run-time values is beyond the capability of most static analyses, but can be

easily checked dynamically. In some cases, a combined static and dynamic analysis

will be most appropriate; for instance, static analysis can detect a pattern in the

program text, and dynamic analysis can verify that a necessary relationship holds

over the values, as for “Encapsulate Downcast. In other cases, static and dynamic

analysis can give different perspectives on a property; for instance, “Move Field” and

“Move Method” [16, pp. 142, 146] depend on how much the field or method uses or

is used by other classes. The static and dynamic usage counts may be quite different.

The applicability of many refactorings in the literature depends only on informa-

tion that can be obtained statically or even lexically. (As just one example, Fowler

states that “Remove Parameter” [16, p.277] is applicable if the parameter is never

used, but he omits cases where the parameter is constant, is computable from other

available values, or is only passed to other procedures that do not use it.) We hypoth-

esize that one reason for this bias is that programmers and authors are accustomed to

static analysis for program understanding, and a number of such tools exist. Daikon

(for invariant detection) and other dynamic analysis tools make a whole new class of

information available to programmers. We expect that this will change the way that

they think about their code, and in particular it will expand the set of refactorings

that people consider reasonable in the future.

3.8 Conclusion

This research indicates that program invariants can be used to effectively discover

refactoring candidates. Our results, although preliminary, are compelling: we can

extract invariants from a realistic codebase and use them to identify a set of refac-

47

torings that the author of the codebase had not previously identified or considered.

There are three especially attractive properties of our approach: first, the computa-

tion of the invariants and the identification of refactoring candidates is automatic;

second, the recommended refactoring is justified in terms of run-time properties of

the code (in the form of Daikon invariants) that must hold for the refactoring to be

correct; and third, our tool reports the candidate refactoring in terms of the actual

source code, which tends to reduce the hesitance of engineers who might wish to use

the tool. The results are sufficiently promising to justify further investment in this

approach.

A number of questions remain, which we expect to drive our future work in this

area. First, in our initial case study about half of the candidate refactorings showed

real promise. Ideally, we should reduce the other half of less-promising candidates to

relieve the engineer from having to consider them as possible refactorings. Selection

of better test suites and complementing our dynamic analysis with static analysis

could go a long way towards achieving this goal. Second, we need more empirical

assessment of the utility of our approach: our data point may not be representative of

programs in general, and determining if our approach works better or worse in other

situations is crucial. Third, we need to determine how well our approach dovetails

with other approaches for identifying refactoring candidates; the observation that our

approach found distinct candidates from some clone-based approaches is promising

in this regard. Fourth, we need to take steps towards integrating our tools with those

for applying refactorings (Section 3.2), with the intent of giving engineers a powerful

suite of refactoring tools.

With respect to the use of dynamically discovered invariants, our work provides

another data point for their potential effectiveness for realistic software engineering

tasks. This is the first use of invariants in which a tool consumes the invariants as

opposed to an engineer. A minor but interesting consequence of this is that our work

48

on improving the relevance of extracted invariants [14] is of less importance, since

our refactoring tool would not be distracted nor overwhelmed by additional, less

relevant invariants. This kind of observation can help drive the work on dynamically

discovering program invariants in new directions, too.

Using program invariants to discover refactoring candidates shows significant

promise as a complementary approach to tools that help to automate refactoring it-

self. That the reported candidate refactorings for Nebulous suggested some broader

changes to the codebase was unexpected; it hints that tools like this might address

additional problems that arise during software evolution and maintenance.

Acknowledgements

I would like to thank Professor William G. Griswold for his advice and collaboration

for the research introduced in Chapter 3. He often join us in a conference call to

discuss the research issues.

I would like to thank Wesley Leong for evaluating our tool’s recommendations

on Nebulous, and the anonymous referees for comments that improved the presenta-

tion. The research was also supported in part by NSF grant CCR-9970985, an IBM

Graduate Fellowship, and gifts from Edison Design Group, Microsoft Corporation,

and Toshiba Corporation.

49

50

Chapter 4

A Quantitative Evaluation of

Refactoring Effect

4.1 Introduction

According to [16], we can reap the following benefits from refactoring.

• Improve the design of software

• Make software easier to understand

• Find bugs

• Program faster

These statements seem to be intuitively true, and various qualitative evaluations

regarding the effectiveness of program refactoring have been proposed so far[23][27].

Experienced programmers easily acknowledge and realize the effectiveness of program

refactoring. Actually they are practicing refactoring as a routine work during the

program development.

51

On the other hand, inexperienced programmers cannot afford to apply program

refactoring because they are too busy implementing given requirements as fast as they

can, nor do managers properly realize the effect of refactoring. They are so occupied

to make their project meet the delivery that they dare not encourage programmers

to refactor their programs.

As stated in Chapter 2, there are at least the following three phases to perform

appropriate refactorings.

1. Identification of refactoring candidates

2. Application of refactoring

3. Validation of refactoring effect

Supporting the identification phase will encourage people to take program refac-

toring into consideration as a quality enhancement method. There are a few previous

works including our previous result.[24][26]

Supporting the application of refactoring will also help people to practice program

refactoring. There are several theoretical and practical approaches for the application

of refactoring.[18][21][34]

From the viewpoint of project managers, however, it is imperative to quantita-

tively evaluate the effect of program refactoring before applying it. Without knowing

the effect, managers cannot judge whether they should go for refactoring or not be-

cause they have to be cost sensitive.

We propose a quantitative evaluation guideline to measure the maintainability

enhancement effect of program refactoring. We focused on the module coupling

metrics and the module cohesion metrics to evaluate the refactoring effect. Com-

paring the metrics before and after the refactoring, we could evaluate the degree of

maintainability enhancement.

52

We begin with a description of the refactoring process and the current status of

supporting technologies of the process, and indicate what to be studied in Section

4.2. We begin with a definition of refactoring effect as a foundation of the refactoring

validation supporting method development in Section 4.3. Based on the discussion

in the previous section, we provide a detailed quantitative evaluation model of refac-

toring effect from module coupling viewpoint in Section 4.4, followed by Section 4.5,

which provides the experimental evaluation of the refactoring effect quantification.

Our future work, together with some related work information, is described in Section

4.6.

4.2 Supporting Refactoring Process

As stated in Chapter 2, the program refactoring process consists of three major

phases: identification of refactoring candidates, validation of refactoring effect, and

application of refactoring(see Fig. 1.1).

We are studying how to support the refactoring process effectively so that pro-

gram development projects can adopt the process easily and enhance the maintain-

ability of the target software. Although there are several distinguished research

results for some activities of the process, it is still far from being the comprehensive

support of the refactoring process we stated above.

For instance, there are some fundamental studies on the refactoring applica-

tion phase including Griswold and Notkin’s work[21]. The result introduced earlier

(Chapter 3) is also an approach to identify refactoring candidates using program

invariants[26]. We are developing a refactoring support tool “Refactoring Assistant”

which implements those existing approaches and others and supports a part of plan-

ning and execution of the refactoring process. Refactoring Assistant provides bad–

smell detection support based on static analysis of a program. It can detect almost

53

half of bad–smells described in [16]. It also provides automatic application of some

basic refactorings such as “Move Method,” “Extract Method,” and “Inline Method.”

As shown in Table 1.1 in Chapter 2, we need some effective approach to sup-

port the validation subprocess. Experienced developers and analysts who possess

fairly reasonable insight into software maintainability will be able to benefit from

the current planning subprocess and execution subprocess support. It is not nec-

essarily easy, however, to share such useful insight among all developers and ana-

lysts who are involved in a software development project. Quantitative evaluation of

those subjective judgments make the information sharing easier. Moreover validation

subprocess support allows software development project managers to enhance their

projects’ maintainability appropriately. Without such a managerial point of view,

maintainability enhancement tends to be ad hoc and might even make it worse.

In this research we focus on how to evaluate refactoring effect to support the plan

evaluation and refactoring validation.

4.3 Refactoring Effect Evaluation

4.3.1 Definition of Refactoring Effect

One of the major objectives of refactoring is the enhancement of the maintainabil-

ity of the software. Therefore it is reasonable to evaluate the refactoring effect in

terms of maintainability. We first focus on how to quantify the maintainability of

the software. There have been many distinguished previous works on the software

maintainability quantification.[3][10][5][37] From the refactoring point of view, how-

ever, it is reasonable to focus on the maintainability of each part of a program and

not of a whole program. Each refactoring technique has its own policy of how to

enhance the maintainability of a certain part of a program. For instance, one obvious

objective of “Extract Method” refactoring is to decrease the size of the method in

54

question. Reducing the size, of course, is one way to enhance the maintainability of

the method. “Replace Temp with Query” refactoring has a different objective to en-

hance the maintainability. It aims to separate a certain calculation as an independent

method in the enhancement of the cohesion of the method.

In this research, we focus on two major maintainability metrics: coupling and

cohesion. There are three reasons for selecting these two metrics. First, these two

viewpoints are quite essential during the quality control activity in our in-house

software development site. In fact, considerable amount of software problems caused

by highly coupled modules and low cohesion modules are found during the test

and maintenance phases. Second, a number of refactoring techniques introduced in

[16] intend to decrease the module coupling and/or enhance the module cohesion

as we mentioned above. Therefore evaluating refactoring effect based on these two

metrics is reasonable. Third, although these two metrics are essential in terms of

maintainability, it is very difficult to grasp the effect intuitively. Our developers

require handy evaluation method to judge whether a certain refactoring should be

applied or not in terms of cost-effect trade-off.

In the following, we classify several refactoring methods, which are often required

in our in-house software development site, introduced in [16] in terms of two metrics

and show the guideline to evaluate refactoring effect.

4.3.2 Refactorings enhancing module couplings

As represented by the early work by Stevens, Myers, and Constantine[35], module

couplings is an important metrics for maintainability. Stevens et al. illustrated three

major contributing factors of module couplings, which are “Interface complexity,”

“Type of connection,” and “Type of communication.”(See Table 4.1)

According to Table 4.1, there are three approaches to increase maintainability

using refactorings:

55

Table 4.1: Contributing factors

Interface Type of Type of

complexity connection communication

low simple, to module data

obvious by name

Coupling control

high complicated, to internal hybrid

obscure elements

1. making interface simple and obvious,

2. reducing direct connection into modules, and

3. simplifying exchanged data.

Making interface simple and obvious

One of the typical complicated/obscure interfacing patterns is exchanging data through

a shared variable. It is rather complicated because one should browse at least two

different objects to clarify the interface of a certain method/class. It is also obscure

because the shared variable does not directly appear in the function definition. In

that sense, replacing the shared variable with an obvious parameter would loosen

the coupling among methods/classes.

The number of data for interfacing also matters. The more data are exchanged,

the tighter is the coupling between modules.

We will show the refactoring effect using experimental results later.

56

Reducing direct connection into modules

An simple example of a direct connection into modules is that a class cA has a public

data dA, which is accessed by another class cB through a method mB. Fowler[16]

also mentions that such a direct connection is harmful because “other objects can

change and access data values without the owning object’s knowing about it.”

“Encapsulate Field” is a typical refactoring technique which resolves such a situ-

ation. In that sense, “Encapsulate Field” will reduce direct connection into modules

and hence increase maintainability from coupling viewpoint.

Simplifying exchanged data

Stevens et al. explain how to loosen the coupling between modules by simplify-

ing exchanged data[35]. For instance, method mA passes a flag fA to method mB

which includes two distinct actions, aB1 and aB2. In mB, fA decides which of aB1

and aB2 should be executed. Separating those two distinct actions results in a sim-

pler structure. In other words, refactoring techniques such as “Extract Method,”

“Move Method,” etc., will provide a good chance to loosen the coupling.

4.3.3 Refactorings enhancing module cohesions

Cohesiveness is another important metrics for maintainability beside module coupling[35].

Although there are variations in the definition of module cohesion, we can generally

classify the cohesiveness in the following six levels:

1. Coincidental totally unrelated elements

2. Logical sharing a general category only

3. Temporal control flow without order

4. Communicational data flow without order

57

5. Sequential data flow with order

6. Functional contributing to one and only relevant task

Although this graduation itself is very sophisticated, it is not suitable for refactoring

effect evaluation. Hence we first define a quantitative model of module cohesiveness.

Quantitative Cohesion Model

To evaluate refactoring effect in terms of cohesiveness improvement, we prepare the

following quantitative cohesion model. First of all, we assume the following notions.

(Program) Element Variables, constants, statements, methods and objects.

Cluster A set of elements/clusters.

According to the above definition, a method could be treated as a cluster of variables,

constants and statements. At the same time, a method could be a component of a

larger cluster, or a class/instance.

Two program elements have a “relation” if there is a certain dependency between

them. For instance, method mA and method mB have a relation if mA calls mB, or

vice versa. And class cA and class cB have a relation if a method mA in cA refers a

variable vB in cB.

We define a graph-based model of a cluster: assigning each element to a vertex

and each relation to an edge connecting corresponding vertices.(See Fig. 4.1) Each

edge is assigned a certain weight, which is defined by a number of appearances of the

corresponding relation and a coefficient. We define two different types of coefficients:

an intra–cluster coefficient wi and an inter–cluster coefficient we. Preferably, wi is

two or three times larger than we. For instance, a relation corresponding an edge

e is n-ply and the relation is an intra–cluster one, the weight of e is nwi. We also

define a vertex weight, which is either

58

• 0 if the vertex is primitive (not a cluster), or

• weight of corresponding sub-cluster, if otherwise.

Based on the model, we define a cluster weight (of a cluster c) CW (c) as a sum of

edge weights plus sum of vertex weights.

Cluster C1
Cluster C3

Cluster C2
Intra-cluster relation
(coefficient: wi)

Inter-cluster relation
(coefficient: we)

Figure 4.1: Quantitative Cohesion

Now we are ready to define a strength of functional relatedness in a cluster, or

cluster cohesion index (of a cluster c) Ci(c) as follows.

Ci(c) =
CW (c)

NV (c)

where NV (c) is a number of vertices in (intra–) or connected to (inter–) cluster c.

59

Fig. 4.1 includes three clusters, C1, C2 and C3. Assuming wi = 2 and we = 1, we

can evaluate cohesiveness of those three clusters as follows.

C1 shows the highest cohesion among them due to large weight concentrated on

intra–cluster links.

CW (C1) = 15, NV (C1) = 7 ⇒ Ci(C1) ≈ 2.1

On the other hand, C2 shows the lowest cohesion among them as elements are not

related much with each other.

CW (C2) = 7, NV (C2) = 11 ⇒ Ci(C2) ≈ 0.6

C3 shows intermediate cohesion, large weight but there are quite a number of inter

cluster links.

CW (C3) = 14, NV (C3) = 9 ⇒ Ci(C3) ≈ 1.6

4.3.4 Refactoring Effect from Cohesiveness Viewpoint

Based on the previous assumption of quantitative evaluation of module cohesive-

ness, we examine a number of refactoring techniques which are introduced in Fowler’s

textbook[16]. We also include some refactoring techniques which are difficult to eval-

uate the refactoring effect with in terms of previously discussed quantitative model.

We believe, however, that even qualitative effect evaluation would help further ex-

ploration.

Composing Methods These are good for procedural and temporal modules (control-

flow biased) for it concerned mainly with method cohesion.

Extract Method increases method cohesion due to reducing the number of vertices

in the method (NV –).

60

Inline Method does not change to method cohesion, but increases module cohesion

(NV +).

Moving Features Between Objects These are mainly concerned with class co-

hesion and are effective with functional, sequential and communicational types.

Move Method, Move Field increase class cohesion (NV –) and module cohesion

(CW+ as coefficient wi replaces coefficient we).

Extract Class increases sub-cluster (new class) cohesion and hence module cohe-

sion.

Organizing Data These are not quite effective with procedural and temporal

modules for it is a data-centered technique, but would be effective at a lower level of

cohesiveness.

Self Encapsulate Field reduces class cohesion (NV +) for highly cohesive classes.

Replace Array with Object increases class and module cohesion; an isolated ar-

ray → a cohesive class.

Simplifying Conditional Expressions These are mainly concerned with com-

plexity of conditional expressions, not much relevant to software cohesion.

Making Method Calls Simpler These may be suitable to all categories but not

to a great extent for it is about method re-arrangement with respect to class and

method itself.

Add Parameter increases method, class cohesion (CW+, NV +).

Separate Query from Modifier increases sub-cluster (new method) cohesion and

hence class cohesion.

61

Dealing with Generalization It is hard to evaluate cohesion change with these

refactorings due to possible dynamic binding.

Pull Up Field/Method/Constructor Body remove code redundancy; often sub-

class cohesion down (CW–, NV –1); super-class cohesion up (CW+, NV +1).

Push Down Field/Method usually subclass cohesion up; super-class cohesion

down.

Extract Subclass increases cohesion of a parent class and a new sub-class substan-

tially.

Big Refactorings These affect on system cohesion to a great extent for it is a

large scale system reorganization.

Tease Apart Inheritance converts a class hierarchy into two very cohesive small

class hierarchies, especially relevant for top 3 categories.

Convert Procedural Design into Objects is suitable with procedural and tem-

poral levels and new module (class) cohesion can be substantially higher.

Extract Hierarchy will lead to a highly cohesive method and class for it replaces

a class with many conditional flags into a hierarchy, and each sub-class is

responsible to a condition.

Example: Separate Query from Modifier

Fig. 4.2 shows an example of “Separate Query from Modifier” refactoring. Method

mqm includes two elements unrelated with each other, or a query eq and a modifier

em, and mqm is called from n (> 0) methods. The cohesion index for mqm is:

Ci(mqm) =
nwe

2 + n
.

62

em

eq

mqm

CW(mqm)=nwe,
NV(mqm)=2+n
⇒Ci(mqm)=nwe/(2+n)

mm

mq

em

eq

CW(mm)=(n+im)we,
NV(mm)=1+n+im
⇒Ci(mm)=(n+im)we/(1+n+im)

n vertices

n+im vertices

n+iq vertices

Figure 4.2: Example of “Separate Query from Modifier

After the refactoring, mqm is divided into two methods, mq and mm. To keep the

semantic unchanged, both mq and mm are called from n methods just as mqm was.

Moreover, there might be additional calls to both methods. Suppose we have addi-

tional iq (≥ 0) callers and im (≥ 0) callers for mq and mm, respectively. As for

mm, the cohesion index is:

Ci(mm) =
(n + im)we

1 + n + im
.

We can easily get the same result for Ci(mq).

Assume Ci(mm) (and Ci(mq), as well) is larger than Ci(mqm), or:

nwe

2 + n
<

(n + im)we

1 + n + im
.

Solving the inequality, we can get the following condition for n.

n > −2im

63

Since the right-hand side is negative (because im ≥ 0) and n > 0, the above inequality

is always true. Therefore we can conclude that both Ci(mm) and Ci(mq) are always

larger than Ci(mqm). And the result implies that “Separate Query from Modifier”

refactoring actually increases method cohesion.

4.4 Quantitative Coupling Evaluation

In this experiment, we focus on refactorings that enhance the maintainability of

a method in terms of coupling. We examine those refactorings that are supposed

to reduce coupling among methods such as “Extract Method,” “Extract Class,” or

“Move Method.” In the following, we are using Java and a method as examples of a

programming language and a unit of a part of a program, respectively.

4.4.1 Definition of Coupling

First we define the coupling between methods. Although various definitions and

calculation policies have been previously proposed, we developed our own definition

based on Allen et al.’s [1], Briand et al.’s [9], and others. Our definition is based on

our original handy metrics which are used in our in-house software development site.

We classified coupling into three major categories.

Return value coupling

When method A uses a return value from method B, we define that A has a return

value coupling with B. When method A provides a return value to method B, we

also define that A has a return value coupling with B.

The whole return value coupling of method A can be defined as a total of those

related values. Hence we define return value coupling of A, or Crv(A) as follows:

64

Crv(A)=
∑

mρ∈ρ(A)

Krv(mρ)+
∑

mσ∈σ(A)

Krv(mσ),

where,

ρ(A): a set of methods whose return value is used by A,

Krv(m): return value coupling inter–class coefficient, = 1 when

m is in the same class as A, = κrv > 1 when m is in a

different class,

σ(A): a set of methods that use A’s return value.

Krv(m) has been introduced to reflect that an inter–class coupling could be a

greater maintenance obstacle than an intra–class coupling. Hence we apply κrv(> 1)

coefficient to inter–class parameter couplings.

Parameter coupling

When method A receives n parameters from method B, we define that A has n

parameter coupling with B. When method A passes m parameters to method C, we

define that A has m parameter coupling with C.

The whole parameter coupling of method A can be defined as a total of those

related values. Hence we define parameter coupling of A, or Cpp(A) as follows:

Cpp(A)=
∑

mζ∈ζ(A)

Kpp(mζ)pmζ
+

∑

m∈ξ(A)

Kpp(mξ)pmξ
,

where,

ζ(A): set of methods that invoke A,

ξ(A): set of methods that are invoked by A,

Kpp(m): parameter coupling inter–class coefficient, = 1 when m

is in the same class as A, = κpp > 1 when m is in a

different class,

pm: # of parameters of m.

65

Kpp(m) has been introduced for the same reason as Krv(m) has been introduced.

Shared variable coupling

When method A uses n class/instance variables in common with another method B,

we define A has n shared variable coupling with B.

The whole shared variable coupling of method A can be defined as a total of those

related values. Hence we define shared variable coupling of A, or Csv(A) as follows:

Csv(A)=
∑

mχ∈χ(A)

Ksv(mχ)vmχ ,

where,

χ(A): a set of methods that use class/instance variables in

common with A,

Ksv(m): shared variable coupling inter–class coefficient, = 1

when m is in the same class as A, = κsv > 1 when

m is in a different class,

vm: number of class/instance variables appearing in both

method A and method m.

Ksv(m) has been introduced for the same reason as Krv(m) has been introduced.

4.4.2 Combining Three Couplings

Three couplings introduced above are not equally important from the maintainability

viewpoint. For instance, when we compare accessing an instance variable of another

class and receiving a parameter from a method of another class, the former case

might have considerably more severe influence than the latter case.

Therefore we have to apply proper coefficients when combining those three cou-

pling metrics into one that would evaluate the maintainability of a certain method.

We prepare three coefficients KTrv , KTpp , and KTsv for the parameter coupling, the

66

shared variable coupling, and the return value coupling, respectively. Although there

is no reasonable clue to deciding the exact value for each of those coefficients, we

dare to assume the following inequality relationship among them:

0<KTrv≤KTpp <KTsv (KTrv +KTpp +KTsv =1)

The whole coupling metrics value for the method A CT (A) is then calculated in

the following formula:

CT (A)=KTrvCrv(A)+KTppCpp(A)+KTsvCsv(A)

4.5 Experiment and Result

4.5.1 Example of Quantification

We will show the example of refactoring effect quantification using a refactoring

called “Move Method.” “Move Method” is supposed to be applied when “a method

is, or will be, using or used by more features of another class than the class on which

it is defined.”[16]

Fig. 4.3 and 4.4 show program codes before and after the “Move Method,” re-

spectively.

These programs are for the bank account management. Class AccountType deals

with various types of bank account such as a regular account, a premium account

and some others. In this case we assume that there are going to be several new

account types, each of which has its own rule for calculating the overdraft charge.

Therefore we plan to move overdraftCharge() method to the AccountType class

from Account class.

We can expect that the coupling of the method overdraftCharge() decreases af-

ter the refactoring. Let n be a number of account types dealt with AccountType class.

67

class Account...

double overdraftCharge() {

if (_type.isPremium()) {

double result = 10;

if (_daysOverdrawn > 7)

result += (_daysOverdrawn - 7) * 0.85;

return result;

}

}

double bankCharge() {

double result = 4.5;

if (_daysOverdrawn > 0)

result += overdraftCharge();

return result;

}

private AccountType _type;

private int _daysOverdrawn;

Figure 4.3: Before “Move Method”

Before the refactoring, overdraftCharge() provides its return value to bankCharge()

and uses the return values of n account type decision methods such as isPremium()

in AccountType class. In other words, the coupling of overdraftCharge() consists

of one intra–class return value coupling and n inter–class return value couplings.

Therefore the whole coupling of overdraftCharge() is KTrv(1 + nκrv).

After the refactoring, on the other hand, overdraftCharge() provides its return

value to Account.bankCharge(), receives a parameter from Account.bankCharge(),

and uses the return values of n account type decision methods such as isPremium().

In other words, the coupling of overdraftCharge() consists of one inter–class return

value coupling, n intra–class return value couplings, and one intra–class parameter

68

class AccountType...

double overdraftCharge(int daysOverdrawn) {

if (isPremium()) {

double result = 10;

if (daysOverdrawn > 7)

result += (daysOverdrawn - 7) * 0.85;

return result;

}

else return daysOverdrawn * 1.75;

}

class Account...

double bankCharge() {

double result = 4.5;

if (_daysOverdrawn > 0)

result +=

_type.overdraftCharge(_daysOverdrawn);

return result;

}

private AccountType _type;

private int _daysOverdrawn;

Figure 4.4: After “Move Method”

coupling. Therefore the whole coupling of overdraftCharge() is KTrv(κrv + n) +

KTpp .

The refactoring effect is then calculated as follows:

KTrv(1 + nκrv)− {KTrv(κrv + n) + KTpp}

= KTrv(κrv − 1)(n− 1)−KTpp ,

69

and this value is positive under the following condition:

(κrv − 1)(n− 1) >
KTpp

KTrv

(> 1).

Suppose κrv > 1.5, which means that it is at least 1.5 times more costly to

maintain inter–class coupling than intra–class coupling. Considering that inter–class

coupling involves at least two different classes while intra–class coupling involves

only one class, this assumption cannot be so far from the reality. If κrv > 1.5, then

the refactoring effect is positive when n ≥ 3, which means that this refactoring is

effective if there are three or more account types involved and that is what we have

assumed in this example.

4.5.2 Experiment

To evaluate our theory, we implemented the following experiment. We chose one

software project written in C++ which had been maintained for almost five years.

We realized that the maintainability of the software has been much deteriorated. We

applied Refactoring Assistant to the software and found many bad–smells in terms

of coupling metrics. We also interviewed the developer of the program to recognize

the most serious problems in terms of maintainability. Using such information, we

have singled out five problems. The developer then performed refactoring to each of

those five problems. We did not provide the developer any precise information about

the coupling metrics values measured by Refactoring Assistant beforehand.

Case 1: Extract Method(1)

In this case, the original method indicated very high coupling with many other

methods including the ones in other classes. The developer admitted that the method

should be divided into at least two parts: one for manipulating instance variables

70

to update the object’s state and the other for collecting required information from

other objects. Therefore the developer applied Extract Method refactoring.

Case 2: Extract Method(2)

This case also showed rather high inter–class parameter coupling and intra–class

shared variable coupling. However, we could find little effective solution for this

problem. We applied the solution anyway only to find that the refactored code was

no more maintainable than the original one.

Case 3: Extract Class(1)

In this case, the original method indicated very high shared variable coupling with

many other methods in the same class. The method dealt with four instance variables

all of which performed very similar roles to one another. Actually those four instance

variables all together prescribe a certain state of the object. Hence the developer

decided to introduce a new class to manage those four instance variables together

with appropriate methods to manipulate them.

Case 4: Extract Method(3)

The method in question is a check method which traverses two instance variables.

Those two instance variables are very similar to each other and so are the ways to

traverse them. The developer therefore extracted a traverse method. The extraction

separated the original method into two parts: one for the query part and the other

for the traversing.

Case 5: Extract Class(2)

The original method accessed twelve instance variables. Those instance variables

are also accessed by a number of other methods not only in the same class but in

71

many different classes. The developer had realized that some encapsulation should

be applied to those instance variables. We introduced a new class that deals with

those instance variables and provides methods to access/update those values. As a

result, the extracted class became responsible for the shared variable coupling and

the method in question became almost free from the shared variable coupling.

4.5.3 Consideration

We collected subjective data from the developer regarding coefficients discussed in

the previous section. As a result, we chose these coefficient values for the target

system:

κrv = 1.5, κpp = 2.0, κsv = 3.0

KTrv = 0.2, KTpp = 0.2, KTsv = 0.6.

Table 4.2: Refactoring Experiment Result

case sbj. before after(effect)

1 B 10.4 2.8(7.6)

2 C 12.1 9.0(3.1)

3 B 25.2 9.0(16.2)

4 B 26.4 1.7(24.7)

5 A 126.0 26.0(100.0)

Table 4.2 summarizes the result of our experiment. The column “sbj.” shows the

subjective evaluations of the refactoring effectiveness by the developer which are:

A considerably effective

B somehow effective

72

C not necessarily effective.

method A

method B method C method D

method E method F method G

method B method C method D

method E method F method G

Before Extract Method After Extract Method

CT(A) = 6 CT(A’) = 3, CT(a1) = 4, CT(a2) = 4
(average: 3.7)

method A’

method
 a2

method
a1

Figure 4.5: Example of Good Refactoring

The column “before” shows the coupling metrics value of the target method before

the refactoring. The column “after(effect)” shows the coupling metrics value of the

target method after the refactoring and the difference from before–the–refactoring

value, or the effect of the refactoring. It is important to evaluate the refactoring

effect by these values in the parentheses. However we have to consider other factors

as well. Fig. 4.5 and 4.6 describe the situation. A is the original method, and

“Extract Method” divides A into three methods: A′ which corresponds to A, a1 and

a2 which are derived from A by the refactoring. Fig. 4.5 is an effective refactoring

example. After the refactoring, the coupling of A is well balanced among three meth-

ods. On the other hand, Fig. 4.6 is an example of ineffective refactoring. Although

A′ itself has very small coupling, two derived methods (a1 and a2) have rather big

coupling. Therefore we should take those derived methods into consideration as

well when we evaluate the refactoring effect precisely. The column “average(effect)”

73

method A

method B method C method D

method E method F method G

method A’

method B method C method D

method E method F method G

method
 a2

method
a1

Before Extract Method After Extract Method

CT(A) = 6
CT(A’) = 2, CT(a1) = 6, CT(a2) = 4

(average: 4)

Figure 4.6: Example of Not-So-Good Refactoring

shows the average coupling metrics value of the target method and derived methods

added by the refactoring and the difference from before–the–refactoring value, or the

effect of the refactoring.

As the result shows, our approach to evaluate the effectiveness of the refactoring

using coupling metrics reflects the developer’s subjective evaluations quite well.

Regarding case 2, for instance, the developer decided not to refactor the method

at least for the time being. He, however, realizes that there is a potential problem

which would emerge when he extends the current data structure. The situation is

very similar to the bank account program example referred in Section 4.5.

As for case 5, on the other hand, the developer had actually just started consid-

ering whether he might introduce a new class for the set of the instance variables.

The exceedingly high coupling metrics value encouraged him to implement his idea,

and the result was really acceptable.

74

4.6 Expansion and Related Works

We have shown our first result of quantitative evaluation of the refactoring effect

from the coupling metrics viewpoint. Although the result satisfies us, we still have

to enhance our method. We need to provide some systematic approach to find appro-

priate coefficient values to calculate the coupling metrics value. In our experimental

case, the developer was both well–experienced and well–trained so that we could

rely on his judgment. Working with as many experienced developers as possible is

inevitable to define reasonable and versatile coefficient values.

There is another direction we have to explore. As we stated above, there are some

other aspects about how to enhance the software maintainability using refactoring,

including the size viewpoint, the cohesion viewpoint, the readability viewpoint, and

so on. Our experience with various software development projects reveals that some

refactorings are so intuitive that almost everyone could agree with the effect of the

refactoring in terms of maintainability enhancement. For instance, everyone would

admit that a–thousand–LOC–method is much harder to maintain than a–hundred–

LOC–method. Another example is that it is much easier if they use reasonable

names for their variable, method, and class which reflect their role properly rather

than those meaningless identifiers such as “a,” “method1,” or “ClassA.”

On the other hand, the effectiveness of refactorings such as “Pull Up Field” or

“Introduce Null Object” is not necessarily obvious. Therefore some quantitative

evaluation methods other than the coupling metrics viewpoint are also required to

further encourage software development projects to adopt those refactorings.

Our next target will be the cohesion viewpoint. There are various distinguished

previous studies on cohesion metrics including Allen et al.’s[1], Briand et al.’s[9], Chae

et al.’s[11], Karstu’s[25], Bieman et al.’s[6], and so on. As previously discussed, we

are currently trying to develop our own metrics as well. Using those existing results

and our own approach, we are developing the effect evaluation method for those

75

refactorings intended to enhance the program maintainability in terms of cohesion

improvement.

4.7 Conclusion

We have introduced a quantitative method to evaluate the refactoring effect in terms

of the degree of maintainability enhancement of the target program. Although the

number of refactorings whose effect can be evaluated from the coupling metrics view-

point is limited, we showed that it is actually useful as an evaluation method of

refactoring effect.

Our goal is to establish a comprehensive support of the refactoring process so

that the software development project can easily adopt the process and enhance the

maintainability of the target software. To achieve our goal, we should provide an

effective solution for each subprocess. Implementing the refactoring support tool

Refactoring Assistant, we have provided solutions for improvement planning sub-

process and improvement execution subprocess to a certain extent. In that sense

our tool can assist (experienced) developers and analysts who can somehow make

reasonable judgment regarding what they should and should not do to improve their

products’ maintainability. It is essential, however, to provide an effective support

for improvement validation to guide project managers toward appropriate direction

of the maintainability enhancement. Without assisting project managers responsible

for the total quality of the developed software, it would be a far cry from compre-

hensive improvement of the software maintainability management.

We will continue seeking the way to evaluate refactoring effect based on other

metrics. We will also explore how to coordinate those three subprocesses effectively.

76

Acknowledgements

I would like to thank Mr. Takeo Imai, Mr. Hiroki Andou and Mr. Tetsuji Fukaya of

Toshiba Corporation for their contributions to the fundamental result of Chapter 4.

The work of Chapter 4 also owes much to Dr. Nguyen Truong Thang of School

of Information Science, Japan Advanced Institute of Science and Technology, who

worked with me during his internship program period. And I would like to thank

him very much.

77

78

Chapter 5

Summary

5.1 Toward Practical Application of Refactoring

As stated very beginning of this thesis, softwares are getting more and more impor-

tant for various systems and devices around us. That means that the potential risk

of social system failure is greatly depends on the quality of softwares. At the same

time, the amount of required software is increasing at an exponential rate. Figure

5.1 shows a few example how the total amount of software in an embedded system

increases rapidly.

From workforce point of view, on the other hand, there are quite limited number

of software developing workforce. According to the surveillance report by Software

Engineering Center, for instance, the number of embedded software development

workforce is estimated around 175,000. And the increasing rate of the workforce is

not very high; only 17% per year. That means we do need any possible software

development technologies that drastically enhance the productivity.

We do require software engineering technologies that promise

• securing highly dependable software (components), and

79

1990

0.1

1

10

100

Total amount of
software (MB)

20001995

ITS/ETS compatible

JAVA compatible

3G cell phones

Digital Broadcast

i-mode compatible
DVD system

BS digital TV

DVD car navigation
system

i-mode cell phones

Packet transmission system

Internet TV

PDC
Hi-Vision TV

Car navigation
system

TV

Cell phone

VICS compatible

Voice navigation
With CD-ROM

2005
(year)

Figure 5.1: Growth of Software Size in Embedded Systems

• increasing productivity.

Program refactoring is one of those promising technology. The problem is that pro-

gram refactoring itself is not a very handy technology to apply to actual software

development, especially those in industrial field where cost and delivery greatly mat-

ter. And that is the reason why this series of researches has its value.

Chapter 3 introduced a method and a tool to identify candidates of program

refactoring. Making use of this research result, we can greatly lower the first barrier

to program refactoring application since identifying where to be refactored is not a

very easy task to perform. As for identifying bugs, for instance, there are various

technologies including testing, symbolic execution, code review and so on. Although,

80

of course, it is still difficult task to fix those identified bugs, those technologies for

identifying bugs have been greatly improving the bug elimination process. There-

fore identifying program refactoring candidates might also encourage the practical

application of program refactoring as well.

Chapter 4 introduced a method to evaluate the effect of refactorings quantita-

tively. This result should be a basis for appropriate application of program refactor-

ing. For instance, it is not practical to test all possible usage patterns for a certain

software. Especially these days it is not just realistic since softwares can communicate

with other systems/devices via networks, which is not necessarily predictable before-

hand. Therefore we have to weigh possible use case patterns according to some policy

so that we can select appropriate minimum set of test cases. In like wise, evaluating

the effect of program refactoring quantitatively, we can weigh possible refactoring

patterns so that we can select appropriate minimum set of refactorings.

5.2 Future Works

Table 5.1 shows technology roadmap regarding the refactoring process introduced in

Chapter 1. According to the interview on several in-house companies’ development

sites, there are differences in degree of requirement among the refactoring activities

introduced in Chapter 1. The “Needs” column in Table 5.1 indicates the degree of

requirement for each activity.

bad–smell detection Many developers agree that it is the first and possibly the

highest barrier which makes them hold back from applying refactoring. Al-

though they are very keen to implement required functionality, they usually

have little amount of time to consider anything other than that. And after

all, most of them do not have slightest idea about what does “non-functional

quality” actually mean and how to improve it.

81

Table 5.1: Technology map in refactoring process

Subprocess Activity Support Needs

Planning bad–smell detection Chapter 3 High

bad–smell analysis partly Mid

refactoring planning partly Mid

Validation plan evaluation Chapter 4 High

refactoring validation no High

functional equivalence validation no Low

Execution refactoring deployment no Mid

refactoring application partly High

bad–smell analysis Actually most of refactoring patterns we have encountered so

far were rather simple refactorings including “Move Method” and “Extract

Method,” which does not necessarily require very deep analysis. Therefore the

support need of this activity is not very high compared with other activities.

refactoring planning Since most of refactoring patterns are rather simple for the

time being, required decision making is also rather straightforward. In that

sense the support need of this activity is as high as the previous activity.

plan evaluation Although this activity is located in manager level, quantitatively

indicating the effect of refactoring is very important to encourage and motivate

developers to make use of the merit of refactoring. That is the reason why the

need is ranked “High.”

refactoring validation Even if the relationship between a certain bad–smell and

corresponding refactoring candidate is rather obvious, this activity has to be

done appropriately. In addition, as stated below, functional equivalence vali-

dation is not a purely refactoring related matter. After all, testing and other

82

software engineering technologies are appropriate to confirm the functionality

of a program. From program refactoring viewpoint, this activity is the last

stronghold for refactoring application.

functional equivalence validation As mentioned above, this activity is not a

purely program refactoring related matter. Although there’s no such means

from refactoring viewpoint, one can still utilize conventional testing method

and others to confirm the functional equivalence before and after the refac-

toring. After all, developers are never free from any regression tests after any

modification to the source code.

refactoring deployment Once the appropriate refactoring plan has been estab-

lished, most of the refactorings are straightforward as stated in refactoring

planning. Therefore the support need of this activity is not so high.

refactoring application This is another great barrier which makes developers hes-

itate to apply refactorings. They dare not modify currently working program.

It is sort of their theory not to modify their program unless they encountered

bugs. Therefore it will lower the barrier that if there is a technique that secures

“a safety program modification.”

Chapter 3 and Chapter 4 cover bad–smell detection and plan evaluation respec-

tively. According to the roadmap, next target would be refactoring validation sup-

port or refactoring application support. As seen in the previous chapters, there are

a number of distinguished preceding researches for refactoring application support.

On the other hand, there is no major research for refactoring validation support.

Therefore this would be the next target for establishing comprehensive support of

program refactoring.

83

84

Bibliography

[1] E.B. Allen and T.M. Khoshgoftaar. “Measuring coupling and cohesion: an

information-theory approach”. In Proceedings of the Sixth International Soft-

ware Metrics Symposium, pages 119–127, Boca Raton, FL U.S.A., November

1999.

[2] H.G. Baker. “‘Use-once’ variables and linear objects – storage management,

reflection and multi-threading”. SIGPLAN notices, 30(1):45–52, January 1995.

[3] V.R. Basili, L.C. Briand, and W.L. Melo. “A validation of object-oriented de-

sign metrics as quality indicators”. IEEE Transaction on Software Engineering,

22(10):751–761, October 1996.

[4] K. Beck. “eXtreme Programming eXplained: Embrace Change”. Addison–

Wesley, 2000.

[5] P. Bengtsson. “Towards maintainability metrics on software architecture: and

adaptation of object-oriented metrics”. In Proceedings of First Nordic Workshop

on Software Architecture, Ronneby, Sweden, August 1999.

[6] J. M. Bieman and L. M. Ott. “Measuring functional cohesion”. Technical Report

CS-93-109, Colorado State University, Fort Collins, CO, USA, June 1993.

85

[7] R.W. Bowdidge. “Supporting the Restructuring of Data Abstractions through

Manipulation of a Program Visualization”. PhD thesis, University of California,

San Diego, Department of Computer Science & Engineering, November 1995.

[8] R.W. Bowdidge and W.G. Griswold. “Supporting the restructuring of data ab-

stractions through manipulation of a program visualization”. ACM Transactions

on Software Engineering and Methodology, 7(2), April 1998.

[9] L.C. Briand, J.W. Daly, and J.K. Wütt. “A unified framework for cohesion

measurement in object-oriented systems”. In Proceedings of the Fourth Interna-

tional Symposium on Software Metrics, pages 43–53, Albuquerque, NM U.S.A.,

November 1997.

[10] R.J. Bril and A. Postma. “An architectural connectivity metric and its support

for incremental re-architecting of large legacy systems”. In Proceedings of 9th

International Workshop on Program Comprehension, pages 269–280, 2001.

[11] H.S. Chae and Y.R. Kwon. “A cohesion measure for classes in object-oriented

systems”. In Proceedings Fifth International Software Metrics Symposium, pages

158–166, Bethesda, MD U.S.A., November 1999.

[12] M.D. Ernst. “Dynamically Discovering Likely Program Invariants”. PhD thesis,

University of Washington Department of Computer Science and Engineering,

Seattle, Washington, August 2000.

[13] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. “Dynamically discover-

ing likely program invariants to support program evolution”. IEEE Transaction

on Software Engineering, 27(2):1–25, February 2001.

[14] M.D. Ernst, A. Czeisler, W.G. Griswold, and D. Notkin. “Quickly detecting

relevant program invariants”. In Proceedings of 22nd International Conference

on Software Engineering, pages 449–458, Limerick, Ireland, June 2000.

86

[15] M.D. Ernst, W.G. Griswold, Y. Kataoka, and D. Notkin. “Dynamically discov-

ering pointer-based program invariants”. Technical report, University of Wash-

ington, Seattle, WA, November 1999.

[16] M. Fowler. “Refactoring: Improving the Design of Existing Code”. Addison–

Wesley, 1999.

[17] E. Gamma, R. Helm, R.E. Johnson, and J. Vlissides. “Design Patterns”.

Addison–Wesley, 1995.

[18] W.G. Griswold. “Program Restructuring as an Aid to Software Maintenance”.

PhD thesis, University of Washington, Dept. of Computer Science & Engineer-

ing, Seattle, WA, August 1991.

[19] W.G. Griswold. “Coping with change using information transparency”. Techni-

cal Report CS98-585, University of California, San Diego, Department of Com-

puter Science and Engineering, April 1998 (Revised August 1998).

[20] W.G. Griswold, M.I. Chen, R.W. Bowdidge, J.L. Cabaniss, V.B. Nguyen, and

J.D. Morgenthaler. “Tool support for planning the restructuring of data abstrac-

tions in large systems”. IEEE Transactions on Software Engineering, 24(7):534–

558, July 1998.

[21] W.G. Griswold and Notkin D. “Automated assistance for program restructur-

ing”. ACM Transaction on Software Engineering and Methodology, 2(3):228–

269, July 1993.

[22] W.G. Griswold, J.J. Yuan, and Y. Kato. “Exploiting the map metaphor in a

tool for software evolution”. In Proceedings of the 2001 International Conference

on Software Engineering, May 2001.

87

[23] K. Hatano, Y. Nomura, H. Taniguchi, and K. Ushijima. “A mechanism to

support automated refactoring process”. IPSJ Journal, 44(6):1548–1557, June

2003.

[24] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. “Aries: Refactoring sup-

port environment based on code clone analysis”. In Proceedings of the 8th

IASTED International Conference on Software Engineering and Applications

(SEA 2004), pages 222–229, 2004.

[25] S. Karstu. “An examination of the behavior of the slice based cohesion mea-

sures”. Master’s thesis, Department of Computer Science, Michigan Technolog-

ical University, 1994.

[26] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin. “Automated sup-

port for program refactoring using invariants”. In ICSM 2001, Proceedings of

the IEEE International Conference on Software Maintenance, pages 736–743,

Florence, Italy, November 2001.

[27] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. “A quantitative evaluation

of maintainability enhancement by refactoring”. In ICSM 2002, Proceedings of

the IEEE International Conference on Software Maintenance, pages 576–585,

Montreal, Canada, November 2002.

[28] K.A. Kontogiannis, R. DeMori, E. Merlo, and M. et al. Galler. “Pattern match-

ing for clone and concept detection”. Automated Software Engineering, 3(1–

2):77–108, June 1996.

[29] I. Moore. “Automatic inheritance hierarchy restructuring and method refac-

toring”. In Proceedings of the Eleventh Annual Conference on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA), pages 235–250,

1996.

88

[30] I. Moore. “Automatic Restructuring of Object Oriented Programs”. PhD thesis,

University of Manchester, 1996.

[31] W.F. Opdyke. “Refactoring Object-Oriented Frameworks”. PhD thesis, Univer-

sity of Illinois at Urbana-Champaign, 1992.

[32] W.F. Opdyke and R.E. Johnson. “Refactoring: An aid in designing application

frameworks and evolving object-oriented systems”. In Proceedings of SOOPPA

’90: Symposium on Object-Oriented Programming Emphasizing Practical Appli-

cations, Sep 1990.

[33] D. Roberts, J. Brant, and R. Johnson. “A refactoring tool for smalltalk”. Theory

and Practice of Object Systems, 3(4):253–63, 1997.

[34] D.B. Roberts. “Practical Analysis for Refactoring”. PhD thesis, University of

Illinois at Urbana-Champaign, 1999.

[35] W.P. Stevens, G.J. Myers, and L.L. Constantine. “Structured design”. IBM

Systems Journal, 13(2):115–139, 1974.

[36] D. Ungar and R.B. Smith. “Self: The power of simplicity”. In Conference

on Object-Oriented Programming, Systems, Languages, and Applications, pages

227–241, 1987.

[37] S. Wake and S. Henry. “A model based on software quality factors which predicts

maintainability”. In Proceedings of the Conference on Software Maintenance,

pages 382–387, 1988.

89

